serai/coordinator/src/main.rs

976 lines
35 KiB
Rust
Raw Normal View History

use core::ops::Deref;
use std::{
sync::Arc,
time::Duration,
collections::{VecDeque, HashMap},
};
use zeroize::{Zeroize, Zeroizing};
use rand_core::OsRng;
use ciphersuite::{
group::ff::{Field, PrimeField},
Ciphersuite, Ristretto,
};
use schnorr::SchnorrSignature;
use frost::Participant;
2023-04-15 21:38:47 +00:00
use serai_db::{DbTxn, Db};
use serai_env as env;
use serai_client::{
primitives::NetworkId,
validator_sets::primitives::{Session, ValidatorSet},
2023-10-14 06:52:02 +00:00
Public, Serai, SeraiInInstructions,
};
2023-04-15 21:38:47 +00:00
use message_queue::{Service, client::MessageQueue};
use tokio::{
sync::{RwLock, mpsc, broadcast},
time::sleep,
};
use ::tributary::{ProvidedError, TransactionKind, TransactionTrait, Block, Tributary};
2023-04-20 09:05:17 +00:00
mod tributary;
use crate::tributary::{
TributarySpec, SignData, Transaction, TributaryDb, NonceDecider, scanner::RecognizedIdType,
};
mod db;
use db::MainDb;
mod p2p;
pub use p2p::*;
use processor_messages::{key_gen, sign, coordinator, ProcessorMessage};
pub mod processors;
use processors::Processors;
2023-04-17 06:10:33 +00:00
2023-04-15 21:38:47 +00:00
mod substrate;
use substrate::SubstrateDb;
#[cfg(test)]
pub mod tests;
#[derive(Clone)]
pub struct ActiveTributary<D: Db, P: P2p> {
pub spec: TributarySpec,
pub tributary: Arc<Tributary<D, Transaction, P>>,
}
#[derive(Clone)]
pub enum TributaryEvent<D: Db, P: P2p> {
NewTributary(ActiveTributary<D, P>),
TributaryRetired(ValidatorSet),
}
// TODO: Clean up the actual underlying Tributary/Tendermint tasks
// Creates a new tributary and sends it to all listeners.
async fn add_tributary<D: Db, Pro: Processors, P: P2p>(
db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
processors: &Pro,
p2p: P,
tributaries: &broadcast::Sender<TributaryEvent<D, P>>,
spec: TributarySpec,
) {
if MainDb::<D>::is_tributary_retired(&db, spec.set()) {
log::info!("not adding tributary {:?} since it's been retired", spec.set());
}
2023-08-01 23:00:48 +00:00
log::info!("adding tributary {:?}", spec.set());
let tributary = Tributary::<_, Transaction, _>::new(
// TODO2: Use a db on a distinct volume to protect against DoS attacks
db,
spec.genesis(),
spec.start_time(),
key.clone(),
spec.validators(),
p2p,
)
.await
.unwrap();
// Trigger a DKG for the newly added Tributary
// If we're rebooting, we'll re-fire this message
// This is safe due to the message-queue deduplicating based off the intent system
let set = spec.set();
processors
.send(
set.network,
processor_messages::key_gen::CoordinatorMessage::GenerateKey {
id: processor_messages::key_gen::KeyGenId { set, attempt: 0 },
params: frost::ThresholdParams::new(
spec.t(),
spec.n(),
spec
.i(Ristretto::generator() * key.deref())
.expect("adding a tributary for a set we aren't in set for"),
)
.unwrap(),
},
)
.await;
tributaries
.send(TributaryEvent::NewTributary(ActiveTributary { spec, tributary: Arc::new(tributary) }))
.map_err(|_| "all ActiveTributary recipients closed")
.unwrap();
}
async fn publish_signed_transaction<D: Db, P: P2p>(
txn: &mut D::Transaction<'_>,
tributary: &Tributary<D, Transaction, P>,
tx: Transaction,
) {
log::debug!("publishing transaction {}", hex::encode(tx.hash()));
let signer = if let TransactionKind::Signed(signed) = tx.kind() {
let signer = signed.signer;
// Safe as we should deterministically create transactions, meaning if this is already on-disk,
// it's what we're saving now
MainDb::<D>::save_signed_transaction(txn, signed.nonce, tx);
signer
} else {
panic!("non-signed transaction passed to publish_signed_transaction");
};
// If we're trying to publish 5, when the last transaction published was 3, this will delay
// publication until the point in time we publish 4
while let Some(tx) = MainDb::<D>::take_signed_transaction(
txn,
tributary
.next_nonce(signer)
.await
.expect("we don't have a nonce, meaning we aren't a participant on this tributary"),
) {
// TODO: Assert if we didn't create a valid transaction
// We need to return a proper error here to enable that, due to a race condition around
// multiple publications
tributary.add_transaction(tx).await;
}
}
async fn handle_processor_message<D: Db, P: P2p>(
db: &mut D,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
serai: &Serai,
tributaries: &HashMap<Session, ActiveTributary<D, P>>,
network: NetworkId,
msg: &processors::Message,
) -> bool {
if MainDb::<D>::handled_message(db, msg.network, msg.id) {
return true;
}
let mut txn = db.txn();
let mut relevant_tributary = match &msg.msg {
// We'll only receive these if we fired GenerateKey, which we'll only do if if we're
// in-set, making the Tributary relevant
ProcessorMessage::KeyGen(inner_msg) => match inner_msg {
key_gen::ProcessorMessage::Commitments { id, .. } => Some(id.set.session),
key_gen::ProcessorMessage::Shares { id, .. } => Some(id.set.session),
key_gen::ProcessorMessage::GeneratedKeyPair { id, .. } => Some(id.set.session),
},
// TODO: Review replacing key with Session in messages?
ProcessorMessage::Sign(inner_msg) => match inner_msg {
// We'll only receive Preprocess and Share if we're actively signing
sign::ProcessorMessage::Preprocess { id, .. } => {
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
}
sign::ProcessorMessage::Share { id, .. } => {
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
}
// While the Processor's Scanner will always emit Completed, that's routed through the
// Signer and only becomes a ProcessorMessage::Completed if the Signer is present and
// confirms it
sign::ProcessorMessage::Completed { key, .. } => {
Some(SubstrateDb::<D>::session_for_key(&txn, key).unwrap())
}
},
ProcessorMessage::Coordinator(inner_msg) => match inner_msg {
// This is a special case as it's relevant to *all* Tributaries for this network
// It doesn't return a Tributary to become `relevant_tributary` though
coordinator::ProcessorMessage::SubstrateBlockAck { network, block, plans } => {
assert_eq!(
*network, msg.network,
"processor claimed to be a different network than it was for SubstrateBlockAck",
);
// TODO: Find all Tributaries active at this Substrate block, and make sure we have
// them all (if we were present in them)
for tributary in tributaries.values() {
// TODO: This needs to be scoped per multisig
TributaryDb::<D>::set_plan_ids(&mut txn, tributary.spec.genesis(), *block, plans);
let tx = Transaction::SubstrateBlock(*block);
log::trace!("processor message effected transaction {}", hex::encode(tx.hash()));
log::trace!("providing transaction {}", hex::encode(tx.hash()));
let res = tributary.tributary.provide_transaction(tx).await;
if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
if res == Err(ProvidedError::LocalMismatchesOnChain) {
// Spin, since this is a crit for this Tributary
loop {
log::error!(
"{}. tributary: {}, provided: SubstrateBlock({})",
"tributary added distinct provided to delayed locally provided TX",
hex::encode(tributary.spec.genesis()),
block,
);
sleep(Duration::from_secs(60)).await;
}
}
panic!("provided an invalid transaction: {res:?}");
}
}
None
}
// We'll only fire these if we are the Substrate signer, making the Tributary relevant
coordinator::ProcessorMessage::BatchPreprocess { id, .. } => {
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
}
coordinator::ProcessorMessage::BatchShare { id, .. } => {
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
}
},
// These don't return a relevant Tributary as there's no Tributary with action expected
ProcessorMessage::Substrate(inner_msg) => match inner_msg {
processor_messages::substrate::ProcessorMessage::Batch { batch } => {
assert_eq!(
batch.network, msg.network,
"processor sent us a batch for a different network than it was for",
);
let this_batch_id = batch.id;
MainDb::<D>::save_expected_batch(&mut txn, batch);
// Re-define batch
// We can't drop it, yet it shouldn't be accidentally used in the following block
#[allow(clippy::let_unit_value, unused_variables)]
let batch = ();
// This won't be complete, as this call is when a `Batch` message is received, which
// will be before we get a `SignedBatch`
// It is, however, incremental
// When we need a complete version, we use another call, continuously called as-needed
substrate::verify_published_batches::<D>(&mut txn, msg.network, this_batch_id).await;
None
}
// If this is a new Batch, immediately publish it (if we can)
processor_messages::substrate::ProcessorMessage::SignedBatch { batch } => {
assert_eq!(
batch.batch.network, msg.network,
"processor sent us a signed batch for a different network than it was for",
);
log::debug!("received batch {:?} {}", batch.batch.network, batch.batch.id);
// Save this batch to the disk
MainDb::<D>::save_batch(&mut txn, batch.clone());
// Get the next-to-execute batch ID
let mut next = substrate::get_expected_next_batch(serai, network).await;
// Since we have a new batch, publish all batches yet to be published to Serai
// This handles the edge-case where batch n+1 is signed before batch n is
let mut batches = VecDeque::new();
while let Some(batch) = MainDb::<D>::batch(&txn, network, next) {
batches.push_back(batch);
next += 1;
}
let start_id = batches.front().map(|batch| batch.batch.id);
let last_id = batches.back().map(|batch| batch.batch.id);
while let Some(batch) = batches.pop_front() {
// If this Batch should no longer be published, continue
if substrate::get_expected_next_batch(serai, network).await > batch.batch.id {
continue;
}
2023-10-14 06:52:02 +00:00
let tx = SeraiInInstructions::execute_batch(batch.clone());
log::debug!("attempting to publish batch {:?} {}", batch.batch.network, batch.batch.id,);
// This publish may fail if this transactions already exists in the mempool, which is
// possible, or if this batch was already executed on-chain
// Either case will have eventual resolution and be handled by the above check on if
// this batch should execute
let res = serai.publish(&tx).await;
if res.is_ok() {
log::info!(
"published batch {network:?} {} (block {})",
batch.batch.id,
hex::encode(batch.batch.block),
);
} else {
log::debug!(
"couldn't publish batch {:?} {}: {:?}",
batch.batch.network,
batch.batch.id,
res,
);
// If we failed to publish it, restore it
batches.push_front(batch);
// Sleep for a few seconds before retrying to prevent hammering the node
sleep(Duration::from_secs(5)).await;
}
}
// Verify the `Batch`s we just published
if let Some(last_id) = last_id {
loop {
let verified =
substrate::verify_published_batches::<D>(&mut txn, msg.network, last_id).await;
if verified == Some(last_id) {
break;
}
}
}
// Check if any of these `Batch`s were a handover `Batch`
// If so, we need to publish any delayed `Batch` provided transactions
let mut relevant = None;
if let Some(start_id) = start_id {
let last_id = last_id.unwrap();
for batch in start_id .. last_id {
if let Some(set) = MainDb::<D>::is_handover_batch(&txn, msg.network, batch) {
// relevant may already be Some. This is a safe over-write, as we don't need to
// be concerned for handovers of Tributaries which have completed their handovers
// While this does bypass the checks that Tributary would've performed at the
// time, if we ever actually participate in a handover, we will verify *all*
// prior `Batch`s, including the ones which would've been explicitly verified
// then
//
// We should only declare this session relevant if it's relevant to us
// We only set handover `Batch`s when we're trying to produce said `Batch`, so this
// would be a `Batch` we were involved in the production of
// Accordingly, iy's relevant
relevant = Some(set.session);
}
}
}
relevant
}
},
};
// If we have a relevant Tributary, check it's actually still relevant and has yet to be retired
if let Some(relevant_tributary_value) = relevant_tributary {
if MainDb::<D>::is_tributary_retired(
&txn,
ValidatorSet { network: msg.network, session: relevant_tributary_value },
) {
relevant_tributary = None;
}
}
// If there's a relevant Tributary...
if let Some(relevant_tributary) = relevant_tributary {
// Make sure we have it
// Per the reasoning above, we only return a Tributary as relevant if we're a participant
// Accordingly, we do *need* to have this Tributary now to handle it UNLESS the Tributary has
// already completed and this is simply an old message (which we prior checked)
let Some(ActiveTributary { spec, tributary }) = tributaries.get(&relevant_tributary) else {
// Since we don't, sleep for a fraction of a second and return false, signaling we didn't
// handle this message
// At the start of the loop which calls this function, we'll check for new tributaries,
// making this eventually resolve
sleep(Duration::from_millis(100)).await;
return false;
};
let genesis = spec.genesis();
let pub_key = Ristretto::generator() * key.deref();
let txs = match msg.msg.clone() {
ProcessorMessage::KeyGen(inner_msg) => match inner_msg {
key_gen::ProcessorMessage::Commitments { id, commitments } => {
vec![Transaction::DkgCommitments(id.attempt, commitments, Transaction::empty_signed())]
}
key_gen::ProcessorMessage::Shares { id, mut shares } => {
// Create a MuSig-based machine to inform Substrate of this key generation
let nonces = crate::tributary::dkg_confirmation_nonces(key, spec, id.attempt);
let mut tx_shares = Vec::with_capacity(shares.len());
for i in 1 ..= spec.n() {
let i = Participant::new(i).unwrap();
if i ==
spec
.i(pub_key)
.expect("processor message to DKG for a session we aren't a validator in")
{
continue;
}
tx_shares
.push(shares.remove(&i).expect("processor didn't send share for another validator"));
}
vec![Transaction::DkgShares {
attempt: id.attempt,
shares: tx_shares,
confirmation_nonces: nonces,
signed: Transaction::empty_signed(),
}]
}
key_gen::ProcessorMessage::GeneratedKeyPair { id, substrate_key, network_key } => {
assert_eq!(
id.set.network, msg.network,
"processor claimed to be a different network than it was for GeneratedKeyPair",
);
// TODO2: Also check the other KeyGenId fields
// Tell the Tributary the key pair, get back the share for the MuSig signature
let share = crate::tributary::generated_key_pair::<D>(
&mut txn,
key,
spec,
&(Public(substrate_key), network_key.try_into().unwrap()),
id.attempt,
);
match share {
Ok(share) => {
vec![Transaction::DkgConfirmed(id.attempt, share, Transaction::empty_signed())]
}
Err(p) => {
todo!("participant {p:?} sent invalid DKG confirmation preprocesses")
}
}
}
},
ProcessorMessage::Sign(msg) => match msg {
sign::ProcessorMessage::Preprocess { id, preprocess } => {
if id.attempt == 0 {
MainDb::<D>::save_first_preprocess(&mut txn, network, id.id, preprocess);
vec![]
} else {
vec![Transaction::SignPreprocess(SignData {
plan: id.id,
attempt: id.attempt,
data: preprocess,
signed: Transaction::empty_signed(),
})]
}
}
sign::ProcessorMessage::Share { id, share } => vec![Transaction::SignShare(SignData {
plan: id.id,
attempt: id.attempt,
data: share,
signed: Transaction::empty_signed(),
})],
sign::ProcessorMessage::Completed { key: _, id, tx } => {
let r = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
#[allow(non_snake_case)]
let R = <Ristretto as Ciphersuite>::generator() * r.deref();
let mut tx = Transaction::SignCompleted {
plan: id,
tx_hash: tx,
first_signer: pub_key,
signature: SchnorrSignature { R, s: <Ristretto as Ciphersuite>::F::ZERO },
};
let signed = SchnorrSignature::sign(key, r, tx.sign_completed_challenge());
match &mut tx {
Transaction::SignCompleted { signature, .. } => {
*signature = signed;
}
_ => unreachable!(),
}
vec![tx]
}
},
ProcessorMessage::Coordinator(inner_msg) => match inner_msg {
coordinator::ProcessorMessage::SubstrateBlockAck { .. } => unreachable!(),
coordinator::ProcessorMessage::BatchPreprocess { id, block, preprocess } => {
log::info!(
"informed of batch (sign ID {}, attempt {}) for block {}",
hex::encode(id.id),
id.attempt,
hex::encode(block),
);
// If this is the first attempt instance, wait until we synchronize around the batch
// first
if id.attempt == 0 {
MainDb::<D>::save_first_preprocess(&mut txn, spec.set().network, id.id, preprocess);
// If this is the new key's first Batch, only create this TX once we verify all
// all prior published `Batch`s
let last_received = MainDb::<D>::last_received_batch(&txn, msg.network).unwrap();
let handover_batch = MainDb::<D>::handover_batch(&txn, spec.set());
if handover_batch.is_none() {
MainDb::<D>::set_handover_batch(&mut txn, spec.set(), last_received);
if last_received != 0 {
// Decrease by 1, to get the ID of the Batch prior to this Batch
let prior_sets_last_batch = last_received - 1;
loop {
let successfully_verified = substrate::verify_published_batches::<D>(
&mut txn,
msg.network,
prior_sets_last_batch,
)
.await;
if successfully_verified == Some(prior_sets_last_batch) {
break;
}
sleep(Duration::from_secs(5)).await;
}
}
}
// There is a race condition here. We may verify all `Batch`s from the prior set,
// start signing the handover `Batch` `n`, start signing `n+1`, have `n+1` signed
// before `n` (or at the same time), yet then the prior set forges a malicious
// `Batch` `n`.
//
// The malicious `Batch` `n` would be publishable to Serai, as Serai can't
// distinguish what's intended to be a handover `Batch`, yet then anyone could
// publish the new set's `n+1`, causing their acceptance of the handover.
//
// To fix this, if this is after the handover `Batch` and we have yet to verify
// publication of the handover `Batch`, don't yet yield the provided.
let handover_batch = MainDb::<D>::handover_batch(&txn, spec.set()).unwrap();
let intended = Transaction::Batch(block.0, id.id);
let mut res = vec![intended.clone()];
if last_received > handover_batch {
if let Some(last_verified) = MainDb::<D>::last_verified_batch(&txn, msg.network) {
if last_verified < handover_batch {
res = vec![];
}
} else {
res = vec![];
}
}
if res.is_empty() {
MainDb::<D>::queue_batch(&mut txn, spec.set(), intended);
}
res
} else {
vec![Transaction::BatchPreprocess(SignData {
plan: id.id,
attempt: id.attempt,
data: preprocess,
signed: Transaction::empty_signed(),
})]
}
}
coordinator::ProcessorMessage::BatchShare { id, share } => {
vec![Transaction::BatchShare(SignData {
plan: id.id,
attempt: id.attempt,
data: share.to_vec(),
signed: Transaction::empty_signed(),
})]
}
},
ProcessorMessage::Substrate(inner_msg) => match inner_msg {
processor_messages::substrate::ProcessorMessage::Batch { .. } => unreachable!(),
processor_messages::substrate::ProcessorMessage::SignedBatch { .. } => {
// We only reach here if this SignedBatch triggered the publication of a handover
// Batch
// Since the handover `Batch` was successfully published and verified, we no longer
// have to worry about the above n+1 attack
MainDb::<D>::take_queued_batches(&mut txn, spec.set())
}
},
};
// If this created transactions, publish them
for mut tx in txs {
log::trace!("processor message effected transaction {}", hex::encode(tx.hash()));
match tx.kind() {
TransactionKind::Provided(_) => {
log::trace!("providing transaction {}", hex::encode(tx.hash()));
let res = tributary.provide_transaction(tx.clone()).await;
if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
if res == Err(ProvidedError::LocalMismatchesOnChain) {
// Spin, since this is a crit for this Tributary
loop {
log::error!(
"{}. tributary: {}, provided: {:?}",
"tributary added distinct provided to delayed locally provided TX",
hex::encode(spec.genesis()),
&tx,
);
sleep(Duration::from_secs(60)).await;
}
}
panic!("provided an invalid transaction: {res:?}");
}
}
TransactionKind::Unsigned => {
log::trace!("publishing unsigned transaction {}", hex::encode(tx.hash()));
// Ignores the result since we can't differentiate already in-mempool from
// already on-chain from invalid
// TODO: Don't ignore the result
tributary.add_transaction(tx).await;
}
TransactionKind::Signed(_) => {
log::trace!("getting next nonce for Tributary TX in response to processor message");
let nonce = loop {
let Some(nonce) =
NonceDecider::<D>::nonce(&txn, genesis, &tx).expect("signed TX didn't have nonce")
else {
// This can be None if the following events occur, in order:
// 1) We scanned the relevant transaction(s) in a Tributary block
// 2) The processor was sent a message and responded
// 3) The Tributary TXN has yet to be committed
log::warn!("nonce has yet to be saved for processor-instigated transaction");
sleep(Duration::from_millis(100)).await;
continue;
};
break nonce;
};
tx.sign(&mut OsRng, genesis, key, nonce);
publish_signed_transaction(&mut txn, tributary, tx).await;
}
}
}
}
MainDb::<D>::save_handled_message(&mut txn, msg.network, msg.id);
txn.commit();
true
}
async fn handle_processor_messages<D: Db, Pro: Processors, P: P2p>(
mut db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
serai: Arc<Serai>,
mut processors: Pro,
network: NetworkId,
mut tributary_event: mpsc::UnboundedReceiver<TributaryEvent<D, P>>,
) {
let mut tributaries = HashMap::new();
loop {
match tributary_event.try_recv() {
Ok(event) => match event {
TributaryEvent::NewTributary(tributary) => {
let set = tributary.spec.set();
assert_eq!(set.network, network);
tributaries.insert(set.session, tributary);
}
TributaryEvent::TributaryRetired(set) => {
tributaries.remove(&set.session);
}
},
Err(mpsc::error::TryRecvError::Empty) => {}
Err(mpsc::error::TryRecvError::Disconnected) => {
panic!("handle_processor_messages tributary_event sender closed")
}
}
// TODO: Check this ID is sane (last handled ID or expected next ID)
let msg = processors.recv(network).await;
if handle_processor_message(&mut db, &key, &serai, &tributaries, network, &msg).await {
processors.ack(msg).await;
}
}
}
pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
serai: Arc<Serai>,
processors: Pro,
mut tributary_event: broadcast::Receiver<TributaryEvent<D, P>>,
) {
let mut channels = HashMap::new();
for network in serai_client::primitives::NETWORKS {
if network == NetworkId::Serai {
continue;
}
let (send, recv) = mpsc::unbounded_channel();
tokio::spawn(handle_processor_messages(
db.clone(),
key.clone(),
serai.clone(),
processors.clone(),
network,
recv,
));
channels.insert(network, send);
}
// Listen to new tributary events
loop {
match tributary_event.recv().await.unwrap() {
TributaryEvent::NewTributary(tributary) => channels[&tributary.spec.set().network]
.send(TributaryEvent::NewTributary(tributary))
.unwrap(),
TributaryEvent::TributaryRetired(set) => {
channels[&set.network].send(TributaryEvent::TributaryRetired(set)).unwrap()
}
};
}
}
pub async fn run<D: Db, Pro: Processors, P: P2p>(
raw_db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: P,
processors: Pro,
serai: Serai,
) {
let serai = Arc::new(serai);
let (new_tributary_spec_send, mut new_tributary_spec_recv) = mpsc::unbounded_channel();
// Reload active tributaries from the database
for spec in MainDb::<D>::active_tributaries(&raw_db).1 {
new_tributary_spec_send.send(spec).unwrap();
}
let (tributary_retired_send, mut tributary_retired_recv) = mpsc::unbounded_channel();
// Handle new Substrate blocks
tokio::spawn(crate::substrate::scan_task(
raw_db.clone(),
key.clone(),
processors.clone(),
serai.clone(),
new_tributary_spec_send,
tributary_retired_send,
));
// Handle the Tributaries
// This should be large enough for an entire rotation of all tributaries
// If it's too small, the coordinator fail to boot, which is a decent sanity check
let (tributary_event, mut tributary_event_listener_1) = broadcast::channel(32);
let tributary_event_listener_2 = tributary_event.subscribe();
let tributary_event_listener_3 = tributary_event.subscribe();
let tributary_event_listener_4 = tributary_event.subscribe();
let tributary_event_listener_5 = tributary_event.subscribe();
// Emit TributaryEvent::TributaryRetired
tokio::spawn({
let tributary_event = tributary_event.clone();
async move {
loop {
let retired = tributary_retired_recv.recv().await.unwrap();
tributary_event.send(TributaryEvent::TributaryRetired(retired)).map_err(|_| ()).unwrap();
}
}
});
// Spawn a task to further add Tributaries as needed
tokio::spawn({
let raw_db = raw_db.clone();
let key = key.clone();
let processors = processors.clone();
let p2p = p2p.clone();
async move {
loop {
let spec = new_tributary_spec_recv.recv().await.unwrap();
// Uses an inner task as Tributary::new may take several seconds
tokio::spawn({
let raw_db = raw_db.clone();
let key = key.clone();
let processors = processors.clone();
let p2p = p2p.clone();
let tributary_event = tributary_event.clone();
async move {
add_tributary(raw_db, key, &processors, p2p, &tributary_event, spec).await;
}
});
}
}
});
// When we reach synchrony on an event requiring signing, send our preprocess for it
let recognized_id = {
let raw_db = raw_db.clone();
let key = key.clone();
let tributaries = Arc::new(RwLock::new(HashMap::new()));
tokio::spawn({
let tributaries = tributaries.clone();
let mut set_to_genesis = HashMap::new();
async move {
loop {
match tributary_event_listener_1.recv().await {
Ok(TributaryEvent::NewTributary(tributary)) => {
set_to_genesis.insert(tributary.spec.set(), tributary.spec.genesis());
tributaries.write().await.insert(tributary.spec.genesis(), tributary.tributary);
}
Ok(TributaryEvent::TributaryRetired(set)) => {
if let Some(genesis) = set_to_genesis.remove(&set) {
tributaries.write().await.remove(&genesis);
}
}
Err(broadcast::error::RecvError::Lagged(_)) => {
panic!("recognized_id lagged to handle tributary_event")
}
Err(broadcast::error::RecvError::Closed) => panic!("tributary_event sender closed"),
}
}
}
});
move |set: ValidatorSet, genesis, id_type, id, nonce| {
let mut raw_db = raw_db.clone();
let key = key.clone();
let tributaries = tributaries.clone();
async move {
// The transactions for these are fired before the preprocesses are actually
// received/saved, creating a race between Tributary ack and the availability of all
// Preprocesses
// This waits until the necessary preprocess is available 0,
// TODO: Incorporate RecognizedIdType here?
let get_preprocess = |raw_db, id| async move {
loop {
let Some(preprocess) = MainDb::<D>::first_preprocess(raw_db, set.network, id) else {
sleep(Duration::from_millis(100)).await;
continue;
};
return preprocess;
}
};
let mut tx = match id_type {
RecognizedIdType::Batch => Transaction::BatchPreprocess(SignData {
plan: id,
attempt: 0,
data: get_preprocess(&raw_db, id).await,
signed: Transaction::empty_signed(),
}),
RecognizedIdType::Plan => Transaction::SignPreprocess(SignData {
plan: id,
attempt: 0,
data: get_preprocess(&raw_db, id).await,
signed: Transaction::empty_signed(),
}),
};
tx.sign(&mut OsRng, genesis, &key, nonce);
let mut first = true;
loop {
if !first {
sleep(Duration::from_millis(100)).await;
}
first = false;
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
// If we don't have this Tributary because it's retired, break and move on
if MainDb::<D>::is_tributary_retired(&raw_db, set) {
break;
}
// This may happen if the task above is simply slow
log::warn!("tributary we don't have yet came to consensus on an Batch");
continue;
};
// This is safe to perform multiple times and solely needs atomicity with regards to
// itself
// TODO: Should this not take a TXN accordingly? It's best practice to take a txn, yet
// taking a txn fails to declare its achieved independence
let mut txn = raw_db.txn();
publish_signed_transaction(&mut txn, tributary, tx).await;
txn.commit();
2023-10-14 06:52:02 +00:00
break;
}
}
}
};
// Handle new blocks for each Tributary
{
let raw_db = raw_db.clone();
tokio::spawn(tributary::scanner::scan_tributaries_task(
raw_db,
key.clone(),
recognized_id,
processors.clone(),
serai.clone(),
tributary_event_listener_2,
));
}
// Spawn the heartbeat task, which will trigger syncing if there hasn't been a Tributary block
// in a while (presumably because we're behind)
tokio::spawn(p2p::heartbeat_tributaries_task(p2p.clone(), tributary_event_listener_3));
// Handle P2P messages
tokio::spawn(p2p::handle_p2p_task(p2p, tributary_event_listener_4));
2023-04-15 21:38:47 +00:00
// Handle all messages from processors
handle_processors(raw_db, key, serai, processors, tributary_event_listener_5).await;
2023-04-15 21:38:47 +00:00
}
2023-04-11 13:21:35 +00:00
#[tokio::main]
2023-04-15 21:38:47 +00:00
async fn main() {
// Override the panic handler with one which will panic if any tokio task panics
{
let existing = std::panic::take_hook();
std::panic::set_hook(Box::new(move |panic| {
existing(panic);
const MSG: &str = "exiting the process due to a task panicking";
println!("{MSG}");
log::error!("{MSG}");
std::process::exit(1);
}));
}
2023-08-01 23:00:48 +00:00
if std::env::var("RUST_LOG").is_err() {
std::env::set_var("RUST_LOG", serai_env::var("RUST_LOG").unwrap_or_else(|| "info".to_string()));
}
env_logger::init();
log::info!("starting coordinator service...");
let db = serai_db::new_rocksdb(&env::var("DB_PATH").expect("path to DB wasn't specified"));
2023-04-17 06:10:33 +00:00
let key = {
let mut key_hex = serai_env::var("SERAI_KEY").expect("Serai key wasn't provided");
let mut key_vec = hex::decode(&key_hex).map_err(|_| ()).expect("Serai key wasn't hex-encoded");
key_hex.zeroize();
if key_vec.len() != 32 {
key_vec.zeroize();
panic!("Serai key had an invalid length");
}
let mut key_bytes = [0; 32];
key_bytes.copy_from_slice(&key_vec);
key_vec.zeroize();
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::from_repr(key_bytes).unwrap());
key_bytes.zeroize();
key
};
let p2p = LibP2p::new();
2023-04-17 06:10:33 +00:00
let processors = Arc::new(MessageQueue::from_env(Service::Coordinator));
2023-04-17 06:10:33 +00:00
let serai = || async {
loop {
let Ok(serai) = Serai::new(&format!(
2023-08-01 23:00:48 +00:00
"ws://{}:9944",
serai_env::var("SERAI_HOSTNAME").expect("Serai hostname wasn't provided")
))
2023-08-01 23:00:48 +00:00
.await
else {
log::error!("couldn't connect to the Serai node");
2023-04-17 06:10:33 +00:00
sleep(Duration::from_secs(5)).await;
2023-08-01 04:47:36 +00:00
continue;
};
2023-08-01 23:00:48 +00:00
log::info!("made initial connection to Serai node");
return serai;
}
};
run(db, key, p2p, processors, serai().await).await
2023-04-15 21:38:47 +00:00
}