serai/coordinator/src/main.rs

357 lines
11 KiB
Rust
Raw Normal View History

2023-04-20 09:05:17 +00:00
#![allow(dead_code)]
2023-04-15 21:38:47 +00:00
#![allow(unused_variables)]
#![allow(unreachable_code)]
#![allow(clippy::diverging_sub_expression)]
2023-04-15 21:38:47 +00:00
use core::ops::Deref;
use std::{
sync::Arc,
time::{SystemTime, Duration},
collections::{VecDeque, HashMap},
};
use zeroize::Zeroizing;
use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto};
2023-04-15 21:38:47 +00:00
use serai_db::{Db, MemDb};
2023-04-15 21:38:47 +00:00
use serai_client::Serai;
use tokio::{sync::RwLock, time::sleep};
use ::tributary::{ReadWrite, Block, Tributary};
2023-04-20 09:05:17 +00:00
mod tributary;
use crate::tributary::{TributarySpec, Transaction};
mod db;
use db::MainDb;
mod p2p;
pub use p2p::*;
2023-04-17 06:10:33 +00:00
pub mod processor;
use processor::Processor;
2023-04-15 21:38:47 +00:00
mod substrate;
#[cfg(test)]
pub mod tests;
// This is a static to satisfy lifetime expectations
lazy_static::lazy_static! {
static ref NEW_TRIBUTARIES: RwLock<VecDeque<TributarySpec>> = RwLock::new(VecDeque::new());
}
// Specifies a new tributary
async fn create_new_tributary<D: Db>(db: D, spec: TributarySpec) {
// Save it to the database
MainDb(db).add_active_tributary(&spec);
// Add it to the queue
// If we reboot before this is read from the queue, the fact it was saved to the database
// means it'll be handled on reboot
NEW_TRIBUTARIES.write().await.push_back(spec);
}
pub struct ActiveTributary<D: Db, P: P2p> {
spec: TributarySpec,
tributary: Arc<RwLock<Tributary<D, Transaction, P>>>,
}
// Adds a tributary into the specified HahMap
async fn add_tributary<D: Db, P: P2p>(
db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: P,
tributaries: &mut HashMap<[u8; 32], ActiveTributary<D, P>>,
spec: TributarySpec,
) {
let tributary = Tributary::<_, Transaction, _>::new(
// TODO: Use a db on a distinct volume
db,
spec.genesis(),
spec.start_time(),
key,
spec.validators(),
p2p,
)
.await
.unwrap();
tributaries.insert(
tributary.genesis(),
ActiveTributary { spec, tributary: Arc::new(RwLock::new(tributary)) },
);
}
pub async fn scan_substrate<D: Db, Pro: Processor>(
db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
2023-04-17 06:10:33 +00:00
mut processor: Pro,
serai: Serai,
) {
let mut db = substrate::SubstrateDb::new(db);
let mut last_substrate_block = db.last_block();
2023-04-20 09:05:17 +00:00
loop {
match substrate::handle_new_blocks(
&mut db,
&key,
create_new_tributary,
&mut processor,
&serai,
&mut last_substrate_block,
)
.await
{
// TODO: Should this use a notification system for new blocks?
// Right now it's sleeping for half the block time.
Ok(()) => sleep(Duration::from_secs(3)).await,
Err(e) => {
log::error!("couldn't communicate with serai node: {e}");
sleep(Duration::from_secs(5)).await;
2023-04-20 09:05:17 +00:00
}
}
}
}
#[allow(clippy::type_complexity)]
pub async fn scan_tributaries<D: Db, Pro: Processor, P: P2p>(
raw_db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: P,
mut processor: Pro,
tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>,
) {
// Handle new Tributary blocks
let mut tributary_db = tributary::TributaryDb::new(raw_db.clone());
loop {
// The following handle_new_blocks function may take an arbitrary amount of time
// Accordingly, it may take a long time to acquire a write lock on the tributaries table
// By definition of NEW_TRIBUTARIES, we allow tributaries to be added almost immediately,
// meaning the Substrate scanner won't become blocked on this
{
let mut new_tributaries = NEW_TRIBUTARIES.write().await;
while let Some(spec) = new_tributaries.pop_front() {
add_tributary(
raw_db.clone(),
key.clone(),
p2p.clone(),
// This is a short-lived write acquisition, which is why it should be fine
&mut *tributaries.write().await,
spec,
)
.await;
}
}
// TODO: Instead of holding this lock long term, should this take in Arc RwLock and
// re-acquire read locks?
for ActiveTributary { spec, tributary } in tributaries.read().await.values() {
tributary::scanner::handle_new_blocks::<_, _, P>(
&mut tributary_db,
&key,
&mut processor,
spec,
&*tributary.read().await,
)
.await;
}
// Sleep for half the block time
// TODO: Should we define a notification system for when a new block occurs?
sleep(Duration::from_secs((Tributary::<D, Transaction, P>::block_time() / 2).into())).await;
}
}
#[allow(clippy::type_complexity)]
pub async fn heartbeat_tributaries<D: Db, P: P2p>(
p2p: P,
tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>,
) {
let ten_blocks_of_time =
Duration::from_secs((Tributary::<D, Transaction, P>::block_time() * 10).into());
loop {
for ActiveTributary { spec: _, tributary } in tributaries.read().await.values() {
let tributary = tributary.read().await;
let tip = tributary.tip().await;
let block_time =
SystemTime::UNIX_EPOCH + Duration::from_secs(tributary.time_of_block(&tip).unwrap_or(0));
// Only trigger syncing if the block is more than a minute behind
if SystemTime::now() > (block_time + Duration::from_secs(60)) {
log::warn!("last known tributary block was over a minute ago");
P2p::broadcast(&p2p, P2pMessageKind::Heartbeat(tributary.genesis()), tip.to_vec()).await;
}
}
// Only check once every 10 blocks of time
sleep(ten_blocks_of_time).await;
}
}
#[allow(clippy::type_complexity)]
pub async fn handle_p2p<D: Db, P: P2p>(
our_key: <Ristretto as Ciphersuite>::G,
p2p: P,
tributaries: Arc<RwLock<HashMap<[u8; 32], ActiveTributary<D, P>>>>,
) {
loop {
let mut msg = p2p.receive().await;
match msg.kind {
P2pMessageKind::Tributary(genesis) => {
let tributaries_read = tributaries.read().await;
let Some(tributary) = tributaries_read.get(&genesis) else {
log::debug!("received p2p message for unknown network");
continue;
};
// This is misleading being read, as it will mutate the Tributary, yet there's
// greater efficiency when it is read
// The safety of it is also justified by Tributary::handle_message's documentation
if tributary.tributary.read().await.handle_message(&msg.msg).await {
P2p::broadcast(&p2p, msg.kind, msg.msg).await;
}
}
P2pMessageKind::Heartbeat(genesis) => {
let tributaries_read = tributaries.read().await;
let Some(tributary) = tributaries_read.get(&genesis) else {
log::debug!("received hearttbeat message for unknown network");
continue;
};
if msg.msg.len() != 32 {
log::error!("validator sent invalid heartbeat");
continue;
}
let tributary_read = tributary.tributary.read().await;
// Have sqrt(n) nodes reply with the blocks
let mut responders = (tributary.spec.n() as f32).sqrt().floor() as u64;
// Try to have at least 3 responders
if responders < 3 {
responders = tributary.spec.n().min(3).into();
}
// Only respond to this if randomly chosen
let entropy = u64::from_le_bytes(tributary_read.tip().await[.. 8].try_into().unwrap());
// If n = 10, responders = 3, we want start to be 0 ..= 7 (so the highest is 7, 8, 9)
// entropy % (10 + 1) - 3 = entropy % 8 = 0 ..= 7
let start =
usize::try_from(entropy % (u64::from(tributary.spec.n() + 1) - responders)).unwrap();
let mut selected = false;
for validator in
&tributary.spec.validators()[start .. (start + usize::try_from(responders).unwrap())]
{
if our_key == validator.0 {
selected = true;
break;
}
}
if !selected {
continue;
}
let mut latest = msg.msg.try_into().unwrap();
// TODO: All of these calls don't *actually* need a read lock, just access to a DB handle
// We can reduce lock contention accordingly
while let Some(next) = tributary_read.block_after(&latest) {
let mut res = tributary_read.block(&next).unwrap().serialize();
res.extend(tributary_read.commit(&next).unwrap());
p2p.send(msg.sender, P2pMessageKind::Block(tributary.spec.genesis()), res).await;
latest = next;
}
}
P2pMessageKind::Block(genesis) => {
let mut msg_ref: &[u8] = msg.msg.as_ref();
let Ok(block) = Block::<Transaction>::read(&mut msg_ref) else {
log::error!("received block message with an invalidly serialized block");
continue;
};
// Get just the commit
msg.msg.drain((msg.msg.len() - msg_ref.len()) ..);
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
log::debug!("received block message for unknown network");
continue;
};
tributary.tributary.write().await.sync_block(block, msg.msg).await;
}
}
2023-04-20 09:05:17 +00:00
}
}
pub async fn run<D: Db, Pro: Processor, P: P2p>(
raw_db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: P,
processor: Pro,
serai: Serai,
) {
// Handle new Substrate blocks
tokio::spawn(scan_substrate(raw_db.clone(), key.clone(), processor.clone(), serai.clone()));
// Handle the Tributaries
// Arc so this can be shared between the Tributary scanner task and the P2P task
// Write locks on this may take a while to acquire
let tributaries = Arc::new(RwLock::new(HashMap::<[u8; 32], ActiveTributary<D, P>>::new()));
// Reload active tributaries from the database
// TODO: Can MainDb take a borrow?
for spec in MainDb(raw_db.clone()).active_tributaries().1 {
add_tributary(raw_db.clone(), key.clone(), p2p.clone(), &mut *tributaries.write().await, spec)
.await;
}
// Handle new blocks for each Tributary
tokio::spawn(scan_tributaries(
raw_db.clone(),
key.clone(),
p2p.clone(),
processor,
tributaries.clone(),
));
// Spawn the heartbeat task, which will trigger syncing if there hasn't been a Tributary block
// in a while (presumably because we're behind)
tokio::spawn(heartbeat_tributaries(p2p.clone(), tributaries.clone()));
// Handle P2P messages
// TODO: We also have to broadcast blocks once they're added
tokio::spawn(handle_p2p(Ristretto::generator() * key.deref(), p2p, tributaries));
2023-04-15 21:38:47 +00:00
loop {
2023-04-15 21:38:47 +00:00
// Handle all messages from processors
todo!()
2023-04-15 21:38:47 +00:00
}
}
2023-04-11 13:21:35 +00:00
#[tokio::main]
2023-04-15 21:38:47 +00:00
async fn main() {
let db = MemDb::new(); // TODO
2023-04-17 06:10:33 +00:00
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::ZERO); // TODO
let p2p = LocalP2p::new(1).swap_remove(0); // TODO
2023-04-17 06:10:33 +00:00
let processor = processor::MemProcessor::new(); // TODO
let serai = || async {
loop {
let Ok(serai) = Serai::new("ws://127.0.0.1:9944").await else {
log::error!("couldn't connect to the Serai node");
2023-04-17 06:10:33 +00:00
sleep(Duration::from_secs(5)).await;
continue
};
return serai;
}
};
2023-04-17 06:10:33 +00:00
run(db, key, p2p, processor, serai().await).await
2023-04-15 21:38:47 +00:00
}