mirror of
https://github.com/serai-dex/serai.git
synced 2025-03-12 09:26:51 +00:00
Txn for handling a processor message
handle_processor_messages function added to remove a very large block of nested code. MainDb cleaned to never be instantiated.
This commit is contained in:
parent
2e0f8138e2
commit
086458d041
2 changed files with 335 additions and 358 deletions
|
@ -1,3 +1,5 @@
|
|||
use core::marker::PhantomData;
|
||||
|
||||
use scale::{Encode, Decode};
|
||||
use serai_client::{primitives::NetworkId, in_instructions::primitives::SignedBatch};
|
||||
|
||||
|
@ -6,12 +8,8 @@ pub use serai_db::*;
|
|||
use crate::tributary::TributarySpec;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct MainDb<'a, D: Db>(&'a mut D);
|
||||
impl<'a, D: Db> MainDb<'a, D> {
|
||||
pub fn new(db: &'a mut D) -> Self {
|
||||
Self(db)
|
||||
}
|
||||
|
||||
pub struct MainDb<D: Db>(PhantomData<D>);
|
||||
impl<D: Db> MainDb<D> {
|
||||
fn main_key(dst: &'static [u8], key: impl AsRef<[u8]>) -> Vec<u8> {
|
||||
D::key(b"coordinator_main", dst, key)
|
||||
}
|
||||
|
@ -29,8 +27,8 @@ impl<'a, D: Db> MainDb<'a, D> {
|
|||
fn acive_tributaries_key() -> Vec<u8> {
|
||||
Self::main_key(b"active_tributaries", [])
|
||||
}
|
||||
pub fn active_tributaries(&self) -> (Vec<u8>, Vec<TributarySpec>) {
|
||||
let bytes = self.0.get(Self::acive_tributaries_key()).unwrap_or(vec![]);
|
||||
pub fn active_tributaries<G: Get>(getter: &G) -> (Vec<u8>, Vec<TributarySpec>) {
|
||||
let bytes = getter.get(Self::acive_tributaries_key()).unwrap_or(vec![]);
|
||||
let mut bytes_ref: &[u8] = bytes.as_ref();
|
||||
|
||||
let mut tributaries = vec![];
|
||||
|
@ -40,9 +38,9 @@ impl<'a, D: Db> MainDb<'a, D> {
|
|||
|
||||
(bytes, tributaries)
|
||||
}
|
||||
pub fn add_active_tributary(&mut self, spec: &TributarySpec) {
|
||||
pub fn add_active_tributary(txn: &mut D::Transaction<'_>, spec: &TributarySpec) {
|
||||
let key = Self::acive_tributaries_key();
|
||||
let (mut existing_bytes, existing) = self.active_tributaries();
|
||||
let (mut existing_bytes, existing) = Self::active_tributaries(txn);
|
||||
for tributary in &existing {
|
||||
if tributary == spec {
|
||||
return;
|
||||
|
@ -50,9 +48,7 @@ impl<'a, D: Db> MainDb<'a, D> {
|
|||
}
|
||||
|
||||
spec.write(&mut existing_bytes).unwrap();
|
||||
let mut txn = self.0.txn();
|
||||
txn.put(key, existing_bytes);
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
fn first_preprocess_key(id: [u8; 32]) -> Vec<u8> {
|
||||
|
@ -73,14 +69,11 @@ impl<'a, D: Db> MainDb<'a, D> {
|
|||
fn batch_key(network: NetworkId, id: u32) -> Vec<u8> {
|
||||
Self::main_key(b"batch", (network, id).encode())
|
||||
}
|
||||
pub fn save_batch(&mut self, batch: SignedBatch) {
|
||||
let mut txn = self.0.txn();
|
||||
pub fn save_batch(txn: &mut D::Transaction<'_>, batch: SignedBatch) {
|
||||
txn.put(Self::batch_key(batch.batch.network, batch.batch.id), batch.encode());
|
||||
txn.commit();
|
||||
}
|
||||
pub fn batch(&self, network: NetworkId, id: u32) -> Option<SignedBatch> {
|
||||
self
|
||||
.0
|
||||
pub fn batch<G: Get>(getter: &G, network: NetworkId, id: u32) -> Option<SignedBatch> {
|
||||
getter
|
||||
.get(Self::batch_key(network, id))
|
||||
.map(|batch| SignedBatch::decode(&mut batch.as_ref()).unwrap())
|
||||
}
|
||||
|
|
|
@ -99,7 +99,7 @@ async fn add_tributary<D: Db, Pro: Processors, P: P2p>(
|
|||
spec.n(),
|
||||
spec
|
||||
.i(Ristretto::generator() * key.deref())
|
||||
.expect("adding a tribtuary for a set we aren't in set for"),
|
||||
.expect("adding a tributary for a set we aren't in set for"),
|
||||
)
|
||||
.unwrap(),
|
||||
},
|
||||
|
@ -173,7 +173,9 @@ pub async fn scan_substrate<D: Db, Pro: Processors>(
|
|||
log::info!("creating new tributary for {:?}", spec.set());
|
||||
|
||||
// Save it to the database
|
||||
MainDb::new(db).add_active_tributary(&spec);
|
||||
let mut txn = db.txn();
|
||||
MainDb::<D>::add_active_tributary(&mut txn, &spec);
|
||||
txn.commit();
|
||||
|
||||
// If we reboot before this is read, the fact it was saved to the database means it'll be
|
||||
// handled on reboot
|
||||
|
@ -513,6 +515,305 @@ pub async fn publish_signed_transaction<D: Db, P: P2p>(
|
|||
}
|
||||
}
|
||||
|
||||
async fn handle_processor_messages<D: Db, Pro: Processors, P: P2p>(
|
||||
mut db: D,
|
||||
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
||||
serai: Arc<Serai>,
|
||||
mut processors: Pro,
|
||||
tributary: ActiveTributary<D, P>,
|
||||
mut recv: mpsc::UnboundedReceiver<processors::Message>,
|
||||
) {
|
||||
let db_clone = db.clone(); // Enables cloning the DB while we have a txn
|
||||
let pub_key = Ristretto::generator() * key.deref();
|
||||
|
||||
let ActiveTributary { spec, tributary } = tributary;
|
||||
let genesis = spec.genesis();
|
||||
|
||||
loop {
|
||||
let msg: processors::Message = recv.recv().await.unwrap();
|
||||
|
||||
if !MainDb::<D>::handled_message(&db, msg.id) {
|
||||
let mut txn = db.txn();
|
||||
|
||||
// TODO: We probably want to NOP here, not panic?
|
||||
// TODO: We do have to track produced Batches in order to ensure their integrity
|
||||
let my_i = spec.i(pub_key).expect("processor message for network we aren't a validator in");
|
||||
|
||||
let tx = match msg.msg.clone() {
|
||||
ProcessorMessage::KeyGen(inner_msg) => match inner_msg {
|
||||
key_gen::ProcessorMessage::Commitments { id, commitments } => {
|
||||
Some(Transaction::DkgCommitments(id.attempt, commitments, Transaction::empty_signed()))
|
||||
}
|
||||
key_gen::ProcessorMessage::Shares { id, mut shares } => {
|
||||
// Create a MuSig-based machine to inform Substrate of this key generation
|
||||
let nonces = crate::tributary::dkg_confirmation_nonces(&key, &spec, id.attempt);
|
||||
|
||||
let mut tx_shares = Vec::with_capacity(shares.len());
|
||||
for i in 1 ..= spec.n() {
|
||||
let i = Participant::new(i).unwrap();
|
||||
if i == my_i {
|
||||
continue;
|
||||
}
|
||||
tx_shares.push(
|
||||
shares.remove(&i).expect("processor didn't send share for another validator"),
|
||||
);
|
||||
}
|
||||
|
||||
Some(Transaction::DkgShares {
|
||||
attempt: id.attempt,
|
||||
shares: tx_shares,
|
||||
confirmation_nonces: nonces,
|
||||
signed: Transaction::empty_signed(),
|
||||
})
|
||||
}
|
||||
key_gen::ProcessorMessage::GeneratedKeyPair { id, substrate_key, network_key } => {
|
||||
assert_eq!(
|
||||
id.set.network, msg.network,
|
||||
"processor claimed to be a different network than it was for GeneratedKeyPair",
|
||||
);
|
||||
// TODO: Also check the other KeyGenId fields
|
||||
|
||||
// Tell the Tributary the key pair, get back the share for the MuSig
|
||||
// signature
|
||||
let share = crate::tributary::generated_key_pair::<D>(
|
||||
&mut txn,
|
||||
&key,
|
||||
&spec,
|
||||
&(Public(substrate_key), network_key.try_into().unwrap()),
|
||||
id.attempt,
|
||||
);
|
||||
|
||||
match share {
|
||||
Ok(share) => {
|
||||
Some(Transaction::DkgConfirmed(id.attempt, share, Transaction::empty_signed()))
|
||||
}
|
||||
Err(p) => {
|
||||
todo!("participant {p:?} sent invalid DKG confirmation preprocesses")
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
ProcessorMessage::Sign(msg) => match msg {
|
||||
sign::ProcessorMessage::Preprocess { id, preprocess } => {
|
||||
if id.attempt == 0 {
|
||||
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
|
||||
|
||||
None
|
||||
} else {
|
||||
Some(Transaction::SignPreprocess(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: preprocess,
|
||||
signed: Transaction::empty_signed(),
|
||||
}))
|
||||
}
|
||||
}
|
||||
sign::ProcessorMessage::Share { id, share } => Some(Transaction::SignShare(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: share,
|
||||
signed: Transaction::empty_signed(),
|
||||
})),
|
||||
sign::ProcessorMessage::Completed { key: _, id, tx } => {
|
||||
let r = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
|
||||
#[allow(non_snake_case)]
|
||||
let R = <Ristretto as Ciphersuite>::generator() * r.deref();
|
||||
let mut tx = Transaction::SignCompleted {
|
||||
plan: id,
|
||||
tx_hash: tx,
|
||||
first_signer: pub_key,
|
||||
signature: SchnorrSignature { R, s: <Ristretto as Ciphersuite>::F::ZERO },
|
||||
};
|
||||
let signed = SchnorrSignature::sign(&key, r, tx.sign_completed_challenge());
|
||||
match &mut tx {
|
||||
Transaction::SignCompleted { signature, .. } => {
|
||||
*signature = signed;
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
Some(tx)
|
||||
}
|
||||
},
|
||||
ProcessorMessage::Coordinator(inner_msg) => match inner_msg {
|
||||
coordinator::ProcessorMessage::SubstrateBlockAck { network, block, plans } => {
|
||||
assert_eq!(
|
||||
network, msg.network,
|
||||
"processor claimed to be a different network than it was for SubstrateBlockAck",
|
||||
);
|
||||
|
||||
// TODO: This needs to be scoped per multisig
|
||||
TributaryDb::<D>::set_plan_ids(&mut txn, genesis, block, &plans);
|
||||
|
||||
Some(Transaction::SubstrateBlock(block))
|
||||
}
|
||||
coordinator::ProcessorMessage::BatchPreprocess { id, block, preprocess } => {
|
||||
log::info!(
|
||||
"informed of batch (sign ID {}, attempt {}) for block {}",
|
||||
hex::encode(id.id),
|
||||
id.attempt,
|
||||
hex::encode(block),
|
||||
);
|
||||
// If this is the first attempt instance, wait until we synchronize around
|
||||
// the batch first
|
||||
if id.attempt == 0 {
|
||||
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
|
||||
|
||||
Some(Transaction::Batch(block.0, id.id))
|
||||
} else {
|
||||
Some(Transaction::BatchPreprocess(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: preprocess,
|
||||
signed: Transaction::empty_signed(),
|
||||
}))
|
||||
}
|
||||
}
|
||||
coordinator::ProcessorMessage::BatchShare { id, share } => {
|
||||
Some(Transaction::BatchShare(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: share.to_vec(),
|
||||
signed: Transaction::empty_signed(),
|
||||
}))
|
||||
}
|
||||
},
|
||||
ProcessorMessage::Substrate(inner_msg) => match inner_msg {
|
||||
processor_messages::substrate::ProcessorMessage::Update { batch } => {
|
||||
assert_eq!(
|
||||
batch.batch.network, msg.network,
|
||||
"processor sent us a batch for a different network than it was for",
|
||||
);
|
||||
// TODO: Check this key's key pair's substrate key is authorized to publish
|
||||
// batches
|
||||
|
||||
// Save this batch to the disk
|
||||
MainDb::<D>::save_batch(&mut txn, batch);
|
||||
|
||||
/*
|
||||
Use a dedicated task to publish batches due to the latency potentially
|
||||
incurred.
|
||||
|
||||
This does not guarantee the batch has actually been published when the
|
||||
message is `ack`ed to message-queue. Accordingly, if we reboot, these
|
||||
batches would be dropped (as we wouldn't see the `Update` again, triggering
|
||||
our re-attempt to publish).
|
||||
|
||||
The solution to this is to have the task try not to publish the batch which
|
||||
caused it to be spawned, yet all saved batches which have yet to published.
|
||||
This does risk having multiple tasks trying to publish all pending batches,
|
||||
yet these aren't notably complex.
|
||||
*/
|
||||
tokio::spawn({
|
||||
let db = db_clone.clone();
|
||||
let serai = serai.clone();
|
||||
let network = msg.network;
|
||||
async move {
|
||||
// Since we have a new batch, publish all batches yet to be published to
|
||||
// Serai
|
||||
// This handles the edge-case where batch n+1 is signed before batch n is
|
||||
while let Some(batch) = {
|
||||
// Get the next-to-execute batch ID
|
||||
let next = {
|
||||
let mut first = true;
|
||||
loop {
|
||||
if !first {
|
||||
log::error!(
|
||||
"{} {network:?}",
|
||||
"couldn't connect to Serai node to get the next batch ID for",
|
||||
);
|
||||
tokio::time::sleep(Duration::from_secs(5)).await;
|
||||
}
|
||||
first = false;
|
||||
|
||||
let Ok(latest_block) = serai.get_latest_block().await else {
|
||||
continue;
|
||||
};
|
||||
let Ok(last) =
|
||||
serai.get_last_batch_for_network(latest_block.hash(), network).await
|
||||
else {
|
||||
continue;
|
||||
};
|
||||
break if let Some(last) = last { last + 1 } else { 0 };
|
||||
}
|
||||
};
|
||||
|
||||
// If we have this batch, attempt to publish it
|
||||
MainDb::<D>::batch(&db, network, next)
|
||||
} {
|
||||
let id = batch.batch.id;
|
||||
let block = batch.batch.block;
|
||||
|
||||
let tx = Serai::execute_batch(batch);
|
||||
// This publish may fail if this transactions already exists in the
|
||||
// mempool, which is possible, or if this batch was already executed
|
||||
// on-chain
|
||||
// Either case will have eventual resolution and be handled by the
|
||||
// above check on if this batch should execute
|
||||
if serai.publish(&tx).await.is_ok() {
|
||||
log::info!("published batch {network:?} {id} (block {})", hex::encode(block));
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
None
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
// If this created a transaction, publish it
|
||||
// TODO: This block may be fired multiple times, with the Tributary maintaining its
|
||||
// own txns. How safe is that?
|
||||
if let Some(mut tx) = tx {
|
||||
log::trace!("processor message effected transaction {}", hex::encode(tx.hash()));
|
||||
|
||||
match tx.kind() {
|
||||
TransactionKind::Provided(_) => {
|
||||
log::trace!("providing transaction {}", hex::encode(tx.hash()));
|
||||
let res = tributary.provide_transaction(tx).await;
|
||||
if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
|
||||
panic!("provided an invalid transaction: {res:?}");
|
||||
}
|
||||
}
|
||||
TransactionKind::Unsigned => {
|
||||
log::trace!("publishing unsigned transaction {}", hex::encode(tx.hash()));
|
||||
// Ignores the result since we can't differentiate already in-mempool from
|
||||
// already on-chain from invalid
|
||||
// TODO: Don't ignore the result
|
||||
tributary.add_transaction(tx).await;
|
||||
}
|
||||
TransactionKind::Signed(_) => {
|
||||
log::trace!("getting next nonce for Tributary TX in response to processor message");
|
||||
|
||||
let nonce = loop {
|
||||
let Some(nonce) =
|
||||
NonceDecider::<D>::nonce(&txn, genesis, &tx).expect("signed TX didn't have nonce")
|
||||
else {
|
||||
// This can be None if:
|
||||
// 1) We scanned the relevant transaction(s) in a Tributary block
|
||||
// 2) The processor was sent a message and responded
|
||||
// 3) The Tributary TXN has yet to be committed
|
||||
log::warn!("nonce has yet to be saved for processor-instigated transaction");
|
||||
sleep(Duration::from_millis(100)).await;
|
||||
continue;
|
||||
};
|
||||
break nonce;
|
||||
};
|
||||
tx.sign(&mut OsRng, genesis, &key, nonce);
|
||||
|
||||
publish_signed_transaction(&tributary, tx).await;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MainDb::<D>::save_handled_message(&mut txn, msg.id);
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
processors.ack(msg).await;
|
||||
}
|
||||
}
|
||||
|
||||
pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
|
||||
db: D,
|
||||
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
||||
|
@ -520,9 +821,8 @@ pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
|
|||
mut processors: Pro,
|
||||
mut new_tributary: broadcast::Receiver<ActiveTributary<D, P>>,
|
||||
) {
|
||||
let pub_key = Ristretto::generator() * key.deref();
|
||||
|
||||
let channels = Arc::new(RwLock::new(HashMap::new()));
|
||||
// Listen to new tributary events
|
||||
tokio::spawn({
|
||||
let db = db.clone();
|
||||
let processors = processors.clone();
|
||||
|
@ -530,339 +830,27 @@ pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
|
|||
async move {
|
||||
loop {
|
||||
let channels = channels.clone();
|
||||
let ActiveTributary { spec, tributary } = new_tributary.recv().await.unwrap();
|
||||
let genesis = spec.genesis();
|
||||
tokio::spawn({
|
||||
let mut db = db.clone();
|
||||
let key = key.clone();
|
||||
let serai = serai.clone();
|
||||
let mut processors = processors.clone();
|
||||
async move {
|
||||
let (send, mut recv) = mpsc::unbounded_channel();
|
||||
// TODO: Support multisig rotation (not per-Tributary yet per-network?)
|
||||
channels.write().await.insert(spec.set().network, send);
|
||||
let tributary = new_tributary.recv().await.unwrap();
|
||||
|
||||
loop {
|
||||
let msg: processors::Message = recv.recv().await.unwrap();
|
||||
let (send, recv) = mpsc::unbounded_channel();
|
||||
// TODO: Support multisig rotation (not per-Tributary yet per-network?)
|
||||
channels.write().await.insert(tributary.spec.set().network, send);
|
||||
|
||||
// TODO: We probably want to NOP here, not panic?
|
||||
// TODO: We do have to track produced Batches in order to ensure their integrity
|
||||
let my_i =
|
||||
spec.i(pub_key).expect("processor message for network we aren't a validator in");
|
||||
|
||||
let tx = match msg.msg.clone() {
|
||||
ProcessorMessage::KeyGen(inner_msg) => match inner_msg {
|
||||
key_gen::ProcessorMessage::Commitments { id, commitments } => {
|
||||
Some(Transaction::DkgCommitments(
|
||||
id.attempt,
|
||||
commitments,
|
||||
Transaction::empty_signed(),
|
||||
))
|
||||
}
|
||||
key_gen::ProcessorMessage::Shares { id, mut shares } => {
|
||||
// Create a MuSig-based machine to inform Substrate of this key generation
|
||||
let nonces = crate::tributary::dkg_confirmation_nonces(&key, &spec, id.attempt);
|
||||
|
||||
let mut tx_shares = Vec::with_capacity(shares.len());
|
||||
for i in 1 ..= spec.n() {
|
||||
let i = Participant::new(i).unwrap();
|
||||
if i == my_i {
|
||||
continue;
|
||||
}
|
||||
tx_shares.push(
|
||||
shares
|
||||
.remove(&i)
|
||||
.expect("processor didn't send share for another validator"),
|
||||
);
|
||||
}
|
||||
|
||||
Some(Transaction::DkgShares {
|
||||
attempt: id.attempt,
|
||||
shares: tx_shares,
|
||||
confirmation_nonces: nonces,
|
||||
signed: Transaction::empty_signed(),
|
||||
})
|
||||
}
|
||||
key_gen::ProcessorMessage::GeneratedKeyPair {
|
||||
id,
|
||||
substrate_key,
|
||||
network_key,
|
||||
} => {
|
||||
assert_eq!(
|
||||
id.set.network, msg.network,
|
||||
"processor claimed to be a different network than it was for GeneratedKeyPair",
|
||||
);
|
||||
// TODO: Also check the other KeyGenId fields
|
||||
|
||||
// Tell the Tributary the key pair, get back the share for the MuSig signature
|
||||
let mut txn = db.txn();
|
||||
let share = crate::tributary::generated_key_pair::<D>(
|
||||
&mut txn,
|
||||
&key,
|
||||
&spec,
|
||||
&(Public(substrate_key), network_key.try_into().unwrap()),
|
||||
id.attempt,
|
||||
);
|
||||
txn.commit();
|
||||
|
||||
match share {
|
||||
Ok(share) => Some(Transaction::DkgConfirmed(
|
||||
id.attempt,
|
||||
share,
|
||||
Transaction::empty_signed(),
|
||||
)),
|
||||
Err(p) => {
|
||||
todo!("participant {p:?} sent invalid DKG confirmation preprocesses")
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
ProcessorMessage::Sign(msg) => match msg {
|
||||
sign::ProcessorMessage::Preprocess { id, preprocess } => {
|
||||
if id.attempt == 0 {
|
||||
let mut txn = db.txn();
|
||||
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
|
||||
txn.commit();
|
||||
|
||||
None
|
||||
} else {
|
||||
Some(Transaction::SignPreprocess(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: preprocess,
|
||||
signed: Transaction::empty_signed(),
|
||||
}))
|
||||
}
|
||||
}
|
||||
sign::ProcessorMessage::Share { id, share } => {
|
||||
Some(Transaction::SignShare(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: share,
|
||||
signed: Transaction::empty_signed(),
|
||||
}))
|
||||
}
|
||||
sign::ProcessorMessage::Completed { key: _, id, tx } => {
|
||||
let r = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
|
||||
#[allow(non_snake_case)]
|
||||
let R = <Ristretto as Ciphersuite>::generator() * r.deref();
|
||||
let mut tx = Transaction::SignCompleted {
|
||||
plan: id,
|
||||
tx_hash: tx,
|
||||
first_signer: pub_key,
|
||||
signature: SchnorrSignature { R, s: <Ristretto as Ciphersuite>::F::ZERO },
|
||||
};
|
||||
let signed = SchnorrSignature::sign(&key, r, tx.sign_completed_challenge());
|
||||
match &mut tx {
|
||||
Transaction::SignCompleted { signature, .. } => {
|
||||
*signature = signed;
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
Some(tx)
|
||||
}
|
||||
},
|
||||
ProcessorMessage::Coordinator(inner_msg) => match inner_msg {
|
||||
coordinator::ProcessorMessage::SubstrateBlockAck { network, block, plans } => {
|
||||
assert_eq!(
|
||||
network, msg.network,
|
||||
"processor claimed to be a different network than it was for SubstrateBlockAck",
|
||||
);
|
||||
|
||||
// Safe to use its own txn since this is static and just needs to be written
|
||||
// before we provide SubstrateBlock
|
||||
let mut txn = db.txn();
|
||||
// TODO: This needs to be scoped per multisig
|
||||
TributaryDb::<D>::set_plan_ids(&mut txn, genesis, block, &plans);
|
||||
txn.commit();
|
||||
|
||||
Some(Transaction::SubstrateBlock(block))
|
||||
}
|
||||
coordinator::ProcessorMessage::BatchPreprocess { id, block, preprocess } => {
|
||||
log::info!(
|
||||
"informed of batch (sign ID {}, attempt {}) for block {}",
|
||||
hex::encode(id.id),
|
||||
id.attempt,
|
||||
hex::encode(block),
|
||||
);
|
||||
// If this is the first attempt instance, wait until we synchronize around the
|
||||
// batch first
|
||||
if id.attempt == 0 {
|
||||
// Save the preprocess to disk so we can publish it later
|
||||
// This is fine to use its own TX since it's static and just needs to be
|
||||
// written before this message finishes it handling (or with this message's
|
||||
// finished handling)
|
||||
let mut txn = db.txn();
|
||||
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
|
||||
txn.commit();
|
||||
|
||||
Some(Transaction::Batch(block.0, id.id))
|
||||
} else {
|
||||
Some(Transaction::BatchPreprocess(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: preprocess,
|
||||
signed: Transaction::empty_signed(),
|
||||
}))
|
||||
}
|
||||
}
|
||||
coordinator::ProcessorMessage::BatchShare { id, share } => {
|
||||
Some(Transaction::BatchShare(SignData {
|
||||
plan: id.id,
|
||||
attempt: id.attempt,
|
||||
data: share.to_vec(),
|
||||
signed: Transaction::empty_signed(),
|
||||
}))
|
||||
}
|
||||
},
|
||||
ProcessorMessage::Substrate(inner_msg) => match inner_msg {
|
||||
processor_messages::substrate::ProcessorMessage::Update { batch } => {
|
||||
assert_eq!(
|
||||
batch.batch.network, msg.network,
|
||||
"processor sent us a batch for a different network than it was for",
|
||||
);
|
||||
// TODO: Check this key's key pair's substrate key is authorized to publish
|
||||
// batches
|
||||
|
||||
// Save this batch to the disk
|
||||
MainDb::new(&mut db).save_batch(batch);
|
||||
|
||||
/*
|
||||
Use a dedicated task to publish batches due to the latency potentially
|
||||
incurred.
|
||||
|
||||
This does not guarantee the batch has actually been published when the
|
||||
message is `ack`ed to message-queue. Accordingly, if we reboot, these batches
|
||||
would be dropped (as we wouldn't see the `Update` again, triggering our
|
||||
re-attempt to publish).
|
||||
|
||||
The solution to this is to have the task try not to publish the batch which
|
||||
caused it to be spawned, yet all saved batches which have yet to published.
|
||||
This does risk having multiple tasks trying to publish all pending batches,
|
||||
yet these aren't notably complex.
|
||||
*/
|
||||
tokio::spawn({
|
||||
let mut db = db.clone();
|
||||
let serai = serai.clone();
|
||||
let network = msg.network;
|
||||
async move {
|
||||
// Since we have a new batch, publish all batches yet to be published to
|
||||
// Serai
|
||||
// This handles the edge-case where batch n+1 is signed before batch n is
|
||||
while let Some(batch) = {
|
||||
// Get the next-to-execute batch ID
|
||||
let next = {
|
||||
let mut first = true;
|
||||
loop {
|
||||
if !first {
|
||||
log::error!(
|
||||
"{} {network:?}",
|
||||
"couldn't connect to Serai node to get the next batch ID for",
|
||||
);
|
||||
tokio::time::sleep(Duration::from_secs(5)).await;
|
||||
}
|
||||
first = false;
|
||||
|
||||
let Ok(latest_block) = serai.get_latest_block().await else {
|
||||
continue;
|
||||
};
|
||||
let Ok(last) = serai
|
||||
.get_last_batch_for_network(latest_block.hash(), network)
|
||||
.await
|
||||
else {
|
||||
continue;
|
||||
};
|
||||
break if let Some(last) = last { last + 1 } else { 0 };
|
||||
}
|
||||
};
|
||||
|
||||
// If we have this batch, attempt to publish it
|
||||
MainDb::new(&mut db).batch(network, next)
|
||||
} {
|
||||
let id = batch.batch.id;
|
||||
let block = batch.batch.block;
|
||||
|
||||
let tx = Serai::execute_batch(batch);
|
||||
// This publish may fail if this transactions already exists in the
|
||||
// mempool, which is possible, or if this batch was already executed
|
||||
// on-chain
|
||||
// Either case will have eventual resolution and be handled by the above
|
||||
// check on if this batch should execute
|
||||
if serai.publish(&tx).await.is_ok() {
|
||||
log::info!(
|
||||
"published batch {network:?} {id} (block {})",
|
||||
hex::encode(block)
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
None
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
// If this created a transaction, publish it
|
||||
if let Some(mut tx) = tx {
|
||||
log::trace!("processor message effected transaction {}", hex::encode(tx.hash()));
|
||||
|
||||
match tx.kind() {
|
||||
TransactionKind::Provided(_) => {
|
||||
log::trace!("providing transaction {}", hex::encode(tx.hash()));
|
||||
let res = tributary.provide_transaction(tx).await;
|
||||
if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
|
||||
panic!("provided an invalid transaction: {res:?}");
|
||||
}
|
||||
}
|
||||
TransactionKind::Unsigned => {
|
||||
log::trace!("publishing unsigned transaction {}", hex::encode(tx.hash()));
|
||||
// Ignores the result since we can't differentiate already in-mempool from
|
||||
// already on-chain from invalid
|
||||
// TODO: Don't ignore the result
|
||||
tributary.add_transaction(tx).await;
|
||||
}
|
||||
TransactionKind::Signed(_) => {
|
||||
log::trace!(
|
||||
"getting next nonce for Tributary TX in response to processor message"
|
||||
);
|
||||
|
||||
let nonce = loop {
|
||||
let Some(nonce) = NonceDecider::<D>::nonce(&db, genesis, &tx)
|
||||
.expect("signed TX didn't have nonce")
|
||||
else {
|
||||
// This can be None if:
|
||||
// 1) We scanned the relevant transaction(s) in a Tributary block
|
||||
// 2) The processor was sent a message and responded
|
||||
// 3) The Tributary TXN has yet to be committed
|
||||
log::warn!(
|
||||
"nonce has yet to be saved for processor-instigated transaction"
|
||||
);
|
||||
sleep(Duration::from_millis(100)).await;
|
||||
continue;
|
||||
};
|
||||
break nonce;
|
||||
};
|
||||
tx.sign(&mut OsRng, genesis, &key, nonce);
|
||||
|
||||
publish_signed_transaction(&tributary, tx).await;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Consider a global txn for this message?
|
||||
let mut txn = db.txn();
|
||||
MainDb::<'static, D>::save_handled_message(&mut txn, msg.id);
|
||||
txn.commit();
|
||||
|
||||
processors.ack(msg).await;
|
||||
}
|
||||
}
|
||||
});
|
||||
// For each new tributary, spawn a dedicated task to handle its messages from the processor
|
||||
// TODO: Redo per network, not per tributary
|
||||
tokio::spawn(handle_processor_messages(
|
||||
db.clone(),
|
||||
key.clone(),
|
||||
serai.clone(),
|
||||
processors.clone(),
|
||||
tributary,
|
||||
recv,
|
||||
));
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Dispatch task
|
||||
let mut last_msg = None;
|
||||
loop {
|
||||
// TODO: We dispatch this to an async task per-processor, yet we don't move to the next message
|
||||
|
@ -871,10 +859,6 @@ pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
|
|||
// Alternatively, a peek method with local delineation of handled messages would work.
|
||||
|
||||
let msg = processors.recv().await;
|
||||
if MainDb::<'static, D>::handled_message(&db, msg.id) {
|
||||
processors.ack(msg).await;
|
||||
continue;
|
||||
}
|
||||
if last_msg == Some(msg.id) {
|
||||
sleep(Duration::from_secs(1)).await;
|
||||
continue;
|
||||
|
@ -892,7 +876,7 @@ pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
|
|||
}
|
||||
|
||||
pub async fn run<D: Db, Pro: Processors, P: P2p>(
|
||||
mut raw_db: D,
|
||||
raw_db: D,
|
||||
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
||||
p2p: P,
|
||||
processors: Pro,
|
||||
|
@ -902,7 +886,7 @@ pub async fn run<D: Db, Pro: Processors, P: P2p>(
|
|||
|
||||
let (new_tributary_spec_send, mut new_tributary_spec_recv) = mpsc::unbounded_channel();
|
||||
// Reload active tributaries from the database
|
||||
for spec in MainDb::new(&mut raw_db).active_tributaries().1 {
|
||||
for spec in MainDb::<D>::active_tributaries(&raw_db).1 {
|
||||
new_tributary_spec_send.send(spec).unwrap();
|
||||
}
|
||||
|
||||
|
@ -975,13 +959,13 @@ pub async fn run<D: Db, Pro: Processors, P: P2p>(
|
|||
let key = key.clone();
|
||||
let tributaries = tributaries.clone();
|
||||
async move {
|
||||
// SubstrateBlockAck is fired before Preprocess, creating a race between Tributary ack
|
||||
// of the SubstrateBlock and the sending of all Preprocesses
|
||||
// The transactions for these are fired before the preprocesses are actually
|
||||
// received/saved, creating a race between Tributary ack and the availability of all
|
||||
// Preprocesses
|
||||
// This waits until the necessary preprocess is available
|
||||
let get_preprocess = |raw_db, id| async move {
|
||||
loop {
|
||||
let Some(preprocess) = MainDb::<D>::first_preprocess(raw_db, id) else {
|
||||
assert_eq!(id_type, RecognizedIdType::Plan);
|
||||
sleep(Duration::from_millis(100)).await;
|
||||
continue;
|
||||
};
|
||||
|
|
Loading…
Reference in a new issue