serai/coordinator/src/main.rs

691 lines
22 KiB
Rust
Raw Normal View History

2023-04-15 21:38:47 +00:00
#![allow(unused_variables)]
#![allow(unreachable_code)]
#![allow(clippy::diverging_sub_expression)]
2023-04-15 21:38:47 +00:00
use core::ops::Deref;
use std::{
sync::Arc,
time::{SystemTime, Duration},
collections::{VecDeque, HashMap},
};
use zeroize::Zeroizing;
use rand_core::OsRng;
use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto};
2023-04-15 21:38:47 +00:00
use serai_db::{DbTxn, Db};
use serai_env as env;
use serai_client::{Public, Signature, Serai};
2023-04-15 21:38:47 +00:00
use message_queue::{Service, client::MessageQueue};
use tokio::{
sync::{
mpsc::{self, UnboundedSender},
RwLock,
},
time::sleep,
};
use ::tributary::{
ReadWrite, ProvidedError, TransactionKind, Transaction as TransactionTrait, Block, Tributary,
TributaryReader,
};
2023-04-20 09:05:17 +00:00
mod tributary;
#[rustfmt::skip]
use crate::tributary::{TributarySpec, SignData, Transaction, TributaryDb, scanner::RecognizedIdType};
mod db;
use db::MainDb;
mod p2p;
pub use p2p::*;
use processor_messages::{key_gen, sign, coordinator, ProcessorMessage};
pub mod processors;
use processors::Processors;
2023-04-17 06:10:33 +00:00
2023-04-15 21:38:47 +00:00
mod substrate;
#[cfg(test)]
pub mod tests;
// This is a static to satisfy lifetime expectations
lazy_static::lazy_static! {
static ref NEW_TRIBUTARIES: RwLock<VecDeque<TributarySpec>> = RwLock::new(VecDeque::new());
}
pub struct ActiveTributary<D: Db, P: P2p> {
pub spec: TributarySpec,
pub tributary: Arc<RwLock<Tributary<D, Transaction, P>>>,
}
type Tributaries<D, P> = HashMap<[u8; 32], ActiveTributary<D, P>>;
// Adds a tributary into the specified HahMap
async fn add_tributary<D: Db, P: P2p>(
db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: P,
tributaries: &mut Tributaries<D, P>,
spec: TributarySpec,
) -> TributaryReader<D, Transaction> {
let tributary = Tributary::<_, Transaction, _>::new(
// TODO2: Use a db on a distinct volume
db,
spec.genesis(),
spec.start_time(),
key,
spec.validators(),
p2p,
)
.await
.unwrap();
let reader = tributary.reader();
tributaries.insert(
tributary.genesis(),
ActiveTributary { spec, tributary: Arc::new(RwLock::new(tributary)) },
);
reader
}
pub async fn scan_substrate<D: Db, Pro: Processors>(
db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
processors: Pro,
serai: Serai,
) {
let mut db = substrate::SubstrateDb::new(db);
let mut last_substrate_block = db.last_block();
2023-04-20 09:05:17 +00:00
loop {
match substrate::handle_new_blocks(
&mut db,
&key,
|db: &mut D, spec: TributarySpec| {
// Save it to the database
MainDb::new(db).add_active_tributary(&spec);
// Add it to the queue
// If we reboot before this is read from the queue, the fact it was saved to the database
// means it'll be handled on reboot
async {
NEW_TRIBUTARIES.write().await.push_back(spec);
}
},
&processors,
&serai,
&mut last_substrate_block,
)
.await
{
// TODO2: Should this use a notification system for new blocks?
// Right now it's sleeping for half the block time.
Ok(()) => sleep(Duration::from_secs(3)).await,
Err(e) => {
log::error!("couldn't communicate with serai node: {e}");
sleep(Duration::from_secs(5)).await;
2023-04-20 09:05:17 +00:00
}
}
}
}
#[allow(clippy::type_complexity)]
pub async fn scan_tributaries<D: Db, Pro: Processors, P: P2p>(
raw_db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
recognized_id_send: UnboundedSender<([u8; 32], RecognizedIdType, [u8; 32])>,
p2p: P,
processors: Pro,
tributaries: Arc<RwLock<Tributaries<D, P>>>,
) {
let mut tributary_readers = vec![];
for ActiveTributary { spec, tributary } in tributaries.read().await.values() {
tributary_readers.push((spec.clone(), tributary.read().await.reader()));
}
// Handle new Tributary blocks
let mut tributary_db = tributary::TributaryDb::new(raw_db.clone());
loop {
// The following handle_new_blocks function may take an arbitrary amount of time
// Accordingly, it may take a long time to acquire a write lock on the tributaries table
// By definition of NEW_TRIBUTARIES, we allow tributaries to be added almost immediately,
// meaning the Substrate scanner won't become blocked on this
{
let mut new_tributaries = NEW_TRIBUTARIES.write().await;
while let Some(spec) = new_tributaries.pop_front() {
let reader = add_tributary(
raw_db.clone(),
key.clone(),
p2p.clone(),
// This is a short-lived write acquisition, which is why it should be fine
&mut *tributaries.write().await,
spec.clone(),
)
.await;
tributary_readers.push((spec, reader));
}
}
for (spec, reader) in &tributary_readers {
tributary::scanner::handle_new_blocks::<_, _>(
&mut tributary_db,
&key,
&recognized_id_send,
&processors,
spec,
reader,
)
.await;
}
// Sleep for half the block time
// TODO2: Should we define a notification system for when a new block occurs?
sleep(Duration::from_secs((Tributary::<D, Transaction, P>::block_time() / 2).into())).await;
}
}
pub async fn heartbeat_tributaries<D: Db, P: P2p>(
p2p: P,
tributaries: Arc<RwLock<Tributaries<D, P>>>,
) {
let ten_blocks_of_time =
Duration::from_secs((10 * Tributary::<D, Transaction, P>::block_time()).into());
loop {
for ActiveTributary { spec: _, tributary } in tributaries.read().await.values() {
let tributary = tributary.read().await;
let tip = tributary.tip().await;
let block_time = SystemTime::UNIX_EPOCH +
Duration::from_secs(tributary.reader().time_of_block(&tip).unwrap_or(0));
// Only trigger syncing if the block is more than a minute behind
if SystemTime::now() > (block_time + Duration::from_secs(60)) {
log::warn!("last known tributary block was over a minute ago");
P2p::broadcast(&p2p, P2pMessageKind::Heartbeat(tributary.genesis()), tip.to_vec()).await;
}
}
// Only check once every 10 blocks of time
sleep(ten_blocks_of_time).await;
}
}
pub async fn handle_p2p<D: Db, P: P2p>(
our_key: <Ristretto as Ciphersuite>::G,
p2p: P,
tributaries: Arc<RwLock<Tributaries<D, P>>>,
) {
loop {
let mut msg = p2p.receive().await;
match msg.kind {
P2pMessageKind::Tributary(genesis) => {
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
log::debug!("received p2p message for unknown network");
continue;
};
if tributary.tributary.write().await.handle_message(&msg.msg).await {
P2p::broadcast(&p2p, msg.kind, msg.msg).await;
}
}
// TODO2: Rate limit this per validator
P2pMessageKind::Heartbeat(genesis) => {
if msg.msg.len() != 32 {
log::error!("validator sent invalid heartbeat");
continue;
}
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
log::debug!("received heartbeat message for unknown network");
continue;
};
let tributary_read = tributary.tributary.read().await;
/*
// Have sqrt(n) nodes reply with the blocks
let mut responders = (tributary.spec.n() as f32).sqrt().floor() as u64;
// Try to have at least 3 responders
if responders < 3 {
responders = tributary.spec.n().min(3).into();
}
*/
// Have up to three nodes respond
let responders = u64::from(tributary.spec.n().min(3));
// Decide which nodes will respond by using the latest block's hash as a mutually agreed
// upon entropy source
// THis isn't a secure source of entropy, yet it's fine for this
let entropy = u64::from_le_bytes(tributary_read.tip().await[.. 8].try_into().unwrap());
// If n = 10, responders = 3, we want start to be 0 ..= 7 (so the highest is 7, 8, 9)
// entropy % (10 + 1) - 3 = entropy % 8 = 0 ..= 7
let start =
usize::try_from(entropy % (u64::from(tributary.spec.n() + 1) - responders)).unwrap();
let mut selected = false;
for validator in
&tributary.spec.validators()[start .. (start + usize::try_from(responders).unwrap())]
{
if our_key == validator.0 {
selected = true;
break;
}
}
if !selected {
log::debug!("received heartbeat and not selected to respond");
continue;
}
log::debug!("received heartbeat and selected to respond");
let reader = tributary_read.reader();
drop(tributary_read);
let mut latest = msg.msg.try_into().unwrap();
while let Some(next) = reader.block_after(&latest) {
let mut res = reader.block(&next).unwrap().serialize();
res.extend(reader.commit(&next).unwrap());
p2p.send(msg.sender, P2pMessageKind::Block(tributary.spec.genesis()), res).await;
latest = next;
}
}
P2pMessageKind::Block(genesis) => {
let mut msg_ref: &[u8] = msg.msg.as_ref();
let Ok(block) = Block::<Transaction>::read(&mut msg_ref) else {
log::error!("received block message with an invalidly serialized block");
continue;
};
// Get just the commit
msg.msg.drain(.. (msg.msg.len() - msg_ref.len()));
// Spawn a dedicated task to add this block, as it may take a notable amount of time
// While we could use a long-lived task to add each block, that task would only add one
// block at a time *across all tributaries*
// We either need:
// 1) One task per tributary
// 2) Background tasks
// 3) For sync_block to return instead of waiting for provided transactions which are
// missing
// sync_block waiting is preferable since we know the block is valid by its commit, meaning
// we are the node behind
// As for 1/2, 1 may be preferable since this message may frequently occur
// This is suitably performant, as tokio HTTP servers will even spawn a new task per
// connection
// In order to reduce congestion though, we should at least check if we take value from
// this message before running spawn
// TODO2
tokio::spawn({
let tributaries = tributaries.clone();
async move {
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
log::debug!("received block message for unknown network");
return;
};
let res = tributary.tributary.write().await.sync_block(block, msg.msg).await;
log::debug!("received block from {:?}, sync_block returned {}", msg.sender, res);
}
});
}
}
2023-04-20 09:05:17 +00:00
}
}
pub async fn publish_transaction<D: Db, P: P2p>(
tributary: &Tributary<D, Transaction, P>,
tx: Transaction,
) {
if let TransactionKind::Signed(signed) = tx.kind() {
if tributary
.next_nonce(signed.signer)
.await
.expect("we don't have a nonce, meaning we aren't a participant on this tributary") >
signed.nonce
{
log::warn!("we've already published this transaction. this should only appear on reboot");
} else {
// We should've created a valid transaction
assert!(tributary.add_transaction(tx).await, "created an invalid transaction");
}
} else {
panic!("non-signed transaction passed to publish_transaction");
}
}
pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
mut db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
serai: Serai,
mut processors: Pro,
tributaries: Arc<RwLock<Tributaries<D, P>>>,
) {
let pub_key = Ristretto::generator() * key.deref();
loop {
let msg = processors.recv().await;
// TODO2: This is slow, and only works as long as a network only has a single Tributary
// (which means there's a lack of multisig rotation)
let genesis = {
let mut genesis = None;
for tributary in tributaries.read().await.values() {
if tributary.spec.set().network == msg.network {
genesis = Some(tributary.spec.genesis());
break;
}
}
genesis.unwrap()
};
let tx = match msg.msg {
ProcessorMessage::KeyGen(inner_msg) => match inner_msg {
key_gen::ProcessorMessage::Commitments { id, commitments } => {
Some(Transaction::DkgCommitments(id.attempt, commitments, Transaction::empty_signed()))
}
key_gen::ProcessorMessage::Shares { id, shares } => {
Some(Transaction::DkgShares(id.attempt, shares, Transaction::empty_signed()))
}
key_gen::ProcessorMessage::GeneratedKeyPair { id, substrate_key, network_key } => {
assert_eq!(
id.set.network, msg.network,
"processor claimed to be a different network than it was for GeneratedKeyPair",
);
// TODO: Also check the other KeyGenId fields
// TODO: Sign a MuSig signature here
let tx = Serai::set_validator_set_keys(
id.set.network,
(
Public(substrate_key),
network_key
.try_into()
.expect("external key from processor exceeded max external key length"),
),
Signature([0; 64]), // TODO
);
loop {
match serai.publish(&tx).await {
Ok(hash) => {
log::info!("voted on key pair for {:?} in TX {}", id.set, hex::encode(hash))
}
Err(e) => {
log::error!("couldn't connect to Serai node to publish vote TX: {:?}", e);
tokio::time::sleep(Duration::from_secs(10)).await;
}
}
}
None
}
},
ProcessorMessage::Sign(msg) => match msg {
sign::ProcessorMessage::Preprocess { id, preprocess } => {
if id.attempt == 0 {
let mut txn = db.txn();
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
txn.commit();
None
} else {
Some(Transaction::SignPreprocess(SignData {
plan: id.id,
attempt: id.attempt,
data: preprocess,
signed: Transaction::empty_signed(),
}))
}
}
sign::ProcessorMessage::Share { id, share } => Some(Transaction::SignShare(SignData {
plan: id.id,
attempt: id.attempt,
data: share,
signed: Transaction::empty_signed(),
})),
// TODO
sign::ProcessorMessage::Completed { .. } => todo!(),
},
ProcessorMessage::Coordinator(inner_msg) => match inner_msg {
coordinator::ProcessorMessage::SubstrateBlockAck { network, block, plans } => {
assert_eq!(
network, msg.network,
"processor claimed to be a different network than it was for SubstrateBlockAck",
);
// Safe to use its own txn since this is static and just needs to be written before we
// provide SubstrateBlock
let mut txn = db.txn();
TributaryDb::<D>::set_plan_ids(&mut txn, genesis, block, &plans);
txn.commit();
Some(Transaction::SubstrateBlock(block))
}
coordinator::ProcessorMessage::BatchPreprocess { id, preprocess } => {
// If this is the first attempt instance, synchronize around the block first
if id.attempt == 0 {
// Save the preprocess to disk so we can publish it later
// This is fine to use its own TX since it's static and just needs to be written
// before this message finishes it handling (or with this message's finished handling)
let mut txn = db.txn();
MainDb::<D>::save_first_preprocess(&mut txn, id.id, preprocess);
txn.commit();
Some(Transaction::ExternalBlock(id.id))
} else {
Some(Transaction::BatchPreprocess(SignData {
plan: id.id,
attempt: id.attempt,
data: preprocess,
signed: Transaction::empty_signed(),
}))
}
}
coordinator::ProcessorMessage::BatchShare { id, share } => {
Some(Transaction::BatchShare(SignData {
plan: id.id,
attempt: id.attempt,
data: share.to_vec(),
signed: Transaction::empty_signed(),
}))
}
},
ProcessorMessage::Substrate(inner_msg) => match inner_msg {
processor_messages::substrate::ProcessorMessage::Update { key: _, batch } => {
assert_eq!(
batch.batch.network, msg.network,
"processor sent us a batch for a different network than it was for",
);
// TODO: Check this key's key pair's substrate key is authorized to publish batches
// TODO: Check the batch ID is an atomic increment
loop {
match serai.publish(&Serai::execute_batch(batch.clone())).await {
Ok(hash) => {
log::info!(
"executed batch {:?} {} (block {}) in TX {}",
batch.batch.network,
batch.batch.id,
hex::encode(batch.batch.block),
hex::encode(hash),
);
break;
}
Err(e) => {
log::error!("couldn't connect to Serai node to publish batch TX: {:?}", e);
tokio::time::sleep(Duration::from_secs(10)).await;
}
}
}
None
}
},
};
// If this created a transaction, publish it
if let Some(mut tx) = tx {
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
// TODO: This can happen since Substrate tells the Processor to generate commitments
// at the same time it tells the Tributary to be created
// There's no guarantee the Tributary will have been created though
panic!("processor is operating on tributary we don't have");
};
let tributary = tributary.tributary.read().await;
match tx.kind() {
TransactionKind::Provided(_) => {
let res = tributary.provide_transaction(tx).await;
if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
panic!("provided an invalid transaction: {res:?}");
}
}
TransactionKind::Signed(_) => {
// Get the next nonce
// let mut txn = db.txn();
// let nonce = MainDb::tx_nonce(&mut txn, msg.id, tributary);
let nonce = 0; // TODO
tx.sign(&mut OsRng, genesis, &key, nonce);
publish_transaction(&tributary, tx).await;
// txn.commit();
}
_ => panic!("created an unexpected transaction"),
}
}
}
}
pub async fn run<D: Db, Pro: Processors, P: P2p>(
mut raw_db: D,
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
p2p: P,
processors: Pro,
serai: Serai,
) {
// Handle new Substrate blocks
tokio::spawn(scan_substrate(raw_db.clone(), key.clone(), processors.clone(), serai.clone()));
// Handle the Tributaries
// Arc so this can be shared between the Tributary scanner task and the P2P task
// Write locks on this may take a while to acquire
let tributaries = Arc::new(RwLock::new(HashMap::<[u8; 32], ActiveTributary<D, P>>::new()));
// Reload active tributaries from the database
for spec in MainDb::new(&mut raw_db).active_tributaries().1 {
let _ = add_tributary(
raw_db.clone(),
key.clone(),
p2p.clone(),
&mut *tributaries.write().await,
spec,
)
.await;
}
// Handle new blocks for each Tributary
let (recognized_id_send, mut recognized_id_recv) = mpsc::unbounded_channel();
{
let raw_db = raw_db.clone();
tokio::spawn(scan_tributaries(
raw_db,
key.clone(),
recognized_id_send,
p2p.clone(),
processors.clone(),
tributaries.clone(),
));
}
// When we reach consensus on a new external block, send our BatchPreprocess for it
tokio::spawn({
let raw_db = raw_db.clone();
let key = key.clone();
let tributaries = tributaries.clone();
async move {
loop {
if let Some((genesis, id_type, id)) = recognized_id_recv.recv().await {
let mut tx = match id_type {
RecognizedIdType::Block => Transaction::BatchPreprocess(SignData {
plan: id,
attempt: 0,
data: MainDb::<D>::first_preprocess(&raw_db, id),
signed: Transaction::empty_signed(),
}),
RecognizedIdType::Plan => Transaction::SignPreprocess(SignData {
plan: id,
attempt: 0,
data: MainDb::<D>::first_preprocess(&raw_db, id),
signed: Transaction::empty_signed(),
}),
};
let nonce = 0; // TODO
tx.sign(&mut OsRng, genesis, &key, nonce);
let tributaries = tributaries.read().await;
let Some(tributary) = tributaries.get(&genesis) else {
panic!("tributary we don't have came to consensus on an ExternalBlock");
};
let tributary = tributary.tributary.read().await;
publish_transaction(&tributary, tx).await;
} else {
log::warn!("recognized_id_send was dropped. are we shutting down?");
break;
}
}
}
});
// Spawn the heartbeat task, which will trigger syncing if there hasn't been a Tributary block
// in a while (presumably because we're behind)
tokio::spawn(heartbeat_tributaries(p2p.clone(), tributaries.clone()));
// Handle P2P messages
tokio::spawn(handle_p2p(Ristretto::generator() * key.deref(), p2p, tributaries.clone()));
2023-04-15 21:38:47 +00:00
// Handle all messages from processors
handle_processors(raw_db, key, serai, processors, tributaries).await;
2023-04-15 21:38:47 +00:00
}
2023-04-11 13:21:35 +00:00
#[tokio::main]
2023-04-15 21:38:47 +00:00
async fn main() {
let db = serai_db::new_rocksdb(&env::var("DB_PATH").expect("path to DB wasn't specified"));
2023-04-17 06:10:33 +00:00
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::ZERO); // TODO
let p2p = LocalP2p::new(1).swap_remove(0); // TODO
2023-04-17 06:10:33 +00:00
let processors = Arc::new(MessageQueue::from_env(Service::Coordinator));
2023-04-17 06:10:33 +00:00
let serai = || async {
loop {
let Ok(serai) = Serai::new("ws://127.0.0.1:9944").await else {
log::error!("couldn't connect to the Serai node");
2023-04-17 06:10:33 +00:00
sleep(Duration::from_secs(5)).await;
2023-08-01 04:47:36 +00:00
continue;
};
return serai;
}
};
run(db, key, p2p, processors, serai().await).await
2023-04-15 21:38:47 +00:00
}