serai/crypto/dleq/src/cross_group/mod.rs

459 lines
15 KiB
Rust
Raw Normal View History

use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use subtle::{ConstantTimeEq, ConditionallySelectable};
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use crate::Generators;
pub mod scalar;
use scalar::{scalar_convert, mutual_scalar_from_bytes};
pub(crate) mod schnorr;
use schnorr::SchnorrPoK;
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
use crate::read_scalar;
#[cfg(feature = "serialize")]
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
let mut repr = G::Repr::default();
r.read_exact(repr.as_mut())?;
let point = G::from_bytes(&repr);
if point.is_none().into() {
Err(std::io::Error::new(std::io::ErrorKind::Other, "invalid point"))?;
}
Ok(point.unwrap())
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Bits<G0: PrimeGroup, G1: PrimeGroup, const POSSIBLE_VALUES: usize> {
commitments: (G0, G1),
// Merged challenges have a slight security reduction, yet one already applied to the scalar
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
// Secp256k1/Ed25519
e_0: G0::Scalar,
s: [(G0::Scalar, G1::Scalar); POSSIBLE_VALUES]
}
impl<G0: PrimeGroup, G1: PrimeGroup, const POSSIBLE_VALUES: usize> Bits<G0, G1, POSSIBLE_VALUES>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
pub fn transcript<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
if i == 0 {
transcript.domain_separate(b"cross_group_dleq");
}
transcript.append_message(b"bit_group", &u16::try_from(i).unwrap().to_le_bytes());
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
}
#[allow(non_snake_case)]
fn nonces<T: Transcript>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) {
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
}
#[allow(non_snake_case)]
fn R(
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (G0, G1) {
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
}
#[allow(non_snake_case)]
fn R_nonces<T: Transcript>(
transcript: T,
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (G0::Scalar, G1::Scalar) {
Self::nonces(transcript, Self::R(generators, s, A, e))
}
fn ring(pow_2: (G0, G1), commitments: (G0, G1)) -> [(G0, G1); POSSIBLE_VALUES] {
let mut res = [(G0::identity(), G1::identity()); POSSIBLE_VALUES];
res[POSSIBLE_VALUES - 1] = commitments;
for i in (0 .. (POSSIBLE_VALUES - 1)).rev() {
res[i] = (res[i + 1].0 - pow_2.0, res[i + 1].1 - pow_2.1);
}
res
}
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
i: usize,
pow_2: &mut (G0, G1),
bits: u8,
blinding_key: (G0::Scalar, G1::Scalar)
) -> Bits<G0, G1, POSSIBLE_VALUES> {
// While it is possible to use larger values, it's not efficient to do so
// 2 + 2 == 2^2, yet 2 + 2 + 2 < 2^3
debug_assert!((POSSIBLE_VALUES == 2) || (POSSIBLE_VALUES == 4));
let mut commitments = (
(generators.0.alt * blinding_key.0),
(generators.1.alt * blinding_key.1)
);
commitments.0 += pow_2.0 * G0::Scalar::from(bits.into());
commitments.1 += pow_2.1 * G1::Scalar::from(bits.into());
Self::transcript(transcript, i, commitments);
let ring = Self::ring(*pow_2, commitments);
// Invert the index to get the raw blinding key's position in the ring
let actual = POSSIBLE_VALUES - 1 - usize::from(bits);
let mut e_0 = G0::Scalar::zero();
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); POSSIBLE_VALUES];
let r = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
#[allow(non_snake_case)]
let original_R = (generators.0.alt * r.0, generators.1.alt * r.1);
#[allow(non_snake_case)]
let mut R = original_R;
for i in ((actual + 1) .. (actual + POSSIBLE_VALUES + 1)).map(|i| i % POSSIBLE_VALUES) {
let e = Self::nonces(transcript.clone(), R);
e_0 = G0::Scalar::conditional_select(&e_0, &e.0, usize::ct_eq(&i, &1));
// Solve for the real index
if i == actual {
s[i] = (r.0 + (e.0 * blinding_key.0), r.1 + (e.1 * blinding_key.1));
debug_assert_eq!(Self::R(generators, s[i], ring[actual], e), original_R);
break;
// Generate a decoy response
} else {
s[i] = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
}
R = Self::R(generators, s[i], ring[i], e);
}
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
if POSSIBLE_VALUES == 4 {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
}
Bits { commitments, e_0, s }
}
pub fn verify<T: Clone + Transcript>(
&self,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
i: usize,
pow_2: &mut (G0, G1)
) -> Result<(), DLEqError> {
debug_assert!((POSSIBLE_VALUES == 2) || (POSSIBLE_VALUES == 4));
Self::transcript(transcript, i, self.commitments);
let ring = Self::ring(*pow_2, self.commitments);
let e_0 = (self.e_0, scalar_convert(self.e_0).ok_or(DLEqError::InvalidChallenge)?);
let mut e = None;
for i in (1 .. (POSSIBLE_VALUES + 1)).map(|i| i % POSSIBLE_VALUES) {
e = Some(
Self::R_nonces(transcript.clone(), generators, self.s[i], ring[i], e.unwrap_or(e_0))
);
}
// Will panic if the above loop is never run somehow
// If e wasn't an Option, and instead initially set to e_0, it'd always pass
if e_0 != e.unwrap() {
return Err(DLEqError::InvalidProof);
}
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
if POSSIBLE_VALUES == 4 {
pow_2.0 = pow_2.0.double();
pow_2.1 = pow_2.1.double();
}
Ok(())
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
w.write_all(self.commitments.0.to_bytes().as_ref())?;
w.write_all(self.commitments.1.to_bytes().as_ref())?;
w.write_all(self.e_0.to_repr().as_ref())?;
for i in 0 .. POSSIBLE_VALUES {
w.write_all(self.s[i].0.to_repr().as_ref())?;
w.write_all(self.s[i].1.to_repr().as_ref())?;
}
Ok(())
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Bits<G0, G1, POSSIBLE_VALUES>> {
let commitments = (read_point(r)?, read_point(r)?);
let e_0 = read_scalar(r)?;
let mut s = [(G0::Scalar::zero(), G1::Scalar::zero()); POSSIBLE_VALUES];
for i in 0 .. POSSIBLE_VALUES {
s[i] = (read_scalar(r)?, read_scalar(r)?);
}
Ok(Bits { commitments, e_0, s })
}
}
#[derive(Error, PartialEq, Eq, Debug)]
pub enum DLEqError {
#[error("invalid proof of knowledge")]
InvalidProofOfKnowledge,
#[error("invalid proof length")]
InvalidProofLength,
#[error("invalid challenge")]
InvalidChallenge,
#[error("invalid proof")]
InvalidProof
}
// Debug would be such a dump of data this likely isn't helpful, but at least it's available to
// anyone who wants it
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct DLEqProof<G0: PrimeGroup, G1: PrimeGroup> {
bits: Vec<Bits<G0, G1, 4>>,
remainder: Option<Bits<G0, G1, 2>>,
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
}
impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn initialize_transcript<T: Transcript>(
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
keys: (G0, G1)
) {
generators.0.transcript(transcript);
generators.1.transcript(transcript);
transcript.domain_separate(b"points");
transcript.append_message(b"point_0", keys.0.to_bytes().as_ref());
transcript.append_message(b"point_1", keys.1.to_bytes().as_ref());
}
fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
rng: &mut R,
total: &mut F,
last: bool
) -> F {
let blinding_key = if last {
-*total
} else {
F::random(&mut *rng)
};
*total += blinding_key;
blinding_key
}
fn reconstruct_keys(&self) -> (G0, G1) {
let remainder = self.remainder
.as_ref()
.map(|bit| bit.commitments)
.unwrap_or((G0::identity(), G1::identity()));
(
self.bits.iter().map(|bit| bit.commitments.0).sum::<G0>() + remainder.0,
self.bits.iter().map(|bit| bit.commitments.1).sum::<G1>() + remainder.1
)
}
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::initialize_transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let mut bits = Vec::with_capacity(capacity);
let mut these_bits: u8 = 0;
for (i, bit) in raw_bits.iter().enumerate() {
if i > ((capacity / 2) * 2) {
break;
}
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
if (i % 2) == 0 {
these_bits = bit;
continue;
} else {
these_bits += bit << 1;
}
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(&mut *rng, transcript, generators, i / 2, &mut pow_2, these_bits, blinding_key)
);
}
let mut remainder = None;
if (capacity % 2) == 1 {
let blinding_key = blinding_key(&mut *rng, true);
remainder = Some(
Bits::prove(
&mut *rng,
transcript,
generators,
capacity / 2,
&mut pow_2,
these_bits,
blinding_key
)
);
}
let proof = DLEqProof { bits, remainder, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<T: Clone + Transcript>(
&self,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
if (self.bits.len() != (capacity / 2).try_into().unwrap()) || (
// This shouldn't be possible, as deserialize ensures this is present for fields with this
// characteristic, and proofs locally generated will have it. Regardless, best to ensure
self.remainder.is_none() && ((capacity % 2) == 1)
) {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::initialize_transcript(transcript, generators, keys);
if !(
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
self.poks.1.verify(transcript, generators.1.primary, keys.1)
) {
Err(DLEqError::InvalidProofOfKnowledge)?;
}
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(transcript, generators, i, &mut pow_2)?;
}
if let Some(bit) = &self.remainder {
bit.verify(transcript, generators, self.bits.len(), &mut pow_2)?;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
if let Some(bit) = &self.remainder {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<DLEqProof<G0, G1>> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
for _ in 0 .. (capacity / 2) {
bits.push(Bits::deserialize(r)?);
}
let mut remainder = None;
if (capacity % 2) == 1 {
remainder = Some(Bits::deserialize(r)?);
}
Ok(
DLEqProof {
bits,
remainder,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
}
}