mirror of
https://github.com/serai-dex/serai.git
synced 2024-12-22 19:49:22 +00:00
Implement variable-sized windows into multiexp
Closes https://github.com/serai-dex/serai/issues/17 by using the PrimeFieldBits API to do so. Should greatly speed up small batches, along with batches in the hundreds. Saves almost a full second on the cross-group DLEq proof.
This commit is contained in:
parent
5d115f1e1c
commit
7890827a48
15 changed files with 342 additions and 148 deletions
|
@ -10,10 +10,12 @@ edition = "2021"
|
|||
thiserror = "1"
|
||||
rand_core = "0.6"
|
||||
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
|
||||
|
||||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
|
||||
multiexp = { path = "../multiexp" }
|
||||
|
||||
[dev-dependencies]
|
||||
hex-literal = "0.3"
|
||||
|
|
|
@ -83,7 +83,8 @@ pub struct DLEqProof<G0: PrimeGroup, G1: PrimeGroup> {
|
|||
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
|
||||
}
|
||||
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1> {
|
||||
impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
|
||||
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
fn initialize_transcript<T: Transcript>(
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
|
@ -134,13 +135,17 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1> {
|
|||
}
|
||||
|
||||
// TODO: Use multiexp here after https://github.com/serai-dex/serai/issues/17
|
||||
fn reconstruct_key<G: PrimeGroup>(commitments: impl Iterator<Item = G>) -> G {
|
||||
fn reconstruct_key<G: PrimeGroup>(
|
||||
commitments: impl Iterator<Item = G>
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let mut pow_2 = G::Scalar::one();
|
||||
commitments.fold(G::identity(), |key, commitment| {
|
||||
let res = key + (commitment * pow_2);
|
||||
pow_2 = pow_2.double();
|
||||
res
|
||||
})
|
||||
multiexp::multiexp_vartime(
|
||||
&commitments.map(|commitment| {
|
||||
let res = (pow_2, commitment);
|
||||
pow_2 = pow_2.double();
|
||||
res
|
||||
}).collect::<Vec<_>>()
|
||||
)
|
||||
}
|
||||
|
||||
fn reconstruct_keys(&self) -> (G0, G1) {
|
||||
|
@ -169,10 +174,7 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1> {
|
|||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f: G0::Scalar
|
||||
) -> (
|
||||
Self,
|
||||
(G0::Scalar, G1::Scalar)
|
||||
) where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
// At least one bit will be dropped from either field element, making it irrelevant which one
|
||||
// we get a random element in
|
||||
let f = scalar_normalize::<_, G1::Scalar>(f);
|
||||
|
@ -262,7 +264,7 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1> {
|
|||
&self,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>)
|
||||
) -> Result<(G0, G1), DLEqError> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
||||
) -> Result<(G0, G1), DLEqError> {
|
||||
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
||||
if self.bits.len() != capacity.try_into().unwrap() {
|
||||
return Err(DLEqError::InvalidProofLength);
|
||||
|
|
|
@ -16,11 +16,12 @@ hex = "0.4"
|
|||
|
||||
sha2 = { version = "0.10", optional = true }
|
||||
|
||||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
elliptic-curve = { version = "0.12", features = ["hash2curve"], optional = true }
|
||||
p256 = { version = "0.11", features = ["arithmetic", "hash2curve"], optional = true }
|
||||
k256 = { version = "0.11", features = ["arithmetic", "hash2curve"], optional = true }
|
||||
p256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
|
||||
k256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
|
||||
dalek-ff-group = { path = "../dalek-ff-group", version = "0.1", optional = true }
|
||||
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
|
||||
|
|
|
@ -35,8 +35,6 @@ macro_rules! dalek_curve {
|
|||
const GENERATOR: Self::G = $POINT;
|
||||
const GENERATOR_TABLE: Self::T = &$TABLE;
|
||||
|
||||
const LITTLE_ENDIAN: bool = true;
|
||||
|
||||
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F {
|
||||
let mut seed = vec![0; 32];
|
||||
rng.fill_bytes(&mut seed);
|
||||
|
|
|
@ -29,8 +29,6 @@ macro_rules! kp_curve {
|
|||
const GENERATOR: Self::G = $lib::ProjectivePoint::GENERATOR;
|
||||
const GENERATOR_TABLE: Self::G = $lib::ProjectivePoint::GENERATOR;
|
||||
|
||||
const LITTLE_ENDIAN: bool = false;
|
||||
|
||||
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F {
|
||||
let mut seed = vec![0; 32];
|
||||
rng.fill_bytes(&mut seed);
|
||||
|
|
|
@ -4,7 +4,8 @@ use thiserror::Error;
|
|||
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use group::{ff::PrimeField, Group, GroupOps, prime::PrimeGroup};
|
||||
use ff::{PrimeField, PrimeFieldBits};
|
||||
use group::{Group, GroupOps, prime::PrimeGroup};
|
||||
|
||||
#[cfg(any(test, feature = "dalek"))]
|
||||
mod dalek;
|
||||
|
@ -40,7 +41,7 @@ pub enum CurveError {
|
|||
pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
|
||||
/// Scalar field element type
|
||||
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
|
||||
type F: PrimeField;
|
||||
type F: PrimeField + PrimeFieldBits;
|
||||
/// Group element type
|
||||
type G: Group<Scalar = Self::F> + GroupOps + PrimeGroup;
|
||||
/// Precomputed table type
|
||||
|
@ -57,9 +58,6 @@ pub trait Curve: Clone + Copy + PartialEq + Eq + Debug {
|
|||
/// If there isn't a precomputed table available, the generator itself should be used
|
||||
const GENERATOR_TABLE: Self::T;
|
||||
|
||||
/// If little endian is used for the scalar field's Repr
|
||||
const LITTLE_ENDIAN: bool;
|
||||
|
||||
/// Securely generate a random nonce. H4 from the IETF draft
|
||||
fn random_nonce<R: RngCore + CryptoRng>(secret: Self::F, rng: &mut R) -> Self::F;
|
||||
|
||||
|
|
|
@ -224,7 +224,7 @@ fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
|
|||
res
|
||||
};
|
||||
|
||||
let mut batch = BatchVerifier::new(shares.len(), C::LITTLE_ENDIAN);
|
||||
let mut batch = BatchVerifier::new(shares.len());
|
||||
for (l, share) in &shares {
|
||||
if *l == params.i() {
|
||||
continue;
|
||||
|
@ -254,7 +254,7 @@ fn complete_r2<R: RngCore + CryptoRng, C: Curve>(
|
|||
// Calculate each user's verification share
|
||||
let mut verification_shares = HashMap::new();
|
||||
for i in 1 ..= params.n() {
|
||||
verification_shares.insert(i, multiexp_vartime(&exponential(i, &stripes), C::LITTLE_ENDIAN));
|
||||
verification_shares.insert(i, multiexp_vartime(&exponential(i, &stripes)));
|
||||
}
|
||||
// Removing this check would enable optimizing the above from t + (n * t) to t + ((n - 1) * t)
|
||||
debug_assert_eq!(C::GENERATOR_TABLE * secret_share, verification_shares[¶ms.i()]);
|
||||
|
|
|
@ -46,7 +46,7 @@ pub(crate) fn batch_verify<C: Curve, R: RngCore + CryptoRng>(
|
|||
triplets: &[(u16, C::G, C::F, SchnorrSignature<C>)]
|
||||
) -> Result<(), u16> {
|
||||
let mut values = [(C::F::one(), C::GENERATOR); 3];
|
||||
let mut batch = BatchVerifier::new(triplets.len(), C::LITTLE_ENDIAN);
|
||||
let mut batch = BatchVerifier::new(triplets.len());
|
||||
for triple in triplets {
|
||||
// s = r + ca
|
||||
// sG == R + cA
|
||||
|
|
|
@ -21,7 +21,8 @@ pub fn test_curve<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
|||
// TODO: Test the Curve functions themselves
|
||||
|
||||
// Test successful multiexp, with enough pairs to trigger its variety of algorithms
|
||||
// TODO: This should probably be under multiexp
|
||||
// Multiexp has its own tests, yet only against k256 and Ed25519 (which should be sufficient
|
||||
// as-is to prove multiexp), and this doesn't hurt
|
||||
{
|
||||
let mut pairs = Vec::with_capacity(1000);
|
||||
let mut sum = C::G::identity();
|
||||
|
@ -30,8 +31,8 @@ pub fn test_curve<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
|
|||
pairs.push((C::F::random(&mut *rng), C::GENERATOR * C::F::random(&mut *rng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
assert_eq!(multiexp::multiexp(&pairs, C::LITTLE_ENDIAN), sum);
|
||||
assert_eq!(multiexp::multiexp_vartime(&pairs, C::LITTLE_ENDIAN), sum);
|
||||
assert_eq!(multiexp::multiexp(&pairs), sum);
|
||||
assert_eq!(multiexp::multiexp_vartime(&pairs), sum);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -9,9 +9,16 @@ keywords = ["multiexp", "ff", "group"]
|
|||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
ff = "0.12"
|
||||
group = "0.12"
|
||||
|
||||
rand_core = { version = "0.6", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
rand_core = "0.6"
|
||||
|
||||
k256 = { version = "0.11", features = ["bits"] }
|
||||
dalek-ff-group = { path = "../dalek-ff-group" }
|
||||
|
||||
[features]
|
||||
batch = ["rand_core"]
|
||||
|
|
|
@ -1,16 +1,17 @@
|
|||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use group::{ff::Field, Group};
|
||||
use ff::{Field, PrimeFieldBits};
|
||||
use group::Group;
|
||||
|
||||
use crate::{multiexp, multiexp_vartime};
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
pub struct BatchVerifier<Id: Copy, G: Group>(Vec<(Id, Vec<(G::Scalar, G)>)>, bool);
|
||||
pub struct BatchVerifier<Id: Copy, G: Group>(Vec<(Id, Vec<(G::Scalar, G)>)>);
|
||||
|
||||
#[cfg(feature = "batch")]
|
||||
impl<Id: Copy, G: Group> BatchVerifier<Id, G> {
|
||||
pub fn new(capacity: usize, endian: bool) -> BatchVerifier<Id, G> {
|
||||
BatchVerifier(Vec::with_capacity(capacity), endian)
|
||||
impl<Id: Copy, G: Group> BatchVerifier<Id, G> where <G as Group>::Scalar: PrimeFieldBits {
|
||||
pub fn new(capacity: usize) -> BatchVerifier<Id, G> {
|
||||
BatchVerifier(Vec::with_capacity(capacity))
|
||||
}
|
||||
|
||||
pub fn queue<
|
||||
|
@ -28,15 +29,13 @@ impl<Id: Copy, G: Group> BatchVerifier<Id, G> {
|
|||
|
||||
pub fn verify(&self) -> bool {
|
||||
multiexp(
|
||||
&self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>(),
|
||||
self.1
|
||||
&self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>()
|
||||
).is_identity().into()
|
||||
}
|
||||
|
||||
pub fn verify_vartime(&self) -> bool {
|
||||
multiexp_vartime(
|
||||
&self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>(),
|
||||
self.1
|
||||
&self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>()
|
||||
).is_identity().into()
|
||||
}
|
||||
|
||||
|
@ -46,8 +45,7 @@ impl<Id: Copy, G: Group> BatchVerifier<Id, G> {
|
|||
while slice.len() > 1 {
|
||||
let split = slice.len() / 2;
|
||||
if multiexp_vartime(
|
||||
&slice[.. split].iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>(),
|
||||
self.1
|
||||
&slice[.. split].iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>()
|
||||
).is_identity().into() {
|
||||
slice = &slice[split ..];
|
||||
} else {
|
||||
|
@ -56,7 +54,7 @@ impl<Id: Copy, G: Group> BatchVerifier<Id, G> {
|
|||
}
|
||||
|
||||
slice.get(0).filter(
|
||||
|(_, value)| !bool::from(multiexp_vartime(value, self.1).is_identity())
|
||||
|(_, value)| !bool::from(multiexp_vartime(value).is_identity())
|
||||
).map(|(id, _)| *id)
|
||||
}
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
use ff::PrimeFieldBits;
|
||||
use group::Group;
|
||||
|
||||
mod straus;
|
||||
|
@ -11,39 +12,151 @@ mod batch;
|
|||
#[cfg(feature = "batch")]
|
||||
pub use batch::BatchVerifier;
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
enum Algorithm {
|
||||
Straus,
|
||||
Pippenger
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub(crate) fn prep_bits<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> Vec<Vec<u8>> where G::Scalar: PrimeFieldBits {
|
||||
let w_usize = usize::from(window);
|
||||
|
||||
let mut groupings = vec![];
|
||||
for pair in pairs {
|
||||
let p = groupings.len();
|
||||
let bits = pair.0.to_le_bits();
|
||||
groupings.push(vec![0; (bits.len() + (w_usize - 1)) / w_usize]);
|
||||
|
||||
for (i, bit) in bits.into_iter().enumerate() {
|
||||
let bit = bit as u8;
|
||||
debug_assert_eq!(bit | 1, 1);
|
||||
groupings[p][i / w_usize] |= bit << (i % w_usize);
|
||||
}
|
||||
}
|
||||
|
||||
groupings
|
||||
}
|
||||
|
||||
fn algorithm(pairs: usize) -> Algorithm {
|
||||
// TODO: Replace this with an actual formula determining which will use less additions
|
||||
// Right now, Straus is used until 600, instead of the far more accurate 300, as Pippenger
|
||||
// operates per byte instead of per nibble, and therefore requires a much longer series to be
|
||||
// performant
|
||||
// Technically, 800 is dalek's number for when to use byte Pippenger, yet given Straus's own
|
||||
// implementation limitations...
|
||||
if pairs < 600 {
|
||||
Algorithm::Straus
|
||||
pub(crate) fn prep_tables<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> Vec<Vec<G>> {
|
||||
let mut tables = Vec::with_capacity(pairs.len());
|
||||
for pair in pairs {
|
||||
let p = tables.len();
|
||||
tables.push(vec![G::identity(); 2_usize.pow(window.into())]);
|
||||
let mut accum = G::identity();
|
||||
for i in 1 .. tables[p].len() {
|
||||
accum += pair.1;
|
||||
tables[p][i] = accum;
|
||||
}
|
||||
}
|
||||
tables
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
enum Algorithm {
|
||||
Straus(u8),
|
||||
Pippenger(u8)
|
||||
}
|
||||
|
||||
/*
|
||||
Release (with runs 20, so all of these are off by 20x):
|
||||
|
||||
k256
|
||||
Straus 3 is more efficient at 5 with 678µs per
|
||||
Straus 4 is more efficient at 10 with 530µs per
|
||||
Straus 5 is more efficient at 35 with 467µs per
|
||||
|
||||
Pippenger 5 is more efficient at 125 with 431µs per
|
||||
Pippenger 6 is more efficient at 275 with 349µs per
|
||||
Pippenger 7 is more efficient at 375 with 360µs per
|
||||
|
||||
dalek
|
||||
Straus 3 is more efficient at 5 with 519µs per
|
||||
Straus 4 is more efficient at 10 with 376µs per
|
||||
Straus 5 is more efficient at 170 with 330µs per
|
||||
|
||||
Pippenger 5 is more efficient at 125 with 305µs per
|
||||
Pippenger 6 is more efficient at 275 with 250µs per
|
||||
Pippenger 7 is more efficient at 450 with 205µs per
|
||||
Pippenger 8 is more efficient at 800 with 213µs per
|
||||
|
||||
Debug (with runs 5, so...):
|
||||
|
||||
k256
|
||||
Straus 3 is more efficient at 5 with 2532µs per
|
||||
Straus 4 is more efficient at 10 with 1930µs per
|
||||
Straus 5 is more efficient at 80 with 1632µs per
|
||||
|
||||
Pippenger 5 is more efficient at 150 with 1441µs per
|
||||
Pippenger 6 is more efficient at 300 with 1235µs per
|
||||
Pippenger 7 is more efficient at 475 with 1182µs per
|
||||
Pippenger 8 is more efficient at 625 with 1170µs per
|
||||
|
||||
dalek:
|
||||
Straus 3 is more efficient at 5 with 971µs per
|
||||
Straus 4 is more efficient at 10 with 782µs per
|
||||
Straus 5 is more efficient at 75 with 778µs per
|
||||
Straus 6 is more efficient at 165 with 867µs per
|
||||
|
||||
Pippenger 5 is more efficient at 125 with 677µs per
|
||||
Pippenger 6 is more efficient at 250 with 655µs per
|
||||
Pippenger 7 is more efficient at 475 with 500µs per
|
||||
Pippenger 8 is more efficient at 875 with 499µs per
|
||||
*/
|
||||
fn algorithm(len: usize) -> Algorithm {
|
||||
#[cfg(not(debug_assertions))]
|
||||
if len < 10 {
|
||||
// Straus 2 never showed a performance benefit, even with just 2 elements
|
||||
Algorithm::Straus(3)
|
||||
} else if len < 20 {
|
||||
Algorithm::Straus(4)
|
||||
} else if len < 50 {
|
||||
Algorithm::Straus(5)
|
||||
} else if len < 100 {
|
||||
Algorithm::Pippenger(4)
|
||||
} else if len < 125 {
|
||||
Algorithm::Pippenger(5)
|
||||
} else if len < 275 {
|
||||
Algorithm::Pippenger(6)
|
||||
} else if len < 400 {
|
||||
Algorithm::Pippenger(7)
|
||||
} else {
|
||||
Algorithm::Pippenger
|
||||
Algorithm::Pippenger(8)
|
||||
}
|
||||
|
||||
#[cfg(debug_assertions)]
|
||||
if len < 10 {
|
||||
Algorithm::Straus(3)
|
||||
} else if len < 80 {
|
||||
Algorithm::Straus(4)
|
||||
} else if len < 100 {
|
||||
Algorithm::Straus(5)
|
||||
} else if len < 125 {
|
||||
Algorithm::Pippenger(4)
|
||||
} else if len < 275 {
|
||||
Algorithm::Pippenger(5)
|
||||
} else if len < 475 {
|
||||
Algorithm::Pippenger(6)
|
||||
} else if len < 750 {
|
||||
Algorithm::Pippenger(7)
|
||||
} else {
|
||||
Algorithm::Pippenger(8)
|
||||
}
|
||||
}
|
||||
|
||||
// Performs a multiexp, automatically selecting the optimal algorithm based on amount of pairs
|
||||
// Takes in an iterator of scalars and points, with a boolean for if the scalars are little endian
|
||||
// encoded in their Reprs or not
|
||||
pub fn multiexp<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> G {
|
||||
pub fn multiexp<G: Group>(pairs: &[(G::Scalar, G)]) -> G where G::Scalar: PrimeFieldBits {
|
||||
match algorithm(pairs.len()) {
|
||||
Algorithm::Straus => straus(pairs, little),
|
||||
Algorithm::Pippenger => pippenger(pairs, little)
|
||||
Algorithm::Straus(window) => straus(pairs, window),
|
||||
Algorithm::Pippenger(window) => pippenger(pairs, window)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn multiexp_vartime<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> G {
|
||||
pub fn multiexp_vartime<G: Group>(pairs: &[(G::Scalar, G)]) -> G where G::Scalar: PrimeFieldBits {
|
||||
match algorithm(pairs.len()) {
|
||||
Algorithm::Straus => straus_vartime(pairs, little),
|
||||
Algorithm::Pippenger => pippenger_vartime(pairs, little)
|
||||
Algorithm::Straus(window) => straus_vartime(pairs, window),
|
||||
Algorithm::Pippenger(window) => pippenger_vartime(pairs, window)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,42 +1,23 @@
|
|||
use group::{ff::PrimeField, Group};
|
||||
use ff::PrimeFieldBits;
|
||||
use group::Group;
|
||||
|
||||
fn prep<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> (Vec<Vec<u8>>, Vec<G>) {
|
||||
let mut res = vec![];
|
||||
let mut points = vec![];
|
||||
for pair in pairs {
|
||||
let p = res.len();
|
||||
res.push(vec![]);
|
||||
{
|
||||
let mut repr = pair.0.to_repr();
|
||||
let bytes = repr.as_mut();
|
||||
if !little {
|
||||
bytes.reverse();
|
||||
}
|
||||
use crate::prep_bits;
|
||||
|
||||
res[p].resize(bytes.len(), 0);
|
||||
for i in 0 .. bytes.len() {
|
||||
res[p][i] = bytes[i];
|
||||
}
|
||||
}
|
||||
|
||||
points.push(pair.1);
|
||||
}
|
||||
|
||||
(res, points)
|
||||
}
|
||||
|
||||
pub(crate) fn pippenger<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> G {
|
||||
let (bytes, points) = prep(pairs, little);
|
||||
pub(crate) fn pippenger<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let bits = prep_bits(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for n in (0 .. bytes[0].len()).rev() {
|
||||
for _ in 0 .. 8 {
|
||||
for n in (0 .. bits[0].len()).rev() {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
|
||||
let mut buckets = [G::identity(); 256];
|
||||
for p in 0 .. bytes.len() {
|
||||
buckets[usize::from(bytes[p][n])] += points[p];
|
||||
let mut buckets = vec![G::identity(); 2_usize.pow(window.into())];
|
||||
for p in 0 .. bits.len() {
|
||||
buckets[usize::from(bits[p][n])] += pairs[p].1;
|
||||
}
|
||||
|
||||
let mut intermediate_sum = G::identity();
|
||||
|
@ -49,22 +30,25 @@ pub(crate) fn pippenger<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> G {
|
|||
res
|
||||
}
|
||||
|
||||
pub(crate) fn pippenger_vartime<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> G {
|
||||
let (bytes, points) = prep(pairs, little);
|
||||
pub(crate) fn pippenger_vartime<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let bits = prep_bits(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for n in (0 .. bytes[0].len()).rev() {
|
||||
if n != (bytes[0].len() - 1) {
|
||||
for _ in 0 .. 8 {
|
||||
for n in (0 .. bits[0].len()).rev() {
|
||||
if n != (bits[0].len() - 1) {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
}
|
||||
|
||||
let mut buckets = [G::identity(); 256];
|
||||
for p in 0 .. bytes.len() {
|
||||
let nibble = usize::from(bytes[p][n]);
|
||||
let mut buckets = vec![G::identity(); 2_usize.pow(window.into())];
|
||||
for p in 0 .. bits.len() {
|
||||
let nibble = usize::from(bits[p][n]);
|
||||
if nibble != 0 {
|
||||
buckets[nibble] += points[p];
|
||||
buckets[nibble] += pairs[p].1;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1,66 +1,46 @@
|
|||
use group::{ff::PrimeField, Group};
|
||||
use ff::PrimeFieldBits;
|
||||
use group::Group;
|
||||
|
||||
fn prep<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> (Vec<Vec<u8>>, Vec<[G; 16]>) {
|
||||
let mut nibbles = vec![];
|
||||
let mut tables = vec![];
|
||||
for pair in pairs {
|
||||
let p = nibbles.len();
|
||||
nibbles.push(vec![]);
|
||||
{
|
||||
let mut repr = pair.0.to_repr();
|
||||
let bytes = repr.as_mut();
|
||||
if !little {
|
||||
bytes.reverse();
|
||||
}
|
||||
use crate::{prep_bits, prep_tables};
|
||||
|
||||
nibbles[p].resize(bytes.len() * 2, 0);
|
||||
for i in 0 .. bytes.len() {
|
||||
nibbles[p][i * 2] = bytes[i] & 0b1111;
|
||||
nibbles[p][(i * 2) + 1] = (bytes[i] >> 4) & 0b1111;
|
||||
}
|
||||
}
|
||||
|
||||
tables.push([G::identity(); 16]);
|
||||
let mut accum = G::identity();
|
||||
for i in 1 .. 16 {
|
||||
accum += pair.1;
|
||||
tables[p][i] = accum;
|
||||
}
|
||||
}
|
||||
|
||||
(nibbles, tables)
|
||||
}
|
||||
|
||||
pub(crate) fn straus<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> G {
|
||||
let (nibbles, tables) = prep(pairs, little);
|
||||
pub(crate) fn straus<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let groupings = prep_bits(pairs, window);
|
||||
let tables = prep_tables(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for b in (0 .. nibbles[0].len()).rev() {
|
||||
for _ in 0 .. 4 {
|
||||
for b in (0 .. groupings[0].len()).rev() {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
|
||||
for s in 0 .. tables.len() {
|
||||
res += tables[s][usize::from(nibbles[s][b])];
|
||||
res += tables[s][usize::from(groupings[s][b])];
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
pub(crate) fn straus_vartime<G: Group>(pairs: &[(G::Scalar, G)], little: bool) -> G {
|
||||
let (nibbles, tables) = prep(pairs, little);
|
||||
pub(crate) fn straus_vartime<G: Group>(
|
||||
pairs: &[(G::Scalar, G)],
|
||||
window: u8
|
||||
) -> G where G::Scalar: PrimeFieldBits {
|
||||
let groupings = prep_bits(pairs, window);
|
||||
let tables = prep_tables(pairs, window);
|
||||
|
||||
let mut res = G::identity();
|
||||
for b in (0 .. nibbles[0].len()).rev() {
|
||||
if b != (nibbles[0].len() - 1) {
|
||||
for _ in 0 .. 4 {
|
||||
for b in (0 .. groupings[0].len()).rev() {
|
||||
if b != (groupings[0].len() - 1) {
|
||||
for _ in 0 .. window {
|
||||
res = res.double();
|
||||
}
|
||||
}
|
||||
|
||||
for s in 0 .. tables.len() {
|
||||
if nibbles[s][b] != 0 {
|
||||
res += tables[s][usize::from(nibbles[s][b])];
|
||||
if groupings[s][b] != 0 {
|
||||
res += tables[s][usize::from(groupings[s][b])];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
112
crypto/multiexp/src/tests/mod.rs
Normal file
112
crypto/multiexp/src/tests/mod.rs
Normal file
|
@ -0,0 +1,112 @@
|
|||
use std::time::Instant;
|
||||
|
||||
use rand_core::OsRng;
|
||||
|
||||
use ff::{Field, PrimeFieldBits};
|
||||
use group::Group;
|
||||
|
||||
use k256::ProjectivePoint;
|
||||
use dalek_ff_group::EdwardsPoint;
|
||||
|
||||
use crate::{straus, pippenger, multiexp, multiexp_vartime};
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn benchmark_internal<G: Group>(straus_bool: bool) where G::Scalar: PrimeFieldBits {
|
||||
let runs: usize = 20;
|
||||
|
||||
let mut start = 0;
|
||||
let mut increment: usize = 5;
|
||||
let mut total: usize = 250;
|
||||
let mut current = 2;
|
||||
|
||||
if !straus_bool {
|
||||
start = 100;
|
||||
increment = 25;
|
||||
total = 1000;
|
||||
current = 4;
|
||||
};
|
||||
|
||||
let mut pairs = Vec::with_capacity(total);
|
||||
let mut sum = G::identity();
|
||||
|
||||
for _ in 0 .. start {
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
|
||||
for _ in 0 .. (total / increment) {
|
||||
for _ in 0 .. increment {
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
|
||||
let now = Instant::now();
|
||||
for _ in 0 .. runs {
|
||||
if straus_bool {
|
||||
assert_eq!(straus(&pairs, current), sum);
|
||||
} else {
|
||||
assert_eq!(pippenger(&pairs, current), sum);
|
||||
}
|
||||
}
|
||||
let current_per = now.elapsed().as_micros() / u128::try_from(pairs.len()).unwrap();
|
||||
|
||||
let now = Instant::now();
|
||||
for _ in 0 .. runs {
|
||||
if straus_bool {
|
||||
assert_eq!(straus(&pairs, current + 1), sum);
|
||||
} else {
|
||||
assert_eq!(pippenger(&pairs, current + 1), sum);
|
||||
}
|
||||
}
|
||||
let next_per = now.elapsed().as_micros() / u128::try_from(pairs.len()).unwrap();
|
||||
|
||||
if next_per < current_per {
|
||||
current += 1;
|
||||
println!(
|
||||
"{} {} is more efficient at {} with {}µs per",
|
||||
if straus_bool { "Straus" } else { "Pippenger" }, current, pairs.len(), next_per
|
||||
);
|
||||
if current >= 8 {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_multiexp<G: Group>() where G::Scalar: PrimeFieldBits {
|
||||
let mut pairs = Vec::with_capacity(1000);
|
||||
let mut sum = G::identity();
|
||||
for _ in 0 .. 10 {
|
||||
for _ in 0 .. 100 {
|
||||
pairs.push((G::Scalar::random(&mut OsRng), G::generator() * G::Scalar::random(&mut OsRng)));
|
||||
sum += pairs[pairs.len() - 1].1 * pairs[pairs.len() - 1].0;
|
||||
}
|
||||
assert_eq!(multiexp(&pairs), sum);
|
||||
assert_eq!(multiexp_vartime(&pairs), sum);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_secp256k1() {
|
||||
test_multiexp::<ProjectivePoint>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ed25519() {
|
||||
test_multiexp::<EdwardsPoint>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn benchmark() {
|
||||
// Activate the processor's boost clock
|
||||
for _ in 0 .. 30 {
|
||||
test_multiexp::<ProjectivePoint>();
|
||||
}
|
||||
|
||||
benchmark_internal::<ProjectivePoint>(true);
|
||||
benchmark_internal::<ProjectivePoint>(false);
|
||||
|
||||
benchmark_internal::<EdwardsPoint>(true);
|
||||
benchmark_internal::<EdwardsPoint>(false);
|
||||
}
|
Loading…
Reference in a new issue