mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-22 02:34:55 +00:00
Rewrite the cross-group DLEq API to not allow proving for biased scalars
This commit is contained in:
parent
7e058f1c08
commit
2e35854215
3 changed files with 115 additions and 32 deletions
|
@ -10,6 +10,8 @@ edition = "2021"
|
|||
thiserror = "1"
|
||||
rand_core = "0.6"
|
||||
|
||||
digest = "0.10"
|
||||
|
||||
subtle = "2.4"
|
||||
|
||||
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.1" }
|
||||
|
@ -21,6 +23,9 @@ multiexp = { path = "../multiexp" }
|
|||
|
||||
[dev-dependencies]
|
||||
hex-literal = "0.3"
|
||||
|
||||
blake2 = "0.10"
|
||||
|
||||
k256 = { version = "0.11", features = ["arithmetic", "bits"] }
|
||||
dalek-ff-group = { path = "../dalek-ff-group" }
|
||||
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
use thiserror::Error;
|
||||
use rand_core::{RngCore, CryptoRng};
|
||||
|
||||
use digest::Digest;
|
||||
|
||||
use subtle::{Choice, ConditionallySelectable};
|
||||
|
||||
use transcript::Transcript;
|
||||
|
@ -182,21 +184,12 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
|
|||
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the provided Scalar.
|
||||
/// Since DLEq is proven for the same Scalar in both fields, and the provided Scalar may not be
|
||||
/// valid in the other Scalar field, the Scalar is normalized as needed and the normalized forms
|
||||
/// are returned. These are the actually equal discrete logarithms. The passed in Scalar is
|
||||
/// solely to enable various forms of Scalar generation, such as deterministic schemes
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f: G0::Scalar
|
||||
f: (G0::Scalar, G1::Scalar)
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
// At least one bit will be dropped from either field element, making it irrelevant which one
|
||||
// we get a random element in
|
||||
let f = scalar_normalize::<_, G1::Scalar>(f);
|
||||
|
||||
Self::initialize_transcript(
|
||||
transcript,
|
||||
generators,
|
||||
|
@ -270,6 +263,39 @@ impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
|
|||
(proof, f)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
|
||||
/// the output of the passed in Digest. Given the non-standard requirements to achieve
|
||||
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
|
||||
/// to safely and securely generate a Scalar, without risk of failure, nor bias
|
||||
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
|
||||
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
|
||||
/// the relationship between keys would allow breaking all swaps after just one
|
||||
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
digest: D
|
||||
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
||||
Self::prove_internal(
|
||||
rng,
|
||||
transcript,
|
||||
generators,
|
||||
Self::mutual_scalar_from_bytes(digest.finalize().as_ref())
|
||||
)
|
||||
}
|
||||
|
||||
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
|
||||
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
|
||||
/// scalars until they're safely usable, as needed
|
||||
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
||||
rng: &mut R,
|
||||
transcript: &mut T,
|
||||
generators: (Generators<G0>, Generators<G1>),
|
||||
f0: G0::Scalar
|
||||
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
|
||||
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
|
||||
}
|
||||
|
||||
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
|
||||
pub fn verify<T: Clone + Transcript>(
|
||||
&self,
|
||||
|
|
|
@ -2,23 +2,26 @@ mod scalar;
|
|||
mod schnorr;
|
||||
|
||||
use hex_literal::hex;
|
||||
use rand_core::OsRng;
|
||||
use rand_core::{RngCore, OsRng};
|
||||
|
||||
use ff::Field;
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{Group, GroupEncoding};
|
||||
|
||||
use k256::{Scalar, ProjectivePoint};
|
||||
use dalek_ff_group::{EdwardsPoint, CompressedEdwardsY};
|
||||
use dalek_ff_group::{self as dfg, EdwardsPoint, CompressedEdwardsY};
|
||||
|
||||
use blake2::{Digest, Blake2b512};
|
||||
|
||||
use transcript::RecommendedTranscript;
|
||||
|
||||
use crate::{Generators, cross_group::DLEqProof};
|
||||
|
||||
#[test]
|
||||
fn test_dleq() {
|
||||
let transcript = || RecommendedTranscript::new(b"Cross-Group DLEq Proof Test");
|
||||
fn transcript() -> RecommendedTranscript {
|
||||
RecommendedTranscript::new(b"Cross-Group DLEq Proof Test")
|
||||
}
|
||||
|
||||
let generators = (
|
||||
fn generators() -> (Generators<ProjectivePoint>, Generators<EdwardsPoint>) {
|
||||
(
|
||||
Generators::new(
|
||||
ProjectivePoint::GENERATOR,
|
||||
ProjectivePoint::from_bytes(
|
||||
|
@ -32,23 +35,72 @@ fn test_dleq() {
|
|||
hex!("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94")
|
||||
).decompress().unwrap()
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_rejection_sampling() {
|
||||
let mut pow_2 = Scalar::one();
|
||||
for _ in 0 .. dfg::Scalar::CAPACITY {
|
||||
pow_2 = pow_2.double();
|
||||
}
|
||||
|
||||
assert!(
|
||||
DLEqProof::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut RecommendedTranscript::new(b""),
|
||||
generators(),
|
||||
pow_2
|
||||
).is_none()
|
||||
);
|
||||
}
|
||||
|
||||
let key = Scalar::random(&mut OsRng);
|
||||
let (proof, keys) = DLEqProof::prove(&mut OsRng, &mut transcript(), generators, key);
|
||||
#[test]
|
||||
fn test_dleq() {
|
||||
let generators = generators();
|
||||
|
||||
let public_keys = proof.verify(&mut transcript(), generators).unwrap();
|
||||
assert_eq!(generators.0.primary * keys.0, public_keys.0);
|
||||
assert_eq!(generators.1.primary * keys.1, public_keys.1);
|
||||
for i in 0 .. 2 {
|
||||
let (proof, keys) = if i == 0 {
|
||||
let mut seed = [0; 32];
|
||||
OsRng.fill_bytes(&mut seed);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = DLEqProof::<ProjectivePoint, EdwardsPoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut transcript(), generators).unwrap();
|
||||
DLEqProof::prove(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
Blake2b512::new().chain_update(seed)
|
||||
)
|
||||
} else {
|
||||
let mut key;
|
||||
let mut res;
|
||||
while {
|
||||
key = Scalar::random(&mut OsRng);
|
||||
res = DLEqProof::prove_without_bias(
|
||||
&mut OsRng,
|
||||
&mut transcript(),
|
||||
generators,
|
||||
key
|
||||
);
|
||||
res.is_none()
|
||||
} {}
|
||||
let res = res.unwrap();
|
||||
assert_eq!(key, res.1.0);
|
||||
res
|
||||
};
|
||||
|
||||
let public_keys = proof.verify(&mut transcript(), generators).unwrap();
|
||||
assert_eq!(generators.0.primary * keys.0, public_keys.0);
|
||||
assert_eq!(generators.1.primary * keys.1, public_keys.1);
|
||||
|
||||
#[cfg(feature = "serialize")]
|
||||
{
|
||||
let mut buf = vec![];
|
||||
proof.serialize(&mut buf).unwrap();
|
||||
let deserialized = DLEqProof::<ProjectivePoint, EdwardsPoint>::deserialize(
|
||||
&mut std::io::Cursor::new(&buf)
|
||||
).unwrap();
|
||||
assert_eq!(proof, deserialized);
|
||||
deserialized.verify(&mut transcript(), generators).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue