2022-06-30 09:42:29 +00:00
|
|
|
use thiserror::Error;
|
|
|
|
use rand_core::{RngCore, CryptoRng};
|
|
|
|
|
2022-07-01 19:27:16 +00:00
|
|
|
use subtle::{Choice, ConditionallySelectable};
|
|
|
|
|
2022-06-30 09:42:29 +00:00
|
|
|
use transcript::Transcript;
|
|
|
|
|
|
|
|
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
|
|
|
|
|
2022-07-02 06:45:26 +00:00
|
|
|
use crate::Generators;
|
2022-06-30 09:42:29 +00:00
|
|
|
|
|
|
|
pub mod scalar;
|
2022-06-30 15:23:13 +00:00
|
|
|
use scalar::{scalar_normalize, scalar_convert};
|
2022-06-30 09:42:29 +00:00
|
|
|
|
|
|
|
pub(crate) mod schnorr;
|
|
|
|
use schnorr::SchnorrPoK;
|
|
|
|
|
|
|
|
#[cfg(feature = "serialize")]
|
|
|
|
use std::io::{Read, Write};
|
|
|
|
#[cfg(feature = "serialize")]
|
|
|
|
use crate::read_scalar;
|
|
|
|
|
|
|
|
#[cfg(feature = "serialize")]
|
|
|
|
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
|
|
|
|
let mut repr = G::Repr::default();
|
|
|
|
r.read_exact(repr.as_mut())?;
|
|
|
|
let point = G::from_bytes(&repr);
|
|
|
|
if point.is_none().into() {
|
|
|
|
Err(std::io::Error::new(std::io::ErrorKind::Other, "invalid point"))?;
|
|
|
|
}
|
|
|
|
Ok(point.unwrap())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
|
|
pub struct Bit<G0: PrimeGroup, G1: PrimeGroup> {
|
|
|
|
commitments: (G0, G1),
|
2022-07-02 06:45:26 +00:00
|
|
|
// Merged challenges have a slight security reduction, yet one already applied to the scalar
|
|
|
|
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
|
|
|
|
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
|
|
|
|
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
|
|
|
|
// Secp256k1/Ed25519
|
2022-06-30 15:23:13 +00:00
|
|
|
e: G0::Scalar,
|
2022-06-30 09:42:29 +00:00
|
|
|
s: [(G0::Scalar, G1::Scalar); 2]
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<G0: PrimeGroup, G1: PrimeGroup> Bit<G0, G1> {
|
|
|
|
#[cfg(feature = "serialize")]
|
|
|
|
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
|
|
|
w.write_all(self.commitments.0.to_bytes().as_ref())?;
|
|
|
|
w.write_all(self.commitments.1.to_bytes().as_ref())?;
|
2022-06-30 15:23:13 +00:00
|
|
|
w.write_all(self.e.to_repr().as_ref())?;
|
2022-06-30 09:42:29 +00:00
|
|
|
for i in 0 .. 2 {
|
|
|
|
w.write_all(self.s[i].0.to_repr().as_ref())?;
|
|
|
|
w.write_all(self.s[i].1.to_repr().as_ref())?;
|
|
|
|
}
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "serialize")]
|
|
|
|
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Bit<G0, G1>> {
|
|
|
|
Ok(
|
|
|
|
Bit {
|
|
|
|
commitments: (read_point(r)?, read_point(r)?),
|
2022-06-30 15:23:13 +00:00
|
|
|
e: read_scalar(r)?,
|
2022-06-30 09:42:29 +00:00
|
|
|
s: [
|
|
|
|
(read_scalar(r)?, read_scalar(r)?),
|
|
|
|
(read_scalar(r)?, read_scalar(r)?)
|
|
|
|
]
|
|
|
|
}
|
|
|
|
)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Error, PartialEq, Eq, Debug)]
|
|
|
|
pub enum DLEqError {
|
|
|
|
#[error("invalid proof of knowledge")]
|
|
|
|
InvalidProofOfKnowledge,
|
|
|
|
#[error("invalid proof length")]
|
|
|
|
InvalidProofLength,
|
2022-06-30 15:23:13 +00:00
|
|
|
#[error("invalid challenge")]
|
|
|
|
InvalidChallenge,
|
2022-06-30 09:42:29 +00:00
|
|
|
#[error("invalid proof")]
|
|
|
|
InvalidProof
|
|
|
|
}
|
|
|
|
|
|
|
|
// Debug would be such a dump of data this likely isn't helpful, but at least it's available to
|
|
|
|
// anyone who wants it
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
|
|
pub struct DLEqProof<G0: PrimeGroup, G1: PrimeGroup> {
|
|
|
|
bits: Vec<Bit<G0, G1>>,
|
|
|
|
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
|
|
|
|
}
|
|
|
|
|
2022-06-30 13:30:24 +00:00
|
|
|
impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
|
|
|
|
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
|
2022-06-30 09:42:29 +00:00
|
|
|
fn initialize_transcript<T: Transcript>(
|
|
|
|
transcript: &mut T,
|
|
|
|
generators: (Generators<G0>, Generators<G1>),
|
|
|
|
keys: (G0, G1)
|
|
|
|
) {
|
|
|
|
generators.0.transcript(transcript);
|
|
|
|
generators.1.transcript(transcript);
|
|
|
|
transcript.domain_separate(b"points");
|
|
|
|
transcript.append_message(b"point_0", keys.0.to_bytes().as_ref());
|
|
|
|
transcript.append_message(b"point_1", keys.1.to_bytes().as_ref());
|
|
|
|
}
|
|
|
|
|
|
|
|
fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
|
|
|
|
rng: &mut R,
|
|
|
|
total: &mut F,
|
|
|
|
pow_2: &mut F,
|
|
|
|
last: bool
|
|
|
|
) -> F {
|
|
|
|
let blinding_key = if last {
|
|
|
|
-*total * pow_2.invert().unwrap()
|
|
|
|
} else {
|
|
|
|
F::random(&mut *rng)
|
|
|
|
};
|
|
|
|
*total += blinding_key * *pow_2;
|
|
|
|
*pow_2 = pow_2.double();
|
|
|
|
blinding_key
|
|
|
|
}
|
|
|
|
|
2022-07-02 06:45:26 +00:00
|
|
|
fn mutual_scalar_from_bytes(bytes: &[u8]) -> (G0::Scalar, G1::Scalar) {
|
|
|
|
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
|
|
|
|
debug_assert!((bytes.len() * 8) >= capacity);
|
|
|
|
|
|
|
|
let mut accum = G0::Scalar::zero();
|
|
|
|
for b in 0 .. capacity {
|
|
|
|
accum += G0::Scalar::from((bytes[b / 8] & (1 << (b % 8))).into());
|
|
|
|
}
|
|
|
|
(accum, scalar_convert(accum).unwrap())
|
|
|
|
}
|
|
|
|
|
2022-06-30 09:42:29 +00:00
|
|
|
#[allow(non_snake_case)]
|
|
|
|
fn nonces<T: Transcript>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) {
|
|
|
|
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
|
|
|
|
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
|
2022-07-02 06:45:26 +00:00
|
|
|
Self::mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
|
2022-06-30 09:42:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[allow(non_snake_case)]
|
|
|
|
fn R_nonces<T: Transcript>(
|
|
|
|
transcript: T,
|
|
|
|
generators: (Generators<G0>, Generators<G1>),
|
|
|
|
s: (G0::Scalar, G1::Scalar),
|
|
|
|
A: (G0, G1),
|
|
|
|
e: (G0::Scalar, G1::Scalar)
|
|
|
|
) -> (G0::Scalar, G1::Scalar) {
|
|
|
|
Self::nonces(
|
|
|
|
transcript,
|
|
|
|
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
2022-06-30 13:30:24 +00:00
|
|
|
fn reconstruct_key<G: PrimeGroup>(
|
|
|
|
commitments: impl Iterator<Item = G>
|
|
|
|
) -> G where G::Scalar: PrimeFieldBits {
|
2022-06-30 09:42:29 +00:00
|
|
|
let mut pow_2 = G::Scalar::one();
|
2022-06-30 13:30:24 +00:00
|
|
|
multiexp::multiexp_vartime(
|
|
|
|
&commitments.map(|commitment| {
|
|
|
|
let res = (pow_2, commitment);
|
|
|
|
pow_2 = pow_2.double();
|
|
|
|
res
|
|
|
|
}).collect::<Vec<_>>()
|
|
|
|
)
|
2022-06-30 09:42:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fn reconstruct_keys(&self) -> (G0, G1) {
|
|
|
|
(
|
|
|
|
Self::reconstruct_key(self.bits.iter().map(|bit| bit.commitments.0)),
|
|
|
|
Self::reconstruct_key(self.bits.iter().map(|bit| bit.commitments.1))
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn transcript_bit<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
|
|
|
|
if i == 0 {
|
|
|
|
transcript.domain_separate(b"cross_group_dleq");
|
|
|
|
}
|
|
|
|
transcript.append_message(b"bit", &u16::try_from(i).unwrap().to_le_bytes());
|
|
|
|
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
|
|
|
|
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Prove the cross-Group Discrete Log Equality for the points derived from the provided Scalar.
|
|
|
|
/// Since DLEq is proven for the same Scalar in both fields, and the provided Scalar may not be
|
|
|
|
/// valid in the other Scalar field, the Scalar is normalized as needed and the normalized forms
|
|
|
|
/// are returned. These are the actually equal discrete logarithms. The passed in Scalar is
|
|
|
|
/// solely to enable various forms of Scalar generation, such as deterministic schemes
|
|
|
|
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript>(
|
|
|
|
rng: &mut R,
|
|
|
|
transcript: &mut T,
|
|
|
|
generators: (Generators<G0>, Generators<G1>),
|
|
|
|
f: G0::Scalar
|
2022-06-30 13:30:24 +00:00
|
|
|
) -> (Self, (G0::Scalar, G1::Scalar)) {
|
2022-06-30 09:42:29 +00:00
|
|
|
// At least one bit will be dropped from either field element, making it irrelevant which one
|
|
|
|
// we get a random element in
|
|
|
|
let f = scalar_normalize::<_, G1::Scalar>(f);
|
|
|
|
|
|
|
|
Self::initialize_transcript(
|
|
|
|
transcript,
|
|
|
|
generators,
|
|
|
|
((generators.0.primary * f.0), (generators.1.primary * f.1))
|
|
|
|
);
|
|
|
|
|
|
|
|
let poks = (
|
|
|
|
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
|
|
|
|
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
|
|
|
|
);
|
|
|
|
|
|
|
|
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
|
|
|
|
let mut pow_2 = (G0::Scalar::one(), G1::Scalar::one());
|
|
|
|
|
|
|
|
let raw_bits = f.0.to_le_bits();
|
|
|
|
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
|
|
|
|
let mut bits = Vec::with_capacity(capacity);
|
|
|
|
for (i, bit) in raw_bits.iter().enumerate() {
|
2022-07-01 19:27:16 +00:00
|
|
|
let bit = *bit as u8;
|
|
|
|
debug_assert_eq!(bit | 1, 1);
|
|
|
|
|
2022-06-30 09:42:29 +00:00
|
|
|
let last = i == (capacity - 1);
|
|
|
|
let blinding_key = (
|
|
|
|
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, &mut pow_2.0, last),
|
|
|
|
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, &mut pow_2.1, last)
|
|
|
|
);
|
|
|
|
if last {
|
|
|
|
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
|
|
|
|
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut commitments = (
|
|
|
|
(generators.0.alt * blinding_key.0),
|
|
|
|
(generators.1.alt * blinding_key.1)
|
|
|
|
);
|
2022-07-01 19:27:16 +00:00
|
|
|
commitments.0 += generators.0.primary * G0::Scalar::from(bit.into());
|
|
|
|
commitments.1 += generators.1.primary * G1::Scalar::from(bit.into());
|
2022-06-30 09:42:29 +00:00
|
|
|
Self::transcript_bit(transcript, i, commitments);
|
|
|
|
|
|
|
|
let nonces = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
|
|
|
let e_0 = Self::nonces(
|
|
|
|
transcript.clone(),
|
|
|
|
((generators.0.alt * nonces.0), (generators.1.alt * nonces.1))
|
|
|
|
);
|
2022-07-01 19:27:16 +00:00
|
|
|
let mut s_0 = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
|
2022-06-30 09:42:29 +00:00
|
|
|
|
2022-07-01 19:27:16 +00:00
|
|
|
let mut to_sign = commitments;
|
|
|
|
let bit = Choice::from(bit);
|
|
|
|
let inv_bit = (!bit).unwrap_u8();
|
|
|
|
to_sign.0 -= generators.0.primary * G0::Scalar::from(inv_bit.into());
|
|
|
|
to_sign.1 -= generators.1.primary * G1::Scalar::from(inv_bit.into());
|
|
|
|
let e_1 = Self::R_nonces(transcript.clone(), generators, (s_0.0, s_0.1), to_sign, e_0);
|
|
|
|
let mut s_1 = (nonces.0 + (e_1.0 * blinding_key.0), nonces.1 + (e_1.1 * blinding_key.1));
|
|
|
|
|
|
|
|
let e = G0::Scalar::conditional_select(&e_1.0, &e_0.0, bit);
|
|
|
|
G0::Scalar::conditional_swap(&mut s_1.0, &mut s_0.0, bit);
|
|
|
|
G1::Scalar::conditional_swap(&mut s_1.1, &mut s_0.1, bit);
|
|
|
|
bits.push(Bit { commitments, e, s: [s_0, s_1] });
|
2022-06-30 09:42:29 +00:00
|
|
|
|
2022-07-01 19:27:16 +00:00
|
|
|
// Break in order to not generate commitments for unused bits
|
2022-06-30 09:42:29 +00:00
|
|
|
if last {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let proof = DLEqProof { bits, poks };
|
|
|
|
debug_assert_eq!(
|
|
|
|
proof.reconstruct_keys(),
|
|
|
|
(generators.0.primary * f.0, generators.1.primary * f.1)
|
|
|
|
);
|
|
|
|
(proof, f)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
|
|
|
|
pub fn verify<T: Clone + Transcript>(
|
|
|
|
&self,
|
|
|
|
transcript: &mut T,
|
|
|
|
generators: (Generators<G0>, Generators<G1>)
|
2022-06-30 13:30:24 +00:00
|
|
|
) -> Result<(G0, G1), DLEqError> {
|
2022-06-30 09:42:29 +00:00
|
|
|
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
|
|
|
if self.bits.len() != capacity.try_into().unwrap() {
|
|
|
|
return Err(DLEqError::InvalidProofLength);
|
|
|
|
}
|
|
|
|
|
|
|
|
let keys = self.reconstruct_keys();
|
|
|
|
Self::initialize_transcript(transcript, generators, keys);
|
|
|
|
if !(
|
|
|
|
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
|
|
|
|
self.poks.1.verify(transcript, generators.1.primary, keys.1)
|
|
|
|
) {
|
|
|
|
Err(DLEqError::InvalidProofOfKnowledge)?;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i, bit) in self.bits.iter().enumerate() {
|
|
|
|
Self::transcript_bit(transcript, i, bit.commitments);
|
|
|
|
|
2022-06-30 15:23:13 +00:00
|
|
|
let bit_e = (bit.e, scalar_convert(bit.e).ok_or(DLEqError::InvalidChallenge)?);
|
|
|
|
if bit_e != Self::R_nonces(
|
2022-06-30 09:42:29 +00:00
|
|
|
transcript.clone(),
|
|
|
|
generators,
|
|
|
|
bit.s[0],
|
|
|
|
(
|
|
|
|
bit.commitments.0 - generators.0.primary,
|
|
|
|
bit.commitments.1 - generators.1.primary
|
|
|
|
),
|
|
|
|
Self::R_nonces(
|
|
|
|
transcript.clone(),
|
|
|
|
generators,
|
|
|
|
bit.s[1],
|
|
|
|
bit.commitments,
|
2022-06-30 15:23:13 +00:00
|
|
|
bit_e
|
2022-06-30 09:42:29 +00:00
|
|
|
)
|
|
|
|
) {
|
|
|
|
return Err(DLEqError::InvalidProof);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(keys)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "serialize")]
|
|
|
|
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
|
|
|
|
for bit in &self.bits {
|
|
|
|
bit.serialize(w)?;
|
|
|
|
}
|
|
|
|
self.poks.0.serialize(w)?;
|
|
|
|
self.poks.1.serialize(w)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "serialize")]
|
|
|
|
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<DLEqProof<G0, G1>> {
|
|
|
|
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
|
|
|
|
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
|
|
|
|
for _ in 0 .. capacity {
|
|
|
|
bits.push(Bit::deserialize(r)?);
|
|
|
|
}
|
|
|
|
Ok(DLEqProof { bits, poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?) })
|
|
|
|
}
|
|
|
|
}
|