serai/crypto/dleq/src/cross_group/mod.rs

375 lines
12 KiB
Rust
Raw Normal View History

use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use subtle::{Choice, ConditionallySelectable};
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use crate::Generators;
pub mod scalar;
use scalar::scalar_convert;
pub(crate) mod schnorr;
use schnorr::SchnorrPoK;
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
use crate::read_scalar;
#[cfg(feature = "serialize")]
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
let mut repr = G::Repr::default();
r.read_exact(repr.as_mut())?;
let point = G::from_bytes(&repr);
if point.is_none().into() {
Err(std::io::Error::new(std::io::ErrorKind::Other, "invalid point"))?;
}
Ok(point.unwrap())
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Bit<G0: PrimeGroup, G1: PrimeGroup> {
commitments: (G0, G1),
// Merged challenges have a slight security reduction, yet one already applied to the scalar
// being proven for, and this saves ~8kb. Alternatively, challenges could be redefined as a seed,
// present here, which is then hashed for each of the two challenges, remaining unbiased/unique
// while maintaining the bandwidth savings, yet also while adding 252 hashes for
// Secp256k1/Ed25519
e: G0::Scalar,
s: [(G0::Scalar, G1::Scalar); 2]
}
impl<G0: PrimeGroup, G1: PrimeGroup> Bit<G0, G1> {
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
w.write_all(self.commitments.0.to_bytes().as_ref())?;
w.write_all(self.commitments.1.to_bytes().as_ref())?;
w.write_all(self.e.to_repr().as_ref())?;
for i in 0 .. 2 {
w.write_all(self.s[i].0.to_repr().as_ref())?;
w.write_all(self.s[i].1.to_repr().as_ref())?;
}
Ok(())
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Bit<G0, G1>> {
Ok(
Bit {
commitments: (read_point(r)?, read_point(r)?),
e: read_scalar(r)?,
s: [
(read_scalar(r)?, read_scalar(r)?),
(read_scalar(r)?, read_scalar(r)?)
]
}
)
}
}
#[derive(Error, PartialEq, Eq, Debug)]
pub enum DLEqError {
#[error("invalid proof of knowledge")]
InvalidProofOfKnowledge,
#[error("invalid proof length")]
InvalidProofLength,
#[error("invalid challenge")]
InvalidChallenge,
#[error("invalid proof")]
InvalidProof
}
// Debug would be such a dump of data this likely isn't helpful, but at least it's available to
// anyone who wants it
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct DLEqProof<G0: PrimeGroup, G1: PrimeGroup> {
bits: Vec<Bit<G0, G1>>,
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
}
impl<G0: PrimeGroup, G1: PrimeGroup> DLEqProof<G0, G1>
where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
fn initialize_transcript<T: Transcript>(
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
keys: (G0, G1)
) {
generators.0.transcript(transcript);
generators.1.transcript(transcript);
transcript.domain_separate(b"points");
transcript.append_message(b"point_0", keys.0.to_bytes().as_ref());
transcript.append_message(b"point_1", keys.1.to_bytes().as_ref());
}
fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
rng: &mut R,
total: &mut F,
pow_2: &mut F,
last: bool
) -> F {
let blinding_key = if last {
-*total * pow_2.invert().unwrap()
} else {
F::random(&mut *rng)
};
*total += blinding_key * *pow_2;
*pow_2 = pow_2.double();
blinding_key
}
fn mutual_scalar_from_bytes(bytes: &[u8]) -> (G0::Scalar, G1::Scalar) {
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
debug_assert!((bytes.len() * 8) >= capacity);
let mut accum = G0::Scalar::zero();
for b in 0 .. capacity {
accum += G0::Scalar::from((bytes[b / 8] & (1 << (b % 8))).into());
}
(accum, scalar_convert(accum).unwrap())
}
#[allow(non_snake_case)]
fn nonces<T: Transcript>(mut transcript: T, nonces: (G0, G1)) -> (G0::Scalar, G1::Scalar) {
transcript.append_message(b"nonce_0", nonces.0.to_bytes().as_ref());
transcript.append_message(b"nonce_1", nonces.1.to_bytes().as_ref());
Self::mutual_scalar_from_bytes(transcript.challenge(b"challenge").as_ref())
}
#[allow(non_snake_case)]
fn R_nonces<T: Transcript>(
transcript: T,
generators: (Generators<G0>, Generators<G1>),
s: (G0::Scalar, G1::Scalar),
A: (G0, G1),
e: (G0::Scalar, G1::Scalar)
) -> (G0::Scalar, G1::Scalar) {
Self::nonces(
transcript,
(((generators.0.alt * s.0) - (A.0 * e.0)), ((generators.1.alt * s.1) - (A.1 * e.1)))
)
}
fn reconstruct_key<G: PrimeGroup>(
commitments: impl Iterator<Item = G>
) -> G where G::Scalar: PrimeFieldBits {
let mut pow_2 = G::Scalar::one();
#[cfg(feature = "multiexp")]
let res = multiexp::multiexp_vartime(
&commitments.map(|commitment| {
let res = (pow_2, commitment);
pow_2 = pow_2.double();
res
}).collect::<Vec<_>>()
);
#[cfg(not(feature = "multiexp"))]
let res = commitments.fold(G::identity(), |key, commitment| {
let res = key + (commitment * pow_2);
pow_2 = pow_2.double();
res
});
res
}
fn reconstruct_keys(&self) -> (G0, G1) {
(
Self::reconstruct_key(self.bits.iter().map(|bit| bit.commitments.0)),
Self::reconstruct_key(self.bits.iter().map(|bit| bit.commitments.1))
)
}
fn transcript_bit<T: Transcript>(transcript: &mut T, i: usize, commitments: (G0, G1)) {
if i == 0 {
transcript.domain_separate(b"cross_group_dleq");
}
transcript.append_message(b"bit", &u16::try_from(i).unwrap().to_le_bytes());
transcript.append_message(b"commitment_0", commitments.0.to_bytes().as_ref());
transcript.append_message(b"commitment_1", commitments.1.to_bytes().as_ref());
}
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::initialize_transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut pow_2 = (G0::Scalar::one(), G1::Scalar::one());
let raw_bits = f.0.to_le_bits();
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let mut bits = Vec::with_capacity(capacity);
for (i, bit) in raw_bits.iter().enumerate() {
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
let last = i == (capacity - 1);
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, &mut pow_2.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, &mut pow_2.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
let mut commitments = (
(generators.0.alt * blinding_key.0),
(generators.1.alt * blinding_key.1)
);
commitments.0 += generators.0.primary * G0::Scalar::from(bit.into());
commitments.1 += generators.1.primary * G1::Scalar::from(bit.into());
Self::transcript_bit(transcript, i, commitments);
let nonces = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
let e_0 = Self::nonces(
transcript.clone(),
((generators.0.alt * nonces.0), (generators.1.alt * nonces.1))
);
let mut s_0 = (G0::Scalar::random(&mut *rng), G1::Scalar::random(&mut *rng));
let mut to_sign = commitments;
let bit = Choice::from(bit);
let inv_bit = (!bit).unwrap_u8();
to_sign.0 -= generators.0.primary * G0::Scalar::from(inv_bit.into());
to_sign.1 -= generators.1.primary * G1::Scalar::from(inv_bit.into());
let e_1 = Self::R_nonces(transcript.clone(), generators, (s_0.0, s_0.1), to_sign, e_0);
let mut s_1 = (nonces.0 + (e_1.0 * blinding_key.0), nonces.1 + (e_1.1 * blinding_key.1));
let e = G0::Scalar::conditional_select(&e_1.0, &e_0.0, bit);
G0::Scalar::conditional_swap(&mut s_1.0, &mut s_0.0, bit);
G1::Scalar::conditional_swap(&mut s_1.1, &mut s_0.1, bit);
bits.push(Bit { commitments, e, s: [s_0, s_1] });
// Break in order to not generate commitments for unused bits
if last {
break;
}
}
let proof = DLEqProof { bits, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
Self::mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<T: Clone + Transcript>(
&self,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
if self.bits.len() != capacity.try_into().unwrap() {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::initialize_transcript(transcript, generators, keys);
if !(
self.poks.0.verify(transcript, generators.0.primary, keys.0) &&
self.poks.1.verify(transcript, generators.1.primary, keys.1)
) {
Err(DLEqError::InvalidProofOfKnowledge)?;
}
for (i, bit) in self.bits.iter().enumerate() {
Self::transcript_bit(transcript, i, bit.commitments);
let bit_e = (bit.e, scalar_convert(bit.e).ok_or(DLEqError::InvalidChallenge)?);
if bit_e != Self::R_nonces(
transcript.clone(),
generators,
bit.s[0],
(
bit.commitments.0 - generators.0.primary,
bit.commitments.1 - generators.1.primary
),
Self::R_nonces(
transcript.clone(),
generators,
bit.s[1],
bit.commitments,
bit_e
)
) {
return Err(DLEqError::InvalidProof);
}
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<DLEqProof<G0, G1>> {
let capacity = G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY);
let mut bits = Vec::with_capacity(capacity.try_into().unwrap());
for _ in 0 .. capacity {
bits.push(Bit::deserialize(r)?);
}
Ok(DLEqProof { bits, poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?) })
}
}