* Partial move to ff 0.13
It turns out the newly released k256 0.12 isn't on ff 0.13, preventing further
work at this time.
* Update all crates to work on ff 0.13
The provided curves still need to be expanded to fit the new API.
* Finish adding dalek-ff-group ff 0.13 constants
* Correct FieldElement::product definition
Also stops exporting macros.
* Test most new parts of ff 0.13
* Additionally test ff-group-tests with BLS12-381 and the pasta curves
We only tested curves from RustCrypto. Now we test a curve offered by zk-crypto,
the group behind ff/group, and the pasta curves, which is by Zcash (though
Zcash developers are also behind zk-crypto).
* Finish Ed448
Fully specifies all constants, passes all tests in ff-group-tests, and finishes moving to ff-0.13.
* Add RustCrypto/elliptic-curves to allowed git repos
Needed due to k256/p256 incorrectly defining product.
* Finish writing ff 0.13 tests
* Add additional comments to dalek
* Further comments
* Update ethereum-serai to ff 0.13
This commit greatly expands the usage of black_box/zeroize on bits, as it
originally should have. It is likely overkill, leading to less efficient
code generation, yet does its best to be comprehensive where comprehensiveness
is extremely annoying to achieve.
In the future, this usage of black_box may be desirable to move to its own
crate.
Credit to @AaronFeickert for identifying the original commit was incomplete.
The audit recommends checking failure cases for from_bytes,
from_bytes_unechecked, and from_repr. This isn't feasible.
from_bytes is allowed to have non-canonical values. [0xff; 32] may accordingly
be a valid point for non-SEC1-encoded curves.
from_bytes_unchecked doesn't have a defined failure mode, and by name,
unchecked, shouldn't necessarily fail. The audit acknowledges the tests should
test for whatever result is 'appropriate', yet any result which isn't a failure
on a valid element is appropriate.
from_repr must be canonical, yet for a binary field of 2^n where n % 8 == 0, a
[0xff; n / 8] repr would be valid.
* Label the version as an alpha
* Add versions to Cargo.tomls
* Update to Zeroize 1.5
* Drop patch versions from monero-serai Cargo.toml
* Add a repository field
* Move generators to OUT_DIR
IIRC, I didn't do this originally as it constantly re-generated them.
Unfortunately, since cargo is complaining about .generators, we have to.
* Remove Timelock::fee_weight
Transaction::fee_weight's has a comment, "Assumes Timelock::None since
this library won't let you create a TX with a timelock". Accordingly,
this is dead code.
While Group::random shouldn't be used instead of a hash to curve, anyone
who did would've previously been insecure and now isn't.
Could've done a recover_x and a raw Point construction, followed by a
cofactor mul, to avoid the serialization, yet the serialization ensures
full validity under the standard from_bytes function. THis also doesn't
need to be micro-optimized.
* Theoretical ed448 impl
* Fixes
* Basic tests
* More efficient scalarmul
Precomputes a table to minimize additions required.
* Add a torsion test
* Split into a constant and variable time backend
The variable time one is still far too slow, at 53s for the tests (~5s a
scalarmul). It should be usable as a PoC though.
* Rename unsafe Ed448
It's not only unworthy of the Serai branding and deserves more clarity
in the name.
* Add wide reduction to ed448
* Add Zeroize to Ed448
* Rename Ed448 group.rs to point.rs
* Minor lint to FROST
* Ed448 ciphersuite with 8032 test vector
* Macro out the backend fields
* Slight efficiency improvement to point decompression
* Disable the multiexp test in FROST for Ed448
* fmt + clippy ed448
* Fix an infinite loop in the constant time ed448 backend
* Add b"chal" to the 8032 context string for Ed448
Successfully tests against proposed vectors for the FROST IETF draft.
* Fix fmt and clippy
* Use a tabled pow algorithm in ed448's const backend
* Slight tweaks to variable time backend
Stop from_repr(MODULUS) from passing.
* Use extended points
Almost two orders of magnitude faster.
* Efficient ed448 doubling
* Remove the variable time backend
With the recent performance improvements, the constant time backend is
now 4x faster than the variable time backend was. While the variable
time backend remains much faster, and the constant time backend is still
slow compared to other libraries, it's sufficiently performant now.
The FROST test, which runs a series of multiexps over the curve, does
take 218.26s while Ristretto takes 1 and secp256k1 takes 4.57s.
While 50x slower than secp256k1 is horrible, it's ~1.5 orders of
magntiude, which is close enough to the desire stated in
https://github.com/serai-dex/serai/issues/108 to meet it.
Largely makes this library safe to use.
* Correct constants in ed448
* Rename unsafe-ed448 to minimal-ed448
Enables all FROST tests against it.
* No longer require the hazmat feature to use ed448
* Remove extraneous as_refs
* Apply Zeroize to nonces used in Bulletproofs
Also makes bit decomposition constant time for a given amount of
outputs.
* Fix nonce reuse for single-signer CLSAG
* Attach Zeroize to most structures in Monero, and ZOnDrop to anything with private data
* Zeroize private keys and nonces
* Merge prepare_outputs and prepare_transactions
* Ensure CLSAG is constant time
* Pass by borrow where needed, bug fixes
The past few commitments have been one in-progress chunk which I've
broken up as best read.
* Add Zeroize to FROST structs
Still needs to zeroize internally, yet next step. Not quite as
aggressive as Monero, partially due to the limitations of HashMaps,
partially due to less concern about metadata, yet does still delete a
few smaller items of metadata (group key, context string...).
* Remove Zeroize from most Monero multisig structs
These structs largely didn't have private data, just fields with private
data, yet those fields implemented ZeroizeOnDrop making them already
covered. While there is still traces of the transaction left in RAM,
fully purging that was never the intent.
* Use Zeroize within dleq
bitvec doesn't offer Zeroize, so a manual zeroing has been implemented.
* Use Zeroize for random_nonce
It isn't perfect, due to the inability to zeroize the digest, and due to
kp256 requiring a few transformations. It does the best it can though.
Does move the per-curve random_nonce to a provided one, which is allowed
as of https://github.com/cfrg/draft-irtf-cfrg-frost/pull/231.
* Use Zeroize on FROST keygen/signing
* Zeroize constant time multiexp.
* Correct when FROST keygen zeroizes
* Move the FROST keys Arc into FrostKeys
Reduces amount of instances in memory.
* Manually implement Debug for FrostCore to not leak the secret share
* Misc bug fixes
* clippy + multiexp test bug fixes
* Correct FROST key gen share summation
It leaked our own share for ourself.
* Fix cross-group DLEq tests
* Use a struct in an enum for Bulletproofs
* verification bp working for just one proof
* add some more assert tests
* Clean BP verification
* Implement batch verification
* Add a debug assertion w_cache isn't 0
It's initially set to 0 and if not updated, this would be broken.
* Correct Monero workflow yaml
* Again try to corrent Monero workflow yaml
* Again
* Finally
* Re-apply weights as required by Bulletproofs
Removing these was insecure and my fault.
Co-authored-by: DangerousFreedom <dangfreed@tutanota.com>