Add root_of_unity to dalek-ff-group

Also adds a few more tests.

All functions are now implemented.
This commit is contained in:
Luke Parker 2022-12-15 20:33:58 -05:00
parent b8db677d4c
commit 256d920835
No known key found for this signature in database
3 changed files with 104 additions and 15 deletions
crypto/dalek-ff-group

View file

@ -2,5 +2,3 @@
ff/group bindings around curve25519-dalek with a from_hash/random function based
around modern dependencies.
Some functions currently remain unimplemented.

View file

@ -13,7 +13,7 @@ use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
use crate::{constant_time, math, from_uint};
const FIELD_MODULUS: U256 =
const MODULUS: U256 =
U256::from_be_hex("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed");
const WIDE_MODULUS: U512 = U512::from_be_hex(concat!(
@ -25,7 +25,7 @@ const WIDE_MODULUS: U512 = U512::from_be_hex(concat!(
pub struct FieldElement(U256);
pub const MOD_3_8: FieldElement =
FieldElement(FIELD_MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
pub const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
@ -45,8 +45,8 @@ constant_time!(FieldElement, U256);
math!(
FieldElement,
FieldElement,
|x, y| U256::add_mod(&x, &y, &FIELD_MODULUS),
|x, y| U256::sub_mod(&x, &y, &FIELD_MODULUS),
|x, y| U256::add_mod(&x, &y, &MODULUS),
|x, y| U256::sub_mod(&x, &y, &MODULUS),
|x, y| {
let wide = U256::mul_wide(&x, &y);
reduce(U512::from((wide.1, wide.0)))
@ -57,7 +57,7 @@ from_uint!(FieldElement, U256);
impl Neg for FieldElement {
type Output = Self;
fn neg(self) -> Self::Output {
Self(self.0.neg_mod(&FIELD_MODULUS))
Self(self.0.neg_mod(&MODULUS))
}
}
@ -85,11 +85,11 @@ impl Field for FieldElement {
FieldElement(reduce(self.0.square()))
}
fn double(&self) -> Self {
FieldElement((self.0 << 1).reduce(&FIELD_MODULUS).unwrap())
FieldElement((self.0 << 1).reduce(&MODULUS).unwrap())
}
fn invert(&self) -> CtOption<Self> {
const NEG_2: FieldElement = FieldElement(FIELD_MODULUS.saturating_sub(&U256::from_u8(2)));
const NEG_2: FieldElement = FieldElement(MODULUS.saturating_sub(&U256::from_u8(2)));
CtOption::new(self.pow(NEG_2), !self.is_zero())
}
@ -131,7 +131,7 @@ impl PrimeField for FieldElement {
const CAPACITY: u32 = 254;
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
let res = Self(U256::from_le_bytes(bytes));
CtOption::new(res, res.0.ct_lt(&FIELD_MODULUS))
CtOption::new(res, res.0.ct_lt(&MODULUS))
}
fn to_repr(&self) -> [u8; 32] {
self.0.to_le_bytes()
@ -159,7 +159,7 @@ impl PrimeFieldBits for FieldElement {
}
fn char_le_bits() -> FieldBits<Self::ReprBits> {
FIELD_MODULUS.to_le_bytes().into()
MODULUS.to_le_bytes().into()
}
}
@ -217,6 +217,45 @@ impl FieldElement {
}
}
#[test]
fn test_s() {
// "This is the number of leading zero bits in the little-endian bit representation of
// `modulus - 1`."
let mut s = 0;
for b in (FieldElement::zero() - FieldElement::one()).to_le_bits() {
if b {
break;
}
s += 1;
}
assert_eq!(s, FieldElement::S);
}
#[test]
fn test_root_of_unity() {
// "It can be calculated by exponentiating `Self::multiplicative_generator` by `t`, where
// `t = (modulus - 1) >> Self::S`."
let t = FieldElement::zero() - FieldElement::one();
let mut bytes = t.to_repr();
for _ in 0 .. FieldElement::S {
bytes[0] >>= 1;
for b in 1 .. 32 {
// Shift the dropped but down a byte
bytes[b - 1] |= (bytes[b] & 1) << 7;
// Shift the byte
bytes[b] >>= 1;
}
}
let t = FieldElement::from_repr(bytes).unwrap();
assert_eq!(FieldElement::multiplicative_generator().pow(t), FieldElement::root_of_unity());
assert_eq!(
FieldElement::root_of_unity()
.pow(FieldElement::from(2u64).pow(FieldElement::from(FieldElement::S))),
FieldElement::one()
);
}
#[test]
fn test_conditional_negate() {
let one = FieldElement::one();
@ -244,6 +283,16 @@ fn test_edwards_d() {
assert_eq!(EDWARDS_D, a * b.invert().unwrap());
}
#[test]
fn test_sqrt_m1() {
// TODO: Ideally, tlike EDWARDS_D, this would be calculated undder const. A const pow is just
// even more unlikely than a const mul...
let sqrt_m1 = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
let sqrt_m1 =
FieldElement::one().double().pow(FieldElement::from_repr(sqrt_m1.to_le_bytes()).unwrap());
assert_eq!(SQRT_M1, sqrt_m1);
}
#[test]
fn test_is_odd() {
assert_eq!(0, FieldElement::zero().is_odd().unwrap_u8());
@ -258,8 +307,8 @@ fn test_is_odd() {
#[test]
fn test_mul() {
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one(), FieldElement::zero());
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one().double(), FieldElement::zero());
assert_eq!(FieldElement(MODULUS) * FieldElement::one(), FieldElement::zero());
assert_eq!(FieldElement(MODULUS) * FieldElement::one().double(), FieldElement::zero());
assert_eq!(SQRT_M1.square(), -FieldElement::one());
}

View file

@ -285,7 +285,7 @@ impl PrimeField for Scalar {
const CAPACITY: u32 = 252;
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
let scalar = DScalar::from_canonical_bytes(bytes);
// TODO: This unwrap_or isn't constant time, yet do we have an alternative?
// TODO: This unwrap_or isn't constant time, yet we don't exactly have an alternative...
CtOption::new(Scalar(scalar.unwrap_or_else(DScalar::zero)), choice(scalar.is_some()))
}
fn to_repr(&self) -> [u8; 32] {
@ -300,7 +300,11 @@ impl PrimeField for Scalar {
2u64.into()
}
fn root_of_unity() -> Self {
unimplemented!()
const ROOT: [u8; 32] = [
212, 7, 190, 235, 223, 117, 135, 190, 254, 131, 206, 66, 83, 86, 240, 14, 122, 194, 193, 171,
96, 109, 61, 125, 231, 129, 121, 224, 16, 115, 74, 9,
];
Scalar::from_repr(ROOT).unwrap()
}
}
@ -449,6 +453,44 @@ dalek_group!(
RISTRETTO_BASEPOINT_TABLE
);
#[test]
fn test_s() {
// "This is the number of leading zero bits in the little-endian bit representation of
// `modulus - 1`."
let mut s = 0;
for b in (Scalar::zero() - Scalar::one()).to_le_bits() {
if b {
break;
}
s += 1;
}
assert_eq!(s, Scalar::S);
}
#[test]
fn test_root_of_unity() {
// "It can be calculated by exponentiating `Self::multiplicative_generator` by `t`, where
// `t = (modulus - 1) >> Self::S`."
let t = Scalar::zero() - Scalar::one();
let mut bytes = t.to_repr();
for _ in 0 .. Scalar::S {
bytes[0] >>= 1;
for b in 1 .. 32 {
// Shift the dropped but down a byte
bytes[b - 1] |= (bytes[b] & 1) << 7;
// Shift the byte
bytes[b] >>= 1;
}
}
let t = Scalar::from_repr(bytes).unwrap();
assert_eq!(Scalar::multiplicative_generator().pow(t), Scalar::root_of_unity());
assert_eq!(
Scalar::root_of_unity().pow(Scalar::from(2u64).pow(Scalar::from(Scalar::S))),
Scalar::one()
);
}
#[test]
fn test_sqrt() {
assert_eq!(Scalar::zero().sqrt().unwrap(), Scalar::zero());