mirror of
https://github.com/serai-dex/serai.git
synced 2024-12-22 19:49:22 +00:00
Resolve #68
Notably speeds up monero-serai's build and CLSAG performance.
This commit is contained in:
parent
ff2febe5aa
commit
ee65e4df8f
2 changed files with 90 additions and 110 deletions
|
@ -11,94 +11,84 @@ use subtle::{
|
|||
ConditionallySelectable,
|
||||
};
|
||||
|
||||
use crypto_bigint::{Integer, NonZero, Encoding, U256, U512};
|
||||
use crypto_bigint::{
|
||||
Integer, NonZero, Encoding, U256, U512,
|
||||
modular::constant_mod::{ResidueParams, Residue},
|
||||
impl_modulus,
|
||||
};
|
||||
|
||||
use group::ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
|
||||
|
||||
use crate::{u8_from_bool, constant_time, math_op, math, from_wrapper, from_uint};
|
||||
use crate::{u8_from_bool, constant_time, math_op, math};
|
||||
|
||||
// 2^255 - 19
|
||||
// 2 ** 255 - 19
|
||||
// Uses saturating_sub because checked_sub isn't available at compile time
|
||||
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
|
||||
const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);
|
||||
|
||||
impl_modulus!(
|
||||
FieldModulus,
|
||||
U256,
|
||||
// 2 ** 255 - 19
|
||||
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
|
||||
);
|
||||
type ResidueType = Residue<FieldModulus, { FieldModulus::LIMBS }>;
|
||||
|
||||
/// A constant-time implementation of the Ed25519 field.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
|
||||
pub struct FieldElement(U256);
|
||||
pub struct FieldElement(ResidueType);
|
||||
|
||||
/*
|
||||
The following is a valid const definition of sqrt(-1) yet exceeds the const_eval_limit by 24x.
|
||||
Accordingly, it'd only be usable on a nightly compiler with the following crate attributes:
|
||||
#![feature(const_eval_limit)]
|
||||
#![const_eval_limit = "24000000"]
|
||||
|
||||
const SQRT_M1: FieldElement = {
|
||||
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
||||
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
||||
let base = U256::from_u8(2);
|
||||
let exp = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
|
||||
|
||||
const fn mul(x: U256, y: U256) -> U256 {
|
||||
let wide = U256::mul_wide(&x, &y);
|
||||
let wide = U256::concat(&wide.1, &wide.0);
|
||||
wide.wrapping_rem(&WIDE_MODULUS).split().1
|
||||
}
|
||||
|
||||
// Perform the pow via multiply and square
|
||||
let mut res = U256::ONE;
|
||||
// Iterate from highest bit to lowest bit
|
||||
let mut bit = 255;
|
||||
loop {
|
||||
if bit != 255 {
|
||||
res = mul(res, res);
|
||||
}
|
||||
|
||||
// Reverse from little endian to big endian
|
||||
if exp.bit_vartime(bit) == 1 {
|
||||
res = mul(res, base);
|
||||
}
|
||||
|
||||
if bit == 0 {
|
||||
break;
|
||||
}
|
||||
bit -= 1;
|
||||
}
|
||||
|
||||
FieldElement(res)
|
||||
};
|
||||
*/
|
||||
|
||||
// Use a constant since we can't calculate it at compile-time without a nightly compiler
|
||||
// Even without const_eval_limit, it'd take ~30s to calculate, which isn't worth it
|
||||
const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
|
||||
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
||||
));
|
||||
// Square root of -1.
|
||||
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
||||
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
||||
const SQRT_M1: FieldElement = FieldElement(
|
||||
ResidueType::new(&U256::from_u8(2))
|
||||
.pow(&MODULUS.saturating_sub(&U256::ONE).wrapping_div(&U256::from_u8(4))),
|
||||
);
|
||||
|
||||
// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
|
||||
const MOD_3_8: FieldElement =
|
||||
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
|
||||
const MOD_3_8: FieldElement = FieldElement(ResidueType::new(
|
||||
&MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)),
|
||||
));
|
||||
|
||||
// Constant useful in sqrt_ratio_i (sqrt(u / v))
|
||||
const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
|
||||
const MOD_5_8: FieldElement = FieldElement(ResidueType::sub(&MOD_3_8.0, &ResidueType::ONE));
|
||||
|
||||
fn reduce(x: U512) -> U256 {
|
||||
U256::from_le_slice(&x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32])
|
||||
fn reduce(x: U512) -> ResidueType {
|
||||
ResidueType::new(&U256::from_le_slice(
|
||||
&x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32],
|
||||
))
|
||||
}
|
||||
|
||||
constant_time!(FieldElement, U256);
|
||||
constant_time!(FieldElement, ResidueType);
|
||||
math!(
|
||||
FieldElement,
|
||||
FieldElement,
|
||||
|x, y| U256::add_mod(&x, &y, &MODULUS),
|
||||
|x, y| U256::sub_mod(&x, &y, &MODULUS),
|
||||
|x, y| reduce(U512::from(U256::mul_wide(&x, &y)))
|
||||
|x: ResidueType, y: ResidueType| x.add(&y),
|
||||
|x: ResidueType, y: ResidueType| x.sub(&y),
|
||||
|x: ResidueType, y: ResidueType| x.mul(&y)
|
||||
);
|
||||
from_uint!(FieldElement, U256);
|
||||
|
||||
macro_rules! from_wrapper {
|
||||
($uint: ident) => {
|
||||
impl From<$uint> for FieldElement {
|
||||
fn from(a: $uint) -> FieldElement {
|
||||
Self(ResidueType::new(&U256::from(a)))
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
from_wrapper!(u8);
|
||||
from_wrapper!(u16);
|
||||
from_wrapper!(u32);
|
||||
from_wrapper!(u64);
|
||||
from_wrapper!(u128);
|
||||
|
||||
impl Neg for FieldElement {
|
||||
type Output = Self;
|
||||
fn neg(self) -> Self::Output {
|
||||
Self(self.0.neg_mod(&MODULUS))
|
||||
Self(self.0.neg())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -110,8 +100,8 @@ impl<'a> Neg for &'a FieldElement {
|
|||
}
|
||||
|
||||
impl Field for FieldElement {
|
||||
const ZERO: Self = Self(U256::ZERO);
|
||||
const ONE: Self = Self(U256::ONE);
|
||||
const ZERO: Self = Self(ResidueType::ZERO);
|
||||
const ONE: Self = Self(ResidueType::ONE);
|
||||
|
||||
fn random(mut rng: impl RngCore) -> Self {
|
||||
let mut bytes = [0; 64];
|
||||
|
@ -120,14 +110,15 @@ impl Field for FieldElement {
|
|||
}
|
||||
|
||||
fn square(&self) -> Self {
|
||||
FieldElement(reduce(self.0.square()))
|
||||
FieldElement(self.0.square())
|
||||
}
|
||||
fn double(&self) -> Self {
|
||||
FieldElement((self.0 << 1).rem(&NonZero::new(MODULUS).unwrap()))
|
||||
FieldElement(self.0.add(&self.0))
|
||||
}
|
||||
|
||||
fn invert(&self) -> CtOption<Self> {
|
||||
const NEG_2: FieldElement = FieldElement(MODULUS.saturating_sub(&U256::from_u8(2)));
|
||||
const NEG_2: FieldElement =
|
||||
FieldElement(ResidueType::new(&MODULUS.saturating_sub(&U256::from_u8(2))));
|
||||
CtOption::new(self.pow(NEG_2), !self.is_zero())
|
||||
}
|
||||
|
||||
|
@ -172,44 +163,39 @@ impl PrimeField for FieldElement {
|
|||
const NUM_BITS: u32 = 255;
|
||||
const CAPACITY: u32 = 254;
|
||||
|
||||
// 2.invert()
|
||||
const TWO_INV: Self = FieldElement(U256::from_be_hex(
|
||||
"3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7",
|
||||
));
|
||||
const TWO_INV: Self = FieldElement(ResidueType::new(&U256::from_u8(2)).invert().0);
|
||||
|
||||
// This was calculated with the method from the ff crate docs
|
||||
// SageMath GF(modulus).primitive_element()
|
||||
const MULTIPLICATIVE_GENERATOR: Self = Self(U256::from_u8(2));
|
||||
const MULTIPLICATIVE_GENERATOR: Self = Self(ResidueType::new(&U256::from_u8(2)));
|
||||
// This was set per the specification in the ff crate docs
|
||||
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
|
||||
const S: u32 = 2;
|
||||
|
||||
// This was calculated via the formula from the ff crate docs
|
||||
// Self::MULTIPLICATIVE_GENERATOR ** ((modulus - 1) >> Self::S)
|
||||
const ROOT_OF_UNITY: Self = FieldElement(U256::from_be_hex(
|
||||
const ROOT_OF_UNITY: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
|
||||
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
||||
));
|
||||
)));
|
||||
// Self::ROOT_OF_UNITY.invert()
|
||||
const ROOT_OF_UNITY_INV: Self = FieldElement(U256::from_be_hex(
|
||||
"547cdb7fb03e20f4d4b2ff66c2042858d0bce7f952d01b873b11e4d8b5f15f3d",
|
||||
));
|
||||
const ROOT_OF_UNITY_INV: Self = FieldElement(Self::ROOT_OF_UNITY.0.invert().0);
|
||||
|
||||
// This was calculated via the formula from the ff crate docs
|
||||
// Self::MULTIPLICATIVE_GENERATOR ** (2 ** Self::S)
|
||||
const DELTA: Self = FieldElement(U256::from_be_hex(
|
||||
const DELTA: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
|
||||
"0000000000000000000000000000000000000000000000000000000000000010",
|
||||
));
|
||||
)));
|
||||
|
||||
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
|
||||
let res = Self(U256::from_le_bytes(bytes));
|
||||
CtOption::new(res, res.0.ct_lt(&MODULUS))
|
||||
let res = U256::from_le_bytes(bytes);
|
||||
CtOption::new(Self(ResidueType::new(&res)), res.ct_lt(&MODULUS))
|
||||
}
|
||||
fn to_repr(&self) -> [u8; 32] {
|
||||
self.0.to_le_bytes()
|
||||
self.0.retrieve().to_le_bytes()
|
||||
}
|
||||
|
||||
fn is_odd(&self) -> Choice {
|
||||
self.0.is_odd()
|
||||
self.0.retrieve().is_odd()
|
||||
}
|
||||
|
||||
fn from_u128(num: u128) -> Self {
|
||||
|
@ -233,7 +219,7 @@ impl FieldElement {
|
|||
/// Interpret the value as a little-endian integer, square it, and reduce it into a FieldElement.
|
||||
pub fn from_square(value: [u8; 32]) -> FieldElement {
|
||||
let value = U256::from_le_bytes(value);
|
||||
FieldElement(value) * FieldElement(value)
|
||||
FieldElement(reduce(U512::from(value.mul_wide(&value))))
|
||||
}
|
||||
|
||||
/// Perform an exponentation.
|
||||
|
@ -346,14 +332,15 @@ fn test_sqrt_m1() {
|
|||
// Test equivalence against the known constant value
|
||||
const SQRT_M1_MAGIC: U256 =
|
||||
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
|
||||
assert_eq!(SQRT_M1.0, SQRT_M1_MAGIC);
|
||||
assert_eq!(SQRT_M1.0.retrieve(), SQRT_M1_MAGIC);
|
||||
|
||||
// Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
||||
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
||||
assert_eq!(
|
||||
SQRT_M1,
|
||||
FieldElement::from(2u8)
|
||||
.pow(FieldElement((FieldElement::ZERO - FieldElement::ONE).0.wrapping_div(&U256::from(4u8))))
|
||||
FieldElement::from(2u8).pow(FieldElement(ResidueType::new(
|
||||
&(FieldElement::ZERO - FieldElement::ONE).0.retrieve().wrapping_div(&U256::from(4u8))
|
||||
)))
|
||||
);
|
||||
}
|
||||
|
||||
|
|
|
@ -162,35 +162,28 @@ macro_rules! math_neg {
|
|||
};
|
||||
}
|
||||
|
||||
macro_rules! from_wrapper {
|
||||
($wrapper: ident, $inner: ident, $uint: ident) => {
|
||||
impl From<$uint> for $wrapper {
|
||||
fn from(a: $uint) -> $wrapper {
|
||||
Self($inner::from(a))
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
pub(crate) use from_wrapper;
|
||||
|
||||
macro_rules! from_uint {
|
||||
($wrapper: ident, $inner: ident) => {
|
||||
from_wrapper!($wrapper, $inner, u8);
|
||||
from_wrapper!($wrapper, $inner, u16);
|
||||
from_wrapper!($wrapper, $inner, u32);
|
||||
from_wrapper!($wrapper, $inner, u64);
|
||||
from_wrapper!($wrapper, $inner, u128);
|
||||
};
|
||||
}
|
||||
pub(crate) use from_uint;
|
||||
|
||||
/// Wrapper around the dalek Scalar type.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Zeroize)]
|
||||
pub struct Scalar(pub DScalar);
|
||||
deref_borrow!(Scalar, DScalar);
|
||||
constant_time!(Scalar, DScalar);
|
||||
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);
|
||||
from_uint!(Scalar, DScalar);
|
||||
|
||||
macro_rules! from_wrapper {
|
||||
($uint: ident) => {
|
||||
impl From<$uint> for Scalar {
|
||||
fn from(a: $uint) -> Scalar {
|
||||
Scalar(DScalar::from(a))
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
from_wrapper!(u8);
|
||||
from_wrapper!(u16);
|
||||
from_wrapper!(u32);
|
||||
from_wrapper!(u64);
|
||||
from_wrapper!(u128);
|
||||
|
||||
// Ed25519 order/scalar modulus
|
||||
const MODULUS: U256 =
|
||||
|
|
Loading…
Reference in a new issue