Notably speeds up monero-serai's build and CLSAG performance.
This commit is contained in:
Luke Parker 2023-04-20 01:11:39 -04:00
parent ff2febe5aa
commit ee65e4df8f
No known key found for this signature in database
2 changed files with 90 additions and 110 deletions

View file

@ -11,94 +11,84 @@ use subtle::{
ConditionallySelectable,
};
use crypto_bigint::{Integer, NonZero, Encoding, U256, U512};
use crypto_bigint::{
Integer, NonZero, Encoding, U256, U512,
modular::constant_mod::{ResidueParams, Residue},
impl_modulus,
};
use group::ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
use crate::{u8_from_bool, constant_time, math_op, math, from_wrapper, from_uint};
use crate::{u8_from_bool, constant_time, math_op, math};
// 2^255 - 19
// 2 ** 255 - 19
// Uses saturating_sub because checked_sub isn't available at compile time
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);
impl_modulus!(
FieldModulus,
U256,
// 2 ** 255 - 19
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
);
type ResidueType = Residue<FieldModulus, { FieldModulus::LIMBS }>;
/// A constant-time implementation of the Ed25519 field.
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
pub struct FieldElement(U256);
pub struct FieldElement(ResidueType);
/*
The following is a valid const definition of sqrt(-1) yet exceeds the const_eval_limit by 24x.
Accordingly, it'd only be usable on a nightly compiler with the following crate attributes:
#![feature(const_eval_limit)]
#![const_eval_limit = "24000000"]
const SQRT_M1: FieldElement = {
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
let base = U256::from_u8(2);
let exp = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
const fn mul(x: U256, y: U256) -> U256 {
let wide = U256::mul_wide(&x, &y);
let wide = U256::concat(&wide.1, &wide.0);
wide.wrapping_rem(&WIDE_MODULUS).split().1
}
// Perform the pow via multiply and square
let mut res = U256::ONE;
// Iterate from highest bit to lowest bit
let mut bit = 255;
loop {
if bit != 255 {
res = mul(res, res);
}
// Reverse from little endian to big endian
if exp.bit_vartime(bit) == 1 {
res = mul(res, base);
}
if bit == 0 {
break;
}
bit -= 1;
}
FieldElement(res)
};
*/
// Use a constant since we can't calculate it at compile-time without a nightly compiler
// Even without const_eval_limit, it'd take ~30s to calculate, which isn't worth it
const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
));
// Square root of -1.
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
const SQRT_M1: FieldElement = FieldElement(
ResidueType::new(&U256::from_u8(2))
.pow(&MODULUS.saturating_sub(&U256::ONE).wrapping_div(&U256::from_u8(4))),
);
// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
const MOD_3_8: FieldElement =
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
const MOD_3_8: FieldElement = FieldElement(ResidueType::new(
&MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)),
));
// Constant useful in sqrt_ratio_i (sqrt(u / v))
const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
const MOD_5_8: FieldElement = FieldElement(ResidueType::sub(&MOD_3_8.0, &ResidueType::ONE));
fn reduce(x: U512) -> U256 {
U256::from_le_slice(&x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32])
fn reduce(x: U512) -> ResidueType {
ResidueType::new(&U256::from_le_slice(
&x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32],
))
}
constant_time!(FieldElement, U256);
constant_time!(FieldElement, ResidueType);
math!(
FieldElement,
FieldElement,
|x, y| U256::add_mod(&x, &y, &MODULUS),
|x, y| U256::sub_mod(&x, &y, &MODULUS),
|x, y| reduce(U512::from(U256::mul_wide(&x, &y)))
|x: ResidueType, y: ResidueType| x.add(&y),
|x: ResidueType, y: ResidueType| x.sub(&y),
|x: ResidueType, y: ResidueType| x.mul(&y)
);
from_uint!(FieldElement, U256);
macro_rules! from_wrapper {
($uint: ident) => {
impl From<$uint> for FieldElement {
fn from(a: $uint) -> FieldElement {
Self(ResidueType::new(&U256::from(a)))
}
}
};
}
from_wrapper!(u8);
from_wrapper!(u16);
from_wrapper!(u32);
from_wrapper!(u64);
from_wrapper!(u128);
impl Neg for FieldElement {
type Output = Self;
fn neg(self) -> Self::Output {
Self(self.0.neg_mod(&MODULUS))
Self(self.0.neg())
}
}
@ -110,8 +100,8 @@ impl<'a> Neg for &'a FieldElement {
}
impl Field for FieldElement {
const ZERO: Self = Self(U256::ZERO);
const ONE: Self = Self(U256::ONE);
const ZERO: Self = Self(ResidueType::ZERO);
const ONE: Self = Self(ResidueType::ONE);
fn random(mut rng: impl RngCore) -> Self {
let mut bytes = [0; 64];
@ -120,14 +110,15 @@ impl Field for FieldElement {
}
fn square(&self) -> Self {
FieldElement(reduce(self.0.square()))
FieldElement(self.0.square())
}
fn double(&self) -> Self {
FieldElement((self.0 << 1).rem(&NonZero::new(MODULUS).unwrap()))
FieldElement(self.0.add(&self.0))
}
fn invert(&self) -> CtOption<Self> {
const NEG_2: FieldElement = FieldElement(MODULUS.saturating_sub(&U256::from_u8(2)));
const NEG_2: FieldElement =
FieldElement(ResidueType::new(&MODULUS.saturating_sub(&U256::from_u8(2))));
CtOption::new(self.pow(NEG_2), !self.is_zero())
}
@ -172,44 +163,39 @@ impl PrimeField for FieldElement {
const NUM_BITS: u32 = 255;
const CAPACITY: u32 = 254;
// 2.invert()
const TWO_INV: Self = FieldElement(U256::from_be_hex(
"3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7",
));
const TWO_INV: Self = FieldElement(ResidueType::new(&U256::from_u8(2)).invert().0);
// This was calculated with the method from the ff crate docs
// SageMath GF(modulus).primitive_element()
const MULTIPLICATIVE_GENERATOR: Self = Self(U256::from_u8(2));
const MULTIPLICATIVE_GENERATOR: Self = Self(ResidueType::new(&U256::from_u8(2)));
// This was set per the specification in the ff crate docs
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
const S: u32 = 2;
// This was calculated via the formula from the ff crate docs
// Self::MULTIPLICATIVE_GENERATOR ** ((modulus - 1) >> Self::S)
const ROOT_OF_UNITY: Self = FieldElement(U256::from_be_hex(
const ROOT_OF_UNITY: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
));
)));
// Self::ROOT_OF_UNITY.invert()
const ROOT_OF_UNITY_INV: Self = FieldElement(U256::from_be_hex(
"547cdb7fb03e20f4d4b2ff66c2042858d0bce7f952d01b873b11e4d8b5f15f3d",
));
const ROOT_OF_UNITY_INV: Self = FieldElement(Self::ROOT_OF_UNITY.0.invert().0);
// This was calculated via the formula from the ff crate docs
// Self::MULTIPLICATIVE_GENERATOR ** (2 ** Self::S)
const DELTA: Self = FieldElement(U256::from_be_hex(
const DELTA: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
"0000000000000000000000000000000000000000000000000000000000000010",
));
)));
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
let res = Self(U256::from_le_bytes(bytes));
CtOption::new(res, res.0.ct_lt(&MODULUS))
let res = U256::from_le_bytes(bytes);
CtOption::new(Self(ResidueType::new(&res)), res.ct_lt(&MODULUS))
}
fn to_repr(&self) -> [u8; 32] {
self.0.to_le_bytes()
self.0.retrieve().to_le_bytes()
}
fn is_odd(&self) -> Choice {
self.0.is_odd()
self.0.retrieve().is_odd()
}
fn from_u128(num: u128) -> Self {
@ -233,7 +219,7 @@ impl FieldElement {
/// Interpret the value as a little-endian integer, square it, and reduce it into a FieldElement.
pub fn from_square(value: [u8; 32]) -> FieldElement {
let value = U256::from_le_bytes(value);
FieldElement(value) * FieldElement(value)
FieldElement(reduce(U512::from(value.mul_wide(&value))))
}
/// Perform an exponentation.
@ -346,14 +332,15 @@ fn test_sqrt_m1() {
// Test equivalence against the known constant value
const SQRT_M1_MAGIC: U256 =
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
assert_eq!(SQRT_M1.0, SQRT_M1_MAGIC);
assert_eq!(SQRT_M1.0.retrieve(), SQRT_M1_MAGIC);
// Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
assert_eq!(
SQRT_M1,
FieldElement::from(2u8)
.pow(FieldElement((FieldElement::ZERO - FieldElement::ONE).0.wrapping_div(&U256::from(4u8))))
FieldElement::from(2u8).pow(FieldElement(ResidueType::new(
&(FieldElement::ZERO - FieldElement::ONE).0.retrieve().wrapping_div(&U256::from(4u8))
)))
);
}

View file

@ -162,35 +162,28 @@ macro_rules! math_neg {
};
}
macro_rules! from_wrapper {
($wrapper: ident, $inner: ident, $uint: ident) => {
impl From<$uint> for $wrapper {
fn from(a: $uint) -> $wrapper {
Self($inner::from(a))
}
}
};
}
pub(crate) use from_wrapper;
macro_rules! from_uint {
($wrapper: ident, $inner: ident) => {
from_wrapper!($wrapper, $inner, u8);
from_wrapper!($wrapper, $inner, u16);
from_wrapper!($wrapper, $inner, u32);
from_wrapper!($wrapper, $inner, u64);
from_wrapper!($wrapper, $inner, u128);
};
}
pub(crate) use from_uint;
/// Wrapper around the dalek Scalar type.
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Zeroize)]
pub struct Scalar(pub DScalar);
deref_borrow!(Scalar, DScalar);
constant_time!(Scalar, DScalar);
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);
from_uint!(Scalar, DScalar);
macro_rules! from_wrapper {
($uint: ident) => {
impl From<$uint> for Scalar {
fn from(a: $uint) -> Scalar {
Scalar(DScalar::from(a))
}
}
};
}
from_wrapper!(u8);
from_wrapper!(u16);
from_wrapper!(u32);
from_wrapper!(u64);
from_wrapper!(u128);
// Ed25519 order/scalar modulus
const MODULUS: U256 =