3.5.2 Add more tests to ff-group-tests

The audit recommends checking failure cases for from_bytes,
from_bytes_unechecked, and from_repr. This isn't feasible.

from_bytes is allowed to have non-canonical values. [0xff; 32] may accordingly
be a valid point for non-SEC1-encoded curves.

from_bytes_unchecked doesn't have a defined failure mode, and by name,
unchecked, shouldn't necessarily fail. The audit acknowledges the tests should
test for whatever result is 'appropriate', yet any result which isn't a failure
on a valid element is appropriate.

from_repr must be canonical, yet for a binary field of 2^n where n % 8 == 0, a
[0xff; n / 8] repr would be valid.
This commit is contained in:
Luke Parker 2023-02-24 06:03:56 -05:00
parent 32c18cac84
commit 93f7afec8b
No known key found for this signature in database
13 changed files with 95 additions and 25 deletions

1
Cargo.lock generated
View file

@ -2342,6 +2342,7 @@ dependencies = [
"group",
"k256",
"p256",
"rand_core 0.6.4",
]
[[package]]

View file

@ -27,8 +27,8 @@ The domain-separation tag is naively prefixed to the message.
### Ed448
Ed448 is offered via [minimal-ed448](https://crates.io/crates/minimal-ed448), an
explicitly not recommended, unaudited Ed448 implementation, limited to its
prime-order subgroup.
explicitly not recommended, unaudited, incomplete Ed448 implementation, limited
to its prime-order subgroup.
Its `hash_to_F` is the wide reduction of SHAKE256, with a 114-byte output, as
used in [RFC-8032](https://www.rfc-editor.org/rfc/rfc8032). The

View file

@ -48,7 +48,7 @@ dalek_curve!("ristretto", Ristretto, RistrettoPoint, b"ristretto");
#[cfg(any(test, feature = "ristretto"))]
#[test]
fn test_ristretto() {
ff_group_tests::group::test_prime_group_bits::<RistrettoPoint>();
ff_group_tests::group::test_prime_group_bits::<_, RistrettoPoint>(&mut rand_core::OsRng);
assert_eq!(
Ristretto::hash_to_F(
@ -79,7 +79,7 @@ dalek_curve!("ed25519", Ed25519, EdwardsPoint, b"edwards25519");
#[cfg(feature = "ed25519")]
#[test]
fn test_ed25519() {
ff_group_tests::group::test_prime_group_bits::<EdwardsPoint>();
ff_group_tests::group::test_prime_group_bits::<_, EdwardsPoint>(&mut rand_core::OsRng);
// Ideally, a test vector from RFC-8032 (not FROST) would be here
// Unfortunately, the IETF draft doesn't provide any vectors for the derived challenges

View file

@ -114,7 +114,7 @@ kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");
#[cfg(feature = "secp256k1")]
#[test]
fn test_secp256k1() {
ff_group_tests::group::test_prime_group_bits::<k256::ProjectivePoint>();
ff_group_tests::group::test_prime_group_bits::<_, k256::ProjectivePoint>(&mut rand_core::OsRng);
// Ideally, a test vector from hash_to_field (not FROST) would be here
// Unfortunately, the IETF draft only provides vectors for field elements, not scalars
@ -152,7 +152,7 @@ kp_curve!("p256", p256, P256, b"P-256");
#[cfg(feature = "p256")]
#[test]
fn test_p256() {
ff_group_tests::group::test_prime_group_bits::<p256::ProjectivePoint>();
ff_group_tests::group::test_prime_group_bits::<_, p256::ProjectivePoint>(&mut rand_core::OsRng);
assert_eq!(
P256::hash_to_F(

View file

@ -281,5 +281,5 @@ fn test_sqrt_m1() {
#[test]
fn test_field() {
ff_group_tests::prime_field::test_prime_field_bits::<FieldElement>();
ff_group_tests::prime_field::test_prime_field_bits::<_, FieldElement>(&mut rand_core::OsRng);
}

View file

@ -448,10 +448,10 @@ fn test_scalar_modulus() {
#[test]
fn test_ed25519_group() {
ff_group_tests::group::test_prime_group_bits::<EdwardsPoint>();
ff_group_tests::group::test_prime_group_bits::<_, EdwardsPoint>(&mut rand_core::OsRng);
}
#[test]
fn test_ristretto_group() {
ff_group_tests::group::test_prime_group_bits::<RistrettoPoint>();
ff_group_tests::group::test_prime_group_bits::<_, RistrettoPoint>(&mut rand_core::OsRng);
}

View file

@ -32,5 +32,5 @@ field!(FieldElement, MODULUS, WIDE_MODULUS, 448);
#[test]
fn test_field() {
// TODO: Move to test_prime_field_bits once the impl is finished
ff_group_tests::prime_field::test_prime_field::<FieldElement>();
ff_group_tests::prime_field::test_prime_field::<_, FieldElement>(&mut rand_core::OsRng);
}

View file

@ -323,6 +323,7 @@ fn test_group() {
test_sub::<Point>();
test_mul::<Point>();
test_order::<Point>();
test_random::<_, Point>(&mut rand_core::OsRng);
test_encoding::<Point>();
}

View file

@ -35,5 +35,5 @@ impl Scalar {
#[test]
fn test_scalar_field() {
// TODO: Move to test_prime_field_bits once the impl is finished
ff_group_tests::prime_field::test_prime_field::<Scalar>();
ff_group_tests::prime_field::test_prime_field::<_, Scalar>(&mut rand_core::OsRng);
}

View file

@ -13,6 +13,7 @@ all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
rand_core = "0.6"
group = "0.12"
[dev-dependencies]

View file

@ -1,3 +1,4 @@
use rand_core::RngCore;
use group::ff::Field;
/// Perform basic tests on equality.
@ -106,8 +107,27 @@ pub fn test_cube<F: Field>() {
assert_eq!(two.cube(), two * two * two, "2^3 != 8");
}
/// Test random.
pub fn test_random<R: RngCore, F: Field>(rng: &mut R) {
let a = F::random(&mut *rng);
// Run up to 128 times so small fields, which may occasionally return the same element twice,
// are statistically unlikely to fail
// Field of order 1 will always fail this test due to lack of distinct elements to sample
// from
let mut pass = false;
for _ in 0 .. 128 {
let b = F::random(&mut *rng);
// This test passes if a distinct element is returned at least once
if b != a {
pass = true;
}
}
assert!(pass, "random always returned the same value");
}
/// Run all tests on fields implementing Field.
pub fn test_field<F: Field>() {
pub fn test_field<R: RngCore, F: Field>(rng: &mut R) {
test_eq::<F>();
test_conditional_select::<F>();
test_add::<F>();
@ -119,4 +139,5 @@ pub fn test_field<F: Field>() {
test_sqrt::<F>();
test_is_zero::<F>();
test_cube::<F>();
test_random::<R, F>(rng);
}

View file

@ -1,3 +1,4 @@
use rand_core::RngCore;
use group::{
ff::{Field, PrimeFieldBits},
Group,
@ -69,6 +70,11 @@ pub fn test_sum<G: Group>() {
G::generator().double(),
"[generator, generator].sum() != two"
);
assert_eq!(
[G::generator().double(), G::generator()].iter().sum::<G>(),
G::generator().double() + G::generator(),
"[generator.double(), generator].sum() != three"
);
}
/// Test negation.
@ -107,9 +113,31 @@ pub fn test_order<G: Group>() {
assert_eq!(minus_one + G::generator(), G::identity(), "((modulus - 1) * G) + G wasn't identity");
}
/// Test random.
pub fn test_random<R: RngCore, G: Group>(rng: &mut R) {
let a = G::random(&mut *rng);
assert!(!bool::from(a.is_identity()), "random returned identity");
// Run up to 128 times so small groups, which may occasionally return the same element twice,
// are statistically unlikely to fail
// Groups of order <= 2 will always fail this test due to lack of distinct elements to sample
// from
let mut pass = false;
for _ in 0 .. 128 {
let b = G::random(&mut *rng);
assert!(!bool::from(b.is_identity()), "random returned identity");
// This test passes if a distinct element is returned at least once
if b != a {
pass = true;
}
}
assert!(pass, "random always returned the same value");
}
/// Run all tests on groups implementing Group.
pub fn test_group<G: Group>() {
test_prime_field::<G::Scalar>();
pub fn test_group<R: RngCore, G: Group>(rng: &mut R) {
test_prime_field::<R, G::Scalar>(rng);
test_eq::<G>();
test_identity::<G>();
@ -121,6 +149,7 @@ pub fn test_group<G: Group>() {
test_sub::<G>();
test_mul::<G>();
test_order::<G>();
test_random::<R, G>(rng);
}
/// Test encoding and decoding of group elements.
@ -142,19 +171,19 @@ pub fn test_encoding<G: PrimeGroup>() {
}
/// Run all tests on groups implementing PrimeGroup (Group + GroupEncoding).
pub fn test_prime_group<G: PrimeGroup>() {
test_group::<G>();
pub fn test_prime_group<R: RngCore, G: PrimeGroup>(rng: &mut R) {
test_group::<R, G>(rng);
test_encoding::<G>();
}
/// Run all tests offered by this crate on the group.
pub fn test_prime_group_bits<G: PrimeGroup>()
pub fn test_prime_group_bits<R: RngCore, G: PrimeGroup>(rng: &mut R)
where
G::Scalar: PrimeFieldBits,
{
test_prime_field_bits::<G::Scalar>();
test_prime_group::<G>();
test_prime_field_bits::<R, G::Scalar>(rng);
test_prime_group::<R, G>(rng);
}
// Run these tests against k256/p256
@ -167,10 +196,10 @@ where
#[test]
fn test_k256() {
test_prime_group_bits::<k256::ProjectivePoint>();
test_prime_group_bits::<_, k256::ProjectivePoint>(&mut rand_core::OsRng);
}
#[test]
fn test_p256() {
test_prime_group_bits::<p256::ProjectivePoint>();
test_prime_group_bits::<_, p256::ProjectivePoint>(&mut rand_core::OsRng);
}

View file

@ -1,3 +1,4 @@
use rand_core::RngCore;
use group::ff::{PrimeField, PrimeFieldBits};
use crate::field::test_field;
@ -29,6 +30,16 @@ pub fn test_is_odd<F: PrimeField>() {
assert_eq!(F::one().is_odd().unwrap_u8(), 1, "1 was even");
assert_eq!(F::one().is_even().unwrap_u8(), 0, "1 wasn't odd");
// Make sure an odd value added to an odd value is even
let two = F::one().double();
assert_eq!(two.is_odd().unwrap_u8(), 0, "2 was odd");
assert_eq!(two.is_even().unwrap_u8(), 1, "2 wasn't even");
// Make sure an even value added to an even value is even
let four = two.double();
assert_eq!(four.is_odd().unwrap_u8(), 0, "4 was odd");
assert_eq!(four.is_even().unwrap_u8(), 1, "4 wasn't even");
let neg_one = -F::one();
assert_eq!(neg_one.is_odd().unwrap_u8(), 0, "-1 was odd");
assert_eq!(neg_one.is_even().unwrap_u8(), 1, "-1 wasn't even");
@ -49,6 +60,11 @@ pub fn test_encoding<F: PrimeField>() {
F::from_repr_vartime(repr).unwrap(),
"{msg} couldn't be encoded and decoded",
);
assert_eq!(
bytes.as_ref(),
F::from_repr(repr).unwrap().to_repr().as_ref(),
"canonical encoding decoded produced distinct encoding"
);
};
test(F::zero(), "0");
test(F::one(), "1");
@ -57,8 +73,8 @@ pub fn test_encoding<F: PrimeField>() {
}
/// Run all tests on fields implementing PrimeField.
pub fn test_prime_field<F: PrimeField>() {
test_field::<F>();
pub fn test_prime_field<R: RngCore, F: PrimeField>(rng: &mut R) {
test_field::<R, F>(rng);
test_zero::<F>();
test_one::<F>();
@ -265,6 +281,7 @@ pub fn test_root_of_unity<F: PrimeFieldBits>() {
}
bit = bit.double();
}
assert!(bool::from(t.is_odd()), "t wasn't odd");
assert_eq!(pow(F::multiplicative_generator(), t), F::root_of_unity(), "incorrect root of unity");
assert_eq!(
@ -275,8 +292,8 @@ pub fn test_root_of_unity<F: PrimeFieldBits>() {
}
/// Run all tests on fields implementing PrimeFieldBits.
pub fn test_prime_field_bits<F: PrimeFieldBits>() {
test_prime_field::<F>();
pub fn test_prime_field_bits<R: RngCore, F: PrimeFieldBits>(rng: &mut R) {
test_prime_field::<R, F>(rng);
test_to_le_bits::<F>();
test_char_le_bits::<F>();