Failing loudly and often.

This commit is contained in:
Brandon Goodell 2018-01-28 12:16:13 -07:00
parent 868ac2680f
commit 4593f2b8ea

View file

@ -1,98 +1,537 @@
import unittest, copy, random, math
import unittest, copy, random, math, time
from scipy.stats import skew
from numpy import var
from numpy import random as nprandom
class stochasticProcess(object):
#TODO: Node.data["blockchain"] != node.data
def newIdent(params):
nonce = params
# Generate new random identity.
return hash(str(nonce) + str(random.random()))
def newIntensity(params):
mode = params
if mode=="uniform":
return random.random()
def newOffset(params):
mode = params
if mode=="unifDST":
r = 2.0*random.random() - 1.0 # hours
r = 60.0*60.0*r #60 min/hr, 60 sec/min
return r
if mode=="sumOfSkellams":
# This mode uses a skellam distribution, which is
# the difference of two poisson-distributed random
# variables.
# HourOffset = skellam
# SecondOffset = skellam
# TotalOffset = 60*60*HourOffset + 60*MinuteOffset + SecondOffset
# Each skellam = poisson(1) - poisson(1)
# Reasoning: We consider most computers' local time offset from UTC
# to be a two time-scale random variable, one on the hour scale and one on
# the second scale. We make
x = nprandom.poisson(1, (2,2))
totalOffset = 60.0*60.0*float(x[0][0] - x[1][0]) + float((x[0][1] - x[1][1]))
return totalOffset
class StochasticProcess(object):
'''
Stochastic processes have a clock and a state.
The clock moves forward, and then the state updates.
More detail requires knowledge of the underlying stochProc.
'''
def __init__(self, params=None):
# initialize with initial data
self.data = params
self.t = 0.0
self.state = 0.0
self.maxTime = 1000.0
self.t = 0.0 # should always start at t=0.0
self.state = 0.0 # magic number
self.maxTime = 1000.0 # magic number
self.verbose = True
def go(self):
assert self.maxTime > 0.0
while self.t <= self.maxTime:
deltaT = self.getNextTime()
self.updateState(deltaT)
#print(str(self.t) + ", " + str(self.state))
# Executes stochastic process.
assert self.maxTime > 0.0 # Check loop will eventually terminate.
t = self.t
while t <= self.maxTime:
deltaT = self.getNextTime() # Pick the next "time until event" and a description of the event.
self.updateState(t, deltaT) # Update state with deltaT input
t = self.t
if self.verbose:
print("Recording...")
def getNextTime(self):
return 1
return 1 # Magic number right now
def updateState(self, deltaT):
def updateState(self, t, deltaT):
# Update the state of the system. In this case,
# we are doing a random walk on the integers.
self.state += random.randrange(-1,2,1) # [-1, 0, 1]
self.t += deltaT
class Test_stochasticProcess(unittest.TestCase):
class Test_StochasticProcess(unittest.TestCase):
def test_sp(self):
sally = stochasticProcess()
sally = StochasticProcess()
sally.go()
suite = unittest.TestLoader().loadTestsFromTestCase(Test_stochasticProcess)
unittest.TextTestRunner(verbosity=1).run(suite)
#suite = unittest.TestLoader().loadTestsFromTestCase(Test_StochasticProcess)
#unittest.TextTestRunner(verbosity=1).run(suite)
class Node(object):
def __init__(self, params=["", {}]):
self.ident = params[0]
self.data = params[1]
self.edges = {}
class Block(object):
'''
Each block has: an identity, a timestamp of discovery (possibly false),
has a timestamp of arrival at the local node (possibly unnecessary), a pointer to a parent
block's identity, and a difficulty score.
'''
def __init__(self, params=[]):
try:
assert len(params)==6
except AssertionError:
print("Error in Block(): Tried to add a malformed block. We received params = " + str(params) + ", but should have had something of the form [ident, disco, arriv, parent, diff, verbose].")
else:
self.ident = params[0]
self.discoTimestamp = params[1]
self.arrivTimestamp = params[2]
self.parent = params[3]
self.diff = params[4]
self.verbose = params[5]
class Test_Block(unittest.TestCase):
def test_b(self):
#bill = Block()
name = newIdent(0)
t = time.time()
diff = 1.0
params = [name, t, t+1, None, diff, False]
bill = Block(params)
self.assertEqual(bill.ident,name)
self.assertEqual(bill.discoTimestamp,t)
self.assertEqual(bill.arrivTimestamp,t+1)
self.assertTrue(bill.parent is None)
self.assertEqual(bill.diff,diff)
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Block)
unittest.TextTestRunner(verbosity=1).run(suite)
class Blockchain(object):
'''
Not a true blockchain, of course, but tracks block objects (timestamps) as above.
Each node should be responsible for finding the chain with most cumulative work.
Right now we assume Nakamoto consensus (konsensnakamoto).
'''
def __init__(self, params=[], verbosity=True):
self.blocks = {}
self.leaves = {}
self.miningIdent = None
self.verbose = verbosity
def addBlock(self, blockToAdd):
# In our model we assume difficulty scores of blocks are correct (otherwise they would
# be rejected in the real life network, and we aren't trying to model spam attacks).
try:
assert blockToAdd.ident not in self.blocks
except AssertionError:
print("Error, tried to add block that already exists in blockchain.")
else:
self.blocks.update({blockToAdd.ident:blockToAdd})
self.leaves.update({blockToAdd.ident:blockToAdd})
if blockToAdd.parent in self.leaves:
del self.leaves[blockToAdd.parent]
self.whichLeaf()
def whichLeaf(self):
# Determine which leaf shall be the parent leaf.
if len(self.leaves) == 1:
# If the chain has never forked, we have no decision to make:
for ident in self.leaves:
self.miningIdent = ident
elif len(self.leaves) > 1:
# If the chain has forked *ever* this will not be the case.
maxCumDiff = 0.0
for ident in self.leaves:
tempCumDiff = 0.0
tempCumDiff += self.blocks[ident].diff
nextIdent = self.blocks[ident].parent
if nextIdent is not None and nextIdent in self.blocks:
while self.blocks[nextIdent].parent is not None:
tempCumDiff += self.blocks[nextIdent].diff
nextIdent = self.blocks[nextIdent].parent
if tempCumDiff > maxCumDiff:
# If more than one leaf ties for maxCumDiff, each node in the
# network should pick one of these two arbitrarily. Since we
# are storing each blockchain in a hash table (unordered!), for
# each node in the network that observes a tie, each possible leaf
# is equally likely to have been the first one found! So
# we don't need to do anything for the node to select which chain
# to work off of.
self.miningIdent = ident
else:
print("Error, tried to assess an empty blockchain.")
class Test_Blockchain(unittest.TestCase):
def test_bc(self):
bill = Blockchain([], verbosity=True)
name = newIdent(0)
t = time.time()
diff = 1.0
params = [name, t, t+1, None, diff, bill.verbose]
genesis = Block(params)
self.assertEqual(genesis.ident,name)
self.assertEqual(genesis.discoTimestamp,t)
self.assertEqual(genesis.arrivTimestamp,t+1)
self.assertTrue(genesis.parent is None)
self.assertEqual(genesis.diff,diff)
bill.addBlock(genesis)
self.assertTrue(genesis.ident in bill.blocks)
self.assertTrue(genesis.ident in bill.leaves)
self.assertEqual(genesis.ident, bill.miningIdent)
name = newIdent(1)
t = time.time()
diff = 2.0
params = [name, t, t+1, genesis.ident, diff, bill.verbose]
blockA = Block(params)
bill.addBlock(blockA)
self.assertTrue(blockA.ident in bill.blocks)
self.assertTrue(blockA.ident in bill.leaves)
self.assertFalse(genesis.ident in bill.leaves)
self.assertTrue(genesis.ident in bill.blocks)
self.assertEqual(blockA.ident, bill.miningIdent)
name = newIdent(1)
t = time.time()
diff = 2.5
params = [name, t, t+1, None, diff, bill.verbose]
blockB = Block(params)
bill.addBlock(blockB)
self.assertTrue(blockB.ident in bill.blocks)
self.assertTrue(blockB.ident in bill.leaves)
self.assertFalse(genesis.ident in bill.leaves)
self.assertTrue(genesis.ident in bill.blocks)
self.assertTrue(blockA.ident in bill.leaves)
self.assertTrue(blockB.ident in bill.leaves)
self.assertEqual(blockB.ident, bill.miningIdent)
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Blockchain)
unittest.TextTestRunner(verbosity=1).run(suite)
class Node(object):
'''
Node object. params [identity, blockchain (data), verbosity, difficulty]
'''
def __init__(self, params=["", {}, True]):
try:
assert len(params)==4
except AssertionError:
print("Error, Tried to create malformed node.")
else:
self.ident = params[0]
self.data = params[1] #Blockchain object
self.verbose = params[2]
self.diff = params[3]
self.edges = {}
def updateBlockchain(self, incBlocks, diffUpdateRate=1, mode="Nakamoto", targetRate=1.0/1209600.0):
# dataToUpdate shall be a dictionary of block identities (as keys) and their associated blocks (as values)
# to be added to the local data. We assume difficulty scores have been reported honestly for now.
# Stash a copy of incoming blocks so removing keys won't shrink the size of the dictionary over which
# we are looping.
tempData = copy.deepcopy(incBlocks)
for key in incBlocks:
if incBlocks[key].parent in self.data["blockchain"].blocks:
self.data["blockchain"].addBlock(incBlocks[key])
#if len(self.data["blockchain"]) % diffUpdateRate == 0:
# self.updateDifficulty(mode, targetRate)
del tempData[key]
incBlocks = copy.deepcopy(tempData)
while len(incBlocks)>0:
for key in incBlocks:
if incBlocks[key].parent in self.data["blockchain"].blocks:
self.data["blockchain"].addBlock(incBlocks[key])
#if len(self.data["blockchain"]) % diffUpdateRate == 0:
# self.updateDifficulty(mode, targetRate)
del tempData[key]
incBlocks = copy.deepcopy(tempData)
def updateDifficulty(self, mode="Nakamoto", targetRate=1.0/1209600.0):
# Compute the difficulty of the next block
# Note for default, targetRate = two weeks/period, seven days/week, 24 hours/day, 60 minutes/hour, 60 seconds/minute) = 1209600 seconds/period
if mode=="Nakamoto":
# Use MLE estimate of poisson process, compare to targetRate, update by multiplying by resulting ratio.
count = 2016
ident = self.data.miningIdent
topTime = copy.deepcopy(int(round(self.data.blocks[ident].discoTimestamp)))
parent = self.data.blocks[ident].parent
count = count - 1
while count > 0 and parent is not None:
ident = copy.deepcopy(parent)
parent = self.data.blocks[ident].parent
count = count - 1
botTime = copy.deepcopy(int(round(self.data.blocks[ident].discoTimestamp)))
# Algebra is okay:
assert 0 <= 2016 - count and 2016 - count < 2017
assert topTime > botTime
# MLE estimate of arrivals per second:
mleDiscoRate = float(2016 - count)/float(topTime - botTime)
# How much should difficulty change?
self.diff = self.diff*(mleDiscoRate/targetRate)
elif mode=="vanSaberhagen":
# Similar to above, except use 1200 blocks, discard top 120 and bottom 120 after sorting.
# 4 minute blocks in the original cryptonote, I believe... targetRate = 1.0/
# 4 minutes/period, 60 seconds/minute ~ 240 seconds/period
assert targetRate==1.0/240.0
count = 1200
ident = self.data.miningIdent
bl = []
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
parent = self.data.blocks[ident].parent
count = count - 1
while count > 0 and parent is not NOne:
ident = copy.deepcopy(parent)
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
parent = self.data.blocks[ident].parent
count = count-1
# sort
bl = sorted(bl)
# remove outliers
bl = bl[120:-120]
# get topTime and botTime
topTime = bl[-1]
botTime = bl[0]
# Assert algebra will work
assert 0 <= 960 - count and 960 - count < 961
assert topTime > botTime
# Sort of the MLE: # blocks/difference in reported times
# But not the MLE, since the reported times may not be
# the actual times, the "difference in reported times" !=
# "ground truth difference in block discoery times" in general
naiveDiscoRate = (960 - count)/(topTime - botTime)
# How much should difficulty change?
self.diff = self.diff*(naiveDiscoRate/targetRate)
elif mode=="MOM:expModGauss":
# Similar to "vanSaberhagen" except with 2-minute blocks and
# we attempt to take into account that "difference in timestamps"
# can be negative by:
# 1) insisting that the ordering induced by the blockchain and
# 2) modeling timestamps as exponentially modified gaussian.
# If timestamps are T = X + Z where X is exponentially dist-
# ributed with parameter lambda and Z is some Gaussian
# noise with average mu and variance sigma2, then we can est-
# imate sigma2, mu, and lambda:
# mu ~ mean - stdev*(skewness/2)**(1.0/3.0)
# sigma2 ~ variance*(1-(skewness/2)**(2.0/3.0))
# lambda ~ (1.0/(stdev))*(2/skewness)**(1.0/3.0)
assert targetRate==1.0/120.0
count = 1200
ident = self.data.miningIdent
bl = []
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
parent = self.data.blocks[ident].parent
count = count - 1
while count > 0 and parent is not NOne:
ident = copy.deepcopy(parent)
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
parent = self.data.blocks[ident].parent
count = count-1
sk = skew(bl)
va = var(bl)
stdv = sqrt(va)
lam = (1.0/stdv)*(2.0/sk)**(1.0/3.0)
self.diff = self.diff*(lam/targetRate)
else:
print("Error, invalid difficulty mode entered.")
def propagate(self, blockIdent):
for edgeIdent in self.edges:
e = self.edges[edgeIdent]
l = e.data["length"]
toa = self.t + l
mIdent = e.getNeighbor(n.ident)
m = e.nodes[mIdent]
if blockIdent not in m.data["blockchain"]:
pB = e.data["pendingBlocks"]
pendingIdent = newIdent(len(pB))
pendingDat = {"timeOfArrival":toa, "destIdent":mIdent, "block":self.blocks[blockIdent]}
pB.update({pendingIdent:pendingDat})
class Test_Node(unittest.TestCase):
def test_node(self):
nellyIdent = newIdent(0)
bill = Blockchain([], verbosity=True)
name = newIdent(0)
t = time.time()
diff = 1.0
params = [name, t, t+1, None, diff, bill.verbose] # Genesis block has no parent, so parent = None
genesis = Block(params)
bill.addBlock(genesis)
time.sleep(10)
name = newIdent(1)
t = time.time()
diff = 1.0
params = [name, t, t+1, genesis.ident, diff, bill.verbose]
blockA = Block(params)
bill.addBlock(blockA)
# Nodes need an identity and a blockchain object and verbosity and difficulty
nelly = Node([nellyIdent, copy.deepcopy(bill), bill.verbosity, diff])
nelly.updateDifficulty(mode="Nakamoto")
time.sleep(9)
name = newIdent(len(nelly.data))
t = time.time()
params = [name, t, t+1, blockA.ident, nelly.diff, nelly.verbose]
blockB = Block(params)
nelly.updateBlockchain({blockB.ident:blockB})
time.sleep(8)
name = newIdent(len(nelly.data))
t = time.time()
params = [name, t, t+1, blockB.ident, nelly.diff, nelly.verbose]
blockC = Block(params)
nelly.updateBlockchain({blockC.ident:blockC})
time.sleep(1)
name = newIdent(len(nelly.data))
t = time.time()
params = [name, t, t+1, blockB.ident, nelly.diff, nelly.verbose] # Fork off
blockD = Block(params)
nelly.updateBlockchain({blockD.ident:blockD})
time.sleep(7)
name = newIdent(len(nelly.data))
t = time.time()
params = [name, t, t+1, blockD.ident, nelly.diff, nelly.verbose]
blockE = Block(params)
nelly.updateBlockchain({blockE.ident:blockE})
time.sleep(6)
name = newIdent(len(nelly.data))
t = time.time()
params = [name, t, t+1, blockE.ident, nelly.diff, nelly.verbose]
blockF = Block(params)
nelly.updateBlockchain({blockF.ident:blockF})
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Blockchain)
unittest.TextTestRunner(verbosity=1).run(suite)
class Edge(object):
def __init__(self, params=["", {}]):
self.ident = params[0]
self.data = params[1]
self.nodes = {}
'''
Edge object. Has an identity, some data, and a dict of nodes.
'''
def __init__(self, params=["", {}, True]):
try:
assert len(params)==3
except AssertionError:
print("Error, tried to create mal-formed edge.")
else:
self.ident = params[0]
self.data = params[1]
self.verbose = params[2]
self.nodes = {}
def getNeighbor(self, nodeIdent):
result = nodeIdent in self.nodes
# Given one node identity, check that the node
# identity is in the edge's node list and
# return the identity of the other adjacent node.
result = (nodeIdent in self.nodes)
if result:
for otherIdent in self.nodes:
if otherIdent != nodeIdent:
result = otherIdent
assert result in self.nodes
return result
class Graph(object):
def __init__(self, params={}):
'''
Graph object. Contains some data, a dict of nodes, and a dict of edges.
'''
def __init__(self, params={}, verbosity=True):
self.data=params
self.verbose = verbosity
self.nodes = {}
self.edges = {}
def newIdent(self, nonce):
return hash(str(nonce) + str(random.random()))
def createGraph(self, numNodes, probEdge, maxNeighbors):
self.data.update({"numNodes":numNodes, "probEdge":probEdge, "maxNeighbors":maxNeighbors})
# Create a new random graph with numNodes nodes, a
# likelihood any unordered pair of vertices has an edge
# probEdge, and maximum number of neighbors per node
# maxNeighbors.
# First, include inputted information into self.data
self.data.update({"probEdge":probEdge, "maxNeighbors":maxNeighbors})
# Next, for each node to be added, create the node and name it.
for i in range(numNodes):
nIdent = self.newIdent(i)
n = Node([nIdent,{}])
nIdent = newIdent(i)
bl = Blockchain([], verbosity=True)
dat = {"blockchain":bl, "intensity":newIntensity(["uniform"]), "offset":newOffset("sumOfSkellams")}
# A node needs an ident, a data object, a verbosity, and a difficulty
n = Node([nIdent, dat, self.verbose, 1.0])
self.nodes.update({n.ident:n})
touched = {}
# Next, for each possible node pair, decide if an edge exists.
touched = {} # Dummy list of node pairs we have already considered.
for nIdent in self.nodes:
n = self.nodes[nIdent]
n = self.nodes[nIdent] # Pick a node
for mIdent in self.nodes:
m = self.nodes[mIdent]
notSameNode = (nIdent != mIdent)
nOpenSlots = (len(n.edges) < self.data["maxNeighbors"])
m = self.nodes[mIdent] # Pick a pair element
notSameNode = (nIdent != mIdent) # Ensure we aren't dealing with (x,x)
nOpenSlots = (len(n.edges) < self.data["maxNeighbors"]) # ensure both nodes have open slots available for new edges
mOpenSlots = (len(m.edges) < self.data["maxNeighbors"])
untouched = ((nIdent, mIdent) not in touched)
untouched = ((nIdent, mIdent) not in touched) # make sure the pair and its transposition have not been touched
dehcuotnu = ((mIdent, nIdent) not in touched)
if notSameNode and nOpenSlots and mOpenSlots and untouched and dehcuotnu:
# Mark pair as touhed
touched.update({(nIdent,mIdent):True, (mIdent,nIdent):True})
if random.random() < self.data["probEdge"]:
# Determine if edge should exist and if so, add it.
nonce = len(self.edges)
e = Edge([self.newIdent(nonce),{"length":random.random(), "pendingBlocks":[]}])
e = Edge([newIdent(nonce),{"length":random.random(), "pendingBlocks":[]},self.verbose])
e.nodes.update({n.ident:n, m.ident:m})
self.nodes[nIdent].edges.update({e.ident:e})
self.nodes[mIdent].edges.update({e.ident:e})
self.edges.update({e.ident:e})
def addNode(self):
n = Node([self.newIdent(len(self.nodes)), {}])
# Add new node
n = Node([self.newIdent(len(self.nodes)), {}, self.verbose, 1.0])
self.nodes.update({n.ident:n})
for mIdent in self.nodes:
# For every other node, check if an edge should exist and if so add it.
m = self.nodes[mIdent]
notSameNode = (n.ident != mIdent)
nOpenSlots = (len(n.edges) < self.data["maxNeighbors"])
mOpenSlots = (len(m.edges) < self.data["maxNeighbors"])
if notSameNode and nOpenSlots and mOpenSlots and random.random() < self.data["probEdge"]:
nonce = len(self.edges)
e = Edge([self.newIdent(nonce), {"length":random.random(), "pendingBlocks":[]}])
e = Edge([self.newIdent(nonce), {"length":random.random(), "pendingBlocks":[]}, self.verbose])
e.nodes.update({n.ident:n, m.ident:m})
n.edges.update({e.ident:e})
self.nodes[mIdent].edges.update({e.ident:e})
@ -100,10 +539,13 @@ class Graph(object):
return n.ident
def delNode(self, ident):
# Remove a node and wipe all memory of its edges from history.
edgesToDelete = self.nodes[ident].edges
for edgeIdent in edgesToDelete:
if edgeIdent in self.edges:
del self.edges[edgeIdent]
e = edgesToDelete[edgeIdent]
otherIdent = e.getNeighbor(ident)
del self.edges[edgeIdent]
del self.nodes[otherIdent].edges[edgeIdent]
del self.nodes[ident]
class Test_Graph(unittest.TestCase):
@ -111,8 +553,6 @@ class Test_Graph(unittest.TestCase):
greg = Graph()
greg.createGraph(3, 0.5, 10)
self.assertEqual(len(greg.nodes),3)
for edge in greg.edges:
print(greg.edges[edge].ident, "\t", [greg.edges[edge].nodes[n].ident for n in greg.edges[edge].nodes], "\n")
greg.addNode()
self.assertEqual(len(greg.nodes),4)
for edge in greg.edges:
@ -127,43 +567,69 @@ class Test_Graph(unittest.TestCase):
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Graph)
unittest.TextTestRunner(verbosity=1).run(suite)
class FishGraph(stochasticProcess):
def __init__(self, params=None):
class FishGraph(StochasticProcess):
'''
Stochastic process on a graph
with the graph growing in a stochastic process too
'''
# TODO: Check if output.txt exists before beginning. If so, clear it and create a new one.
# TODO: Instead of/in addition to storing graph data in a text file, can we plot with ggplot in R?
def __init__(self, params=None, verbosity=True):
# Initialize
assert "maxTime" in params
self.maxTime = copy.deepcopy(params["maxTime"])
del params["maxTime"]
assert "numNodes" in params
numNodes = params["numNodes"]
del params["numNodes"]
self.data = params
self.t = 0.0
self.state = Graph()
self.state.createGraph(self.data["numNodes"], self.data["probEdge"], self.data["maxNeighbors"])
self.filename = "output.txt"
self.verbose = verbosity
# Create graph
self.state.createGraph(numNodes, self.data["probEdge"], self.data["maxNeighbors"])
# Update node data
for nIdent in self.state.nodes:
n = self.state.nodes[nIdent]
difficulty = 10000.0
intensity = random.random()/difficulty
offset = 2.0*random.random() - 1.0
n.data.update({"intensity":intensity, "offset":offset, "blockchain":{}})
difficulty = 1.0
intensity = newIntensity(params="uniform")
offset = newOffset(params="sumOfSkellams")
dat = {"intensity":intensity, "offset":offset, "blockchain":Blockchain([], verbosity=self.verbose)}
n.data.update(dat)
# Update edge data.
for eIdent in self.state.edges:
e = self.state.edges[eIdent]
e.data.update({"pendingBlocks":[]})
self.maxTime = self.data["maxTime"]
e.data.update({"pendingBlocks":{}})
def go(self):
assert self.maxTime > 0.0
while self.t <= self.maxTime and len(self.state.nodes) > 0:
deltaT = self.getNextTime()
self.updateState(deltaT)
#print(str(self.t) + ", " + str(self.state))
self.updateState(self.t, deltaT)
self.record()
def getNextTime(self):
# Each Poisson process event generates an exponential random variable.
# The smallest of these is selected
# The rate of the smallest determines event type.
eventTag = None
u = copy.deepcopy(random.random())
u = 0.0
while(u == 0.0):
u = copy.deepcopy(random.random())
u = -1.0*math.log(copy.deepcopy(u))/self.data["birthRate"] # Time until next stochastic birth
eventTag = "birth"
v = copy.deepcopy(random.random())
v = 0.0
while(v == 0.0):
v = copy.deepcopy(random.random())
v = -1.0*math.log(copy.deepcopy(v))/self.data["deathRate"] # Time until next stochastic death
if v < u:
u = copy.deepcopy(v)
@ -171,94 +637,160 @@ class FishGraph(stochasticProcess):
for nIdent in self.state.nodes:
n = self.state.nodes[nIdent] # n.ident = nIdent
v = copy.deepcopy(random.random())
v = 0.0
while(v == 0.0):
v = copy.deepcopy(random.random())
v = -1.0*math.log(copy.deepcopy(v))/n.data["intensity"]
if v < u:
u = copy.deepcopy(v)
eventTag = ["discovery", n.ident]
# Now that all the STOCHASTIC arrivals have been decided,
# We check if any of the deterministic events fire off instead.
for eIdent in self.state.edges:
e = self.state.edges[eIdent] # e.ident = eIdent
bufferedBlocks = e.data["pendingBlocks"]
if len(bufferedBlocks) > 0:
for pendingIdent in bufferedBlocks:
pB = bufferedBlocks[pendingIdent]
v = pB["timeOfArrival"]
if v < u:
pB = e.data["pendingBlocks"]
if len(pB) > 0:
for pendingIdent in pB:
arrivalInfo = pB[pendingIdent]
v = arrivalInfo["timeOfArrival"] - self.t
if v < u and 0.0 < v:
u = copy.deepcopy(v)
eventTag = ["arrival", e.ident, pendingIdent]
deltaT = (u, eventTag)
# eventTag = ["arrival", e.ident, pendingIdent]
# eventTag = ["discovery", n.ident]
# eventTag = "death"
# eventTag = "birth"
# Formats:
# eventTag = ["arrival", e.ident, pendingIdent]
# eventTag = ["discovery", n.ident]
# eventTag = "death"
# eventTag = "birth"
return deltaT
def updateState(self, deltaT):
def updateState(self, t, deltaT, mode="Nakamoto", targetRate=1.0/1209600.0):
# Depending on eventTag, update the state...
u = deltaT[0]
shout = ""
eventTag = deltaT[1]
if type(eventTag)==type("birthordeath"):
if eventTag == "death":
# Picks random nodeIdent and kills it
toDie = random.choice(list(self.state.nodes.keys()))
print("DEATH EVENT:")
print("Pre-death population = ", len(self.state.nodes))
x = len(self.state.nodes)
shout += "DEATH, Pop(Old)=" + str(x) + ", Pop(New)="
if self.verbose:
print(shout)
self.state.delNode(toDie)
print("Post-death population = ", len(self.state.nodes))
print("Done. \n")
y = len(self.state.nodes)
assert y == x - 1
shout += str(y) + "\n"
elif eventTag == "birth":
# Adds node with some randomly determined edges
print("BIRTH EVENT:")
print("Pre-birth population = ", len(self.state.nodes))
x = len(self.state.nodes)
shout += "BIRTH, Pop(Old)=" + str(x) + ", Pop(New)="
if self.verbose:
print(shout)
nIdent = self.state.addNode()
print("Post-death population = ", len(self.state.nodes))
n = self.state.nodes[nIdent]
intensity = random.random()/10000.0
intensity = random.random()/1000.0
offset = 2.0*random.random() - 1.0
n.data.update({"intensity":intensity, "offset":offset, "blockchain":{}})
# Auto syncs new node.
print("Auto syncing new node...")
for eIdent in n.edges:
e = n.edges[eIdent]
e.data.update({"pendingBlocks":[]})
e.data.update({"pendingBlocks":{}})
mIdent = e.getNeighbor(n.ident)
m = self.state.nodes[mIdent]
mdata = m.data["blockchain"]
n.data["blockchain"].update(mdata)
print("Done. \n")
y = len(self.state.nodes)
assert y == x + 1
shout += str(y) + "\n"
else:
print("Error: eventTag had length 1 but was neighter a birth or a death. We had ", eventTag)
print("Error: eventTag had length 1 but was neighter a birth or a death, this shouldn't happen so this else case will eventually be removed, I guess? Our eventTag = ", eventTag)
elif len(eventTag)==2:
# Block is discovered and plunked into each edge's pendingBlock list.
shout += "DISCOVERY"
if self.verbose:
print(shout)
assert eventTag[0]=="discovery"
nIdent = eventTag[1]
n = self.state.nodes[n]
s = self.t + n.data["offset"]
n.data["blockchain"].append(s)
for edgeIdent in n.edges:
e = n.edges[edgeIdent]
l = e.data["length"]
toa = self.t + l
mIdent = e.getNeighbor(n.ident)
e.data["pendingBlocks"].append({"timestamp":s, "timeOfArrival":toa, "destIdent":mIdent})
print("Block Discovery event. To be coded. For now, blah blah.")
elif len(eventTag)==3:
assert eventTag[1] in self.state.nodes
nIdent = eventTag[1] # get founding node's identity
n = self.state.nodes[nIdent] # get founding node
s = self.t + n.data["offset"] # get founding node's wall clock
newBlockIdent = newIdent(len(n.data["blockchain"].blocks)) # generate new identity
disco = s
arriv = s
parent = n.data["blockchain"].miningIdent
diff = copy.deepcopy(n.diff)
verbosity = self.verbose
newBlock = Block([newBlockIdent, disco, arriv, parent, diff, verbosity])
n.updateBlockchain({newBlockIdent:newBlock})
n.updateDifficulty(mode, targetRate)
n.propagate(newBlockIdent)
elif len(eventTag)==3:
#eventTag = ("arrival", e.ident, pendingIdent)
# A block deterministically arrives at the end of an edge.
assert eventTag[0]=="arrival"
print("Block Arrival event. To be coded. For now, blah blah.")
shout += "ARRIVAL"
if self.verbose:
print(shout)
eIdent = eventTag[1]
pendingIdent = eventTag[2]
e = self.state.edges[eIdent]
pB = e.data["pendingBlocks"]
arrivalInfo = pB[pendingIdent] # arrivalInfo = {"timeOfArrival":toa, "destIdent":mIdent, "block":newBlock}
assert arrivalInfo["destIdent"] in self.state.nodes
assert self.t + u == arrivalInfo["timeOfArrival"]
receiver = self.state.nodes[arrivalInfo["destIdent"]]
arriv = self.t + u + receiver.data["offset"]
newBlock = arrivalInfo["block"]
newBlock.arrivTimestamp = copy.deepcopy(arriv)
receiver.data["blockchain"].updateBlockchain({newBlock.ident:newBlock})
receiver.updateDifficulty(mode, targetRate)
receiver.propagate(newBlock.ident)
else:
print("Error: eventTag was not a string, or not an array length 2 or 3. In fact, we have eventTag = ", eventTag)
if self.verbose:
print("u = ", u)
self.t += u
if self.verbose:
print(str(self.t) + "\t" + shout)
def record(self):
with open(self.filename, "a") as f:
line = ""
# Format will be edgeIdent,nodeAident,nodeBident
line += str("t=" + str(self.t) + ",")
ordKeyList = sorted(list(self.state.edges.keys()))
for key in ordKeyList:
entry = []
entry.append(key)
nodeKeyList = sorted(list(self.state.edges[key].nodes))
for kkey in nodeKeyList:
entry.append(kkey)
line += str(entry) + ","
f.write(line + "\n")
class Test_FishGraph(unittest.TestCase):
def test_fishGraph(self):
params = {"numNodes":10, "probEdge":0.5, "maxNeighbors":10, "maxTime":100.0, "birthRate":1.1, "deathRate":0.2}
greg = FishGraph(params)
greg.go()
for i in range(10):
params = {"numNodes":10, "probEdge":0.5, "maxNeighbors":10, "maxTime":10.0, "birthRate":0.001, "deathRate":0.001}
greg = FishGraph(params, verbosity=True)
greg.go()
suite = unittest.TestLoader().loadTestsFromTestCase(Test_FishGraph)
unittest.TextTestRunner(verbosity=1).run(suite)