mirror of
https://github.com/monero-project/research-lab.git
synced 2025-01-09 20:39:52 +00:00
797 lines
33 KiB
Python
797 lines
33 KiB
Python
import unittest, copy, random, math, time
|
|
from scipy.stats import skew
|
|
from numpy import var
|
|
from numpy import random as nprandom
|
|
|
|
#TODO: Node.data["blockchain"] != node.data
|
|
|
|
def newIdent(params):
|
|
nonce = params
|
|
# Generate new random identity.
|
|
return hash(str(nonce) + str(random.random()))
|
|
|
|
def newIntensity(params):
|
|
mode = params
|
|
if mode=="uniform":
|
|
return random.random()
|
|
|
|
def newOffset(params):
|
|
mode = params
|
|
if mode=="unifDST":
|
|
r = 2.0*random.random() - 1.0 # hours
|
|
r = 60.0*60.0*r #60 min/hr, 60 sec/min
|
|
return r
|
|
if mode=="sumOfSkellams":
|
|
# This mode uses a skellam distribution, which is
|
|
# the difference of two poisson-distributed random
|
|
# variables.
|
|
# HourOffset = skellam
|
|
# SecondOffset = skellam
|
|
# TotalOffset = 60*60*HourOffset + 60*MinuteOffset + SecondOffset
|
|
# Each skellam = poisson(1) - poisson(1)
|
|
# Reasoning: We consider most computers' local time offset from UTC
|
|
# to be a two time-scale random variable, one on the hour scale and one on
|
|
# the second scale. We make
|
|
x = nprandom.poisson(1, (2,2))
|
|
totalOffset = 60.0*60.0*float(x[0][0] - x[1][0]) + float((x[0][1] - x[1][1]))
|
|
return totalOffset
|
|
|
|
class StochasticProcess(object):
|
|
'''
|
|
Stochastic processes have a clock and a state.
|
|
The clock moves forward, and then the state updates.
|
|
More detail requires knowledge of the underlying stochProc.
|
|
'''
|
|
def __init__(self, params=None):
|
|
# initialize with initial data
|
|
self.data = params
|
|
self.t = 0.0 # should always start at t=0.0
|
|
self.state = 0.0 # magic number
|
|
self.maxTime = 1000.0 # magic number
|
|
self.verbose = True
|
|
|
|
def go(self):
|
|
# Executes stochastic process.
|
|
assert self.maxTime > 0.0 # Check loop will eventually terminate.
|
|
t = self.t
|
|
while t <= self.maxTime:
|
|
deltaT = self.getNextTime() # Pick the next "time until event" and a description of the event.
|
|
self.updateState(t, deltaT) # Update state with deltaT input
|
|
t = self.t
|
|
if self.verbose:
|
|
print("Recording...")
|
|
|
|
def getNextTime(self):
|
|
return 1 # Magic number right now
|
|
|
|
def updateState(self, t, deltaT):
|
|
# Update the state of the system. In this case,
|
|
# we are doing a random walk on the integers.
|
|
self.state += random.randrange(-1,2,1) # [-1, 0, 1]
|
|
self.t += deltaT
|
|
|
|
class Test_StochasticProcess(unittest.TestCase):
|
|
def test_sp(self):
|
|
sally = StochasticProcess()
|
|
sally.go()
|
|
|
|
#suite = unittest.TestLoader().loadTestsFromTestCase(Test_StochasticProcess)
|
|
#unittest.TextTestRunner(verbosity=1).run(suite)
|
|
|
|
class Block(object):
|
|
'''
|
|
Each block has: an identity, a timestamp of discovery (possibly false),
|
|
has a timestamp of arrival at the local node (possibly unnecessary), a pointer to a parent
|
|
block's identity, and a difficulty score.
|
|
'''
|
|
def __init__(self, params=[]):
|
|
try:
|
|
assert len(params)==6
|
|
except AssertionError:
|
|
print("Error in Block(): Tried to add a malformed block. We received params = " + str(params) + ", but should have had something of the form [ident, disco, arriv, parent, diff, verbose].")
|
|
else:
|
|
self.ident = params[0]
|
|
self.discoTimestamp = params[1]
|
|
self.arrivTimestamp = params[2]
|
|
self.parent = params[3]
|
|
self.diff = params[4]
|
|
self.verbose = params[5]
|
|
|
|
class Test_Block(unittest.TestCase):
|
|
def test_b(self):
|
|
#bill = Block()
|
|
name = newIdent(0)
|
|
t = time.time()
|
|
diff = 1.0
|
|
params = [name, t, t+1, None, diff, False]
|
|
bill = Block(params)
|
|
self.assertEqual(bill.ident,name)
|
|
self.assertEqual(bill.discoTimestamp,t)
|
|
self.assertEqual(bill.arrivTimestamp,t+1)
|
|
self.assertTrue(bill.parent is None)
|
|
self.assertEqual(bill.diff,diff)
|
|
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Block)
|
|
unittest.TextTestRunner(verbosity=1).run(suite)
|
|
|
|
class Blockchain(object):
|
|
'''
|
|
Not a true blockchain, of course, but tracks block objects (timestamps) as above.
|
|
Each node should be responsible for finding the chain with most cumulative work.
|
|
Right now we assume Nakamoto consensus (konsensnakamoto).
|
|
'''
|
|
def __init__(self, params=[], verbosity=True):
|
|
self.blocks = {}
|
|
self.leaves = {}
|
|
self.miningIdent = None
|
|
self.verbose = verbosity
|
|
|
|
def addBlock(self, blockToAdd):
|
|
# In our model we assume difficulty scores of blocks are correct (otherwise they would
|
|
# be rejected in the real life network, and we aren't trying to model spam attacks).
|
|
try:
|
|
assert blockToAdd.ident not in self.blocks
|
|
except AssertionError:
|
|
print("Error, tried to add block that already exists in blockchain.")
|
|
else:
|
|
self.blocks.update({blockToAdd.ident:blockToAdd})
|
|
self.leaves.update({blockToAdd.ident:blockToAdd})
|
|
if blockToAdd.parent in self.leaves:
|
|
del self.leaves[blockToAdd.parent]
|
|
self.whichLeaf()
|
|
|
|
def whichLeaf(self):
|
|
# Determine which leaf shall be the parent leaf.
|
|
if len(self.leaves) == 1:
|
|
# If the chain has never forked, we have no decision to make:
|
|
for ident in self.leaves:
|
|
self.miningIdent = ident
|
|
elif len(self.leaves) > 1:
|
|
# If the chain has forked *ever* this will not be the case.
|
|
maxCumDiff = 0.0
|
|
for ident in self.leaves:
|
|
tempCumDiff = 0.0
|
|
tempCumDiff += self.blocks[ident].diff
|
|
nextIdent = self.blocks[ident].parent
|
|
if nextIdent is not None and nextIdent in self.blocks:
|
|
while self.blocks[nextIdent].parent is not None:
|
|
tempCumDiff += self.blocks[nextIdent].diff
|
|
nextIdent = self.blocks[nextIdent].parent
|
|
if tempCumDiff > maxCumDiff:
|
|
# If more than one leaf ties for maxCumDiff, each node in the
|
|
# network should pick one of these two arbitrarily. Since we
|
|
# are storing each blockchain in a hash table (unordered!), for
|
|
# each node in the network that observes a tie, each possible leaf
|
|
# is equally likely to have been the first one found! So
|
|
# we don't need to do anything for the node to select which chain
|
|
# to work off of.
|
|
self.miningIdent = ident
|
|
else:
|
|
print("Error, tried to assess an empty blockchain.")
|
|
|
|
class Test_Blockchain(unittest.TestCase):
|
|
def test_bc(self):
|
|
bill = Blockchain([], verbosity=True)
|
|
|
|
name = newIdent(0)
|
|
t = time.time()
|
|
diff = 1.0
|
|
params = [name, t, t+1, None, diff, bill.verbose]
|
|
genesis = Block(params)
|
|
|
|
self.assertEqual(genesis.ident,name)
|
|
self.assertEqual(genesis.discoTimestamp,t)
|
|
self.assertEqual(genesis.arrivTimestamp,t+1)
|
|
self.assertTrue(genesis.parent is None)
|
|
self.assertEqual(genesis.diff,diff)
|
|
|
|
bill.addBlock(genesis)
|
|
|
|
self.assertTrue(genesis.ident in bill.blocks)
|
|
self.assertTrue(genesis.ident in bill.leaves)
|
|
self.assertEqual(genesis.ident, bill.miningIdent)
|
|
|
|
name = newIdent(1)
|
|
t = time.time()
|
|
diff = 2.0
|
|
params = [name, t, t+1, genesis.ident, diff, bill.verbose]
|
|
blockA = Block(params)
|
|
bill.addBlock(blockA)
|
|
|
|
self.assertTrue(blockA.ident in bill.blocks)
|
|
self.assertTrue(blockA.ident in bill.leaves)
|
|
self.assertFalse(genesis.ident in bill.leaves)
|
|
self.assertTrue(genesis.ident in bill.blocks)
|
|
self.assertEqual(blockA.ident, bill.miningIdent)
|
|
|
|
name = newIdent(1)
|
|
t = time.time()
|
|
diff = 2.5
|
|
params = [name, t, t+1, None, diff, bill.verbose]
|
|
blockB = Block(params)
|
|
bill.addBlock(blockB)
|
|
|
|
self.assertTrue(blockB.ident in bill.blocks)
|
|
self.assertTrue(blockB.ident in bill.leaves)
|
|
self.assertFalse(genesis.ident in bill.leaves)
|
|
self.assertTrue(genesis.ident in bill.blocks)
|
|
self.assertTrue(blockA.ident in bill.leaves)
|
|
self.assertTrue(blockB.ident in bill.leaves)
|
|
self.assertEqual(blockB.ident, bill.miningIdent)
|
|
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Blockchain)
|
|
unittest.TextTestRunner(verbosity=1).run(suite)
|
|
|
|
class Node(object):
|
|
'''
|
|
Node object. params [identity, blockchain (data), verbosity, difficulty]
|
|
'''
|
|
def __init__(self, params=["", {}, True]):
|
|
try:
|
|
assert len(params)==4
|
|
except AssertionError:
|
|
print("Error, Tried to create malformed node.")
|
|
else:
|
|
self.ident = params[0]
|
|
self.data = params[1] #Blockchain object
|
|
self.verbose = params[2]
|
|
self.diff = params[3]
|
|
self.edges = {}
|
|
|
|
def updateBlockchain(self, incBlocks, diffUpdateRate=1, mode="Nakamoto", targetRate=1.0/1209600.0):
|
|
# dataToUpdate shall be a dictionary of block identities (as keys) and their associated blocks (as values)
|
|
# to be added to the local data. We assume difficulty scores have been reported honestly for now.
|
|
|
|
# Stash a copy of incoming blocks so removing keys won't shrink the size of the dictionary over which
|
|
# we are looping.
|
|
tempData = copy.deepcopy(incBlocks)
|
|
for key in incBlocks:
|
|
if incBlocks[key].parent in self.data["blockchain"].blocks:
|
|
self.data["blockchain"].addBlock(incBlocks[key])
|
|
#if len(self.data["blockchain"]) % diffUpdateRate == 0:
|
|
# self.updateDifficulty(mode, targetRate)
|
|
del tempData[key]
|
|
incBlocks = copy.deepcopy(tempData)
|
|
while len(incBlocks)>0:
|
|
for key in incBlocks:
|
|
if incBlocks[key].parent in self.data["blockchain"].blocks:
|
|
self.data["blockchain"].addBlock(incBlocks[key])
|
|
#if len(self.data["blockchain"]) % diffUpdateRate == 0:
|
|
# self.updateDifficulty(mode, targetRate)
|
|
del tempData[key]
|
|
incBlocks = copy.deepcopy(tempData)
|
|
|
|
def updateDifficulty(self, mode="Nakamoto", targetRate=1.0/1209600.0):
|
|
# Compute the difficulty of the next block
|
|
# Note for default, targetRate = two weeks/period, seven days/week, 24 hours/day, 60 minutes/hour, 60 seconds/minute) = 1209600 seconds/period
|
|
if mode=="Nakamoto":
|
|
# Use MLE estimate of poisson process, compare to targetRate, update by multiplying by resulting ratio.
|
|
count = 2016
|
|
ident = self.data.miningIdent
|
|
topTime = copy.deepcopy(int(round(self.data.blocks[ident].discoTimestamp)))
|
|
parent = self.data.blocks[ident].parent
|
|
count = count - 1
|
|
while count > 0 and parent is not None:
|
|
ident = copy.deepcopy(parent)
|
|
parent = self.data.blocks[ident].parent
|
|
count = count - 1
|
|
botTime = copy.deepcopy(int(round(self.data.blocks[ident].discoTimestamp)))
|
|
|
|
# Algebra is okay:
|
|
assert 0 <= 2016 - count and 2016 - count < 2017
|
|
assert topTime > botTime
|
|
|
|
# MLE estimate of arrivals per second:
|
|
mleDiscoRate = float(2016 - count)/float(topTime - botTime)
|
|
|
|
# How much should difficulty change?
|
|
self.diff = self.diff*(mleDiscoRate/targetRate)
|
|
|
|
elif mode=="vanSaberhagen":
|
|
# Similar to above, except use 1200 blocks, discard top 120 and bottom 120 after sorting.
|
|
# 4 minute blocks in the original cryptonote, I believe... targetRate = 1.0/
|
|
# 4 minutes/period, 60 seconds/minute ~ 240 seconds/period
|
|
assert targetRate==1.0/240.0
|
|
count = 1200
|
|
ident = self.data.miningIdent
|
|
bl = []
|
|
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
|
|
parent = self.data.blocks[ident].parent
|
|
count = count - 1
|
|
while count > 0 and parent is not NOne:
|
|
ident = copy.deepcopy(parent)
|
|
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
|
|
parent = self.data.blocks[ident].parent
|
|
count = count-1
|
|
# sort
|
|
bl = sorted(bl)
|
|
|
|
# remove outliers
|
|
bl = bl[120:-120]
|
|
|
|
# get topTime and botTime
|
|
topTime = bl[-1]
|
|
botTime = bl[0]
|
|
|
|
# Assert algebra will work
|
|
assert 0 <= 960 - count and 960 - count < 961
|
|
assert topTime > botTime
|
|
|
|
# Sort of the MLE: # blocks/difference in reported times
|
|
# But not the MLE, since the reported times may not be
|
|
# the actual times, the "difference in reported times" !=
|
|
# "ground truth difference in block discoery times" in general
|
|
naiveDiscoRate = (960 - count)/(topTime - botTime)
|
|
|
|
# How much should difficulty change?
|
|
self.diff = self.diff*(naiveDiscoRate/targetRate)
|
|
|
|
elif mode=="MOM:expModGauss":
|
|
# Similar to "vanSaberhagen" except with 2-minute blocks and
|
|
# we attempt to take into account that "difference in timestamps"
|
|
# can be negative by:
|
|
# 1) insisting that the ordering induced by the blockchain and
|
|
# 2) modeling timestamps as exponentially modified gaussian.
|
|
# If timestamps are T = X + Z where X is exponentially dist-
|
|
# ributed with parameter lambda and Z is some Gaussian
|
|
# noise with average mu and variance sigma2, then we can est-
|
|
# imate sigma2, mu, and lambda:
|
|
# mu ~ mean - stdev*(skewness/2)**(1.0/3.0)
|
|
# sigma2 ~ variance*(1-(skewness/2)**(2.0/3.0))
|
|
# lambda ~ (1.0/(stdev))*(2/skewness)**(1.0/3.0)
|
|
assert targetRate==1.0/120.0
|
|
count = 1200
|
|
ident = self.data.miningIdent
|
|
bl = []
|
|
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
|
|
parent = self.data.blocks[ident].parent
|
|
count = count - 1
|
|
while count > 0 and parent is not NOne:
|
|
ident = copy.deepcopy(parent)
|
|
bl.append(copy.deepcopy(self.data.blocks[ident].discoTimestamp))
|
|
parent = self.data.blocks[ident].parent
|
|
count = count-1
|
|
sk = skew(bl)
|
|
va = var(bl)
|
|
stdv = sqrt(va)
|
|
lam = (1.0/stdv)*(2.0/sk)**(1.0/3.0)
|
|
self.diff = self.diff*(lam/targetRate)
|
|
else:
|
|
print("Error, invalid difficulty mode entered.")
|
|
|
|
def propagate(self, blockIdent):
|
|
for edgeIdent in self.edges:
|
|
e = self.edges[edgeIdent]
|
|
l = e.data["length"]
|
|
toa = self.t + l
|
|
mIdent = e.getNeighbor(n.ident)
|
|
m = e.nodes[mIdent]
|
|
if blockIdent not in m.data["blockchain"]:
|
|
pB = e.data["pendingBlocks"]
|
|
pendingIdent = newIdent(len(pB))
|
|
pendingDat = {"timeOfArrival":toa, "destIdent":mIdent, "block":self.blocks[blockIdent]}
|
|
pB.update({pendingIdent:pendingDat})
|
|
|
|
|
|
class Test_Node(unittest.TestCase):
|
|
def test_node(self):
|
|
nellyIdent = newIdent(0)
|
|
bill = Blockchain([], verbosity=True)
|
|
|
|
name = newIdent(0)
|
|
t = time.time()
|
|
diff = 1.0
|
|
params = [name, t, t+1, None, diff, bill.verbose] # Genesis block has no parent, so parent = None
|
|
genesis = Block(params)
|
|
bill.addBlock(genesis)
|
|
|
|
time.sleep(10)
|
|
|
|
name = newIdent(1)
|
|
t = time.time()
|
|
diff = 1.0
|
|
params = [name, t, t+1, genesis.ident, diff, bill.verbose]
|
|
blockA = Block(params)
|
|
bill.addBlock(blockA)
|
|
|
|
# Nodes need an identity and a blockchain object and verbosity and difficulty
|
|
nelly = Node([nellyIdent, copy.deepcopy(bill), bill.verbosity, diff])
|
|
nelly.updateDifficulty(mode="Nakamoto")
|
|
|
|
time.sleep(9)
|
|
|
|
name = newIdent(len(nelly.data))
|
|
t = time.time()
|
|
params = [name, t, t+1, blockA.ident, nelly.diff, nelly.verbose]
|
|
blockB = Block(params)
|
|
nelly.updateBlockchain({blockB.ident:blockB})
|
|
|
|
time.sleep(8)
|
|
|
|
name = newIdent(len(nelly.data))
|
|
t = time.time()
|
|
params = [name, t, t+1, blockB.ident, nelly.diff, nelly.verbose]
|
|
blockC = Block(params)
|
|
nelly.updateBlockchain({blockC.ident:blockC})
|
|
|
|
time.sleep(1)
|
|
name = newIdent(len(nelly.data))
|
|
t = time.time()
|
|
params = [name, t, t+1, blockB.ident, nelly.diff, nelly.verbose] # Fork off
|
|
blockD = Block(params)
|
|
nelly.updateBlockchain({blockD.ident:blockD})
|
|
|
|
time.sleep(7)
|
|
name = newIdent(len(nelly.data))
|
|
t = time.time()
|
|
params = [name, t, t+1, blockD.ident, nelly.diff, nelly.verbose]
|
|
blockE = Block(params)
|
|
nelly.updateBlockchain({blockE.ident:blockE})
|
|
|
|
|
|
time.sleep(6)
|
|
name = newIdent(len(nelly.data))
|
|
t = time.time()
|
|
params = [name, t, t+1, blockE.ident, nelly.diff, nelly.verbose]
|
|
blockF = Block(params)
|
|
nelly.updateBlockchain({blockF.ident:blockF})
|
|
|
|
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Blockchain)
|
|
unittest.TextTestRunner(verbosity=1).run(suite)
|
|
|
|
|
|
class Edge(object):
|
|
'''
|
|
Edge object. Has an identity, some data, and a dict of nodes.
|
|
'''
|
|
def __init__(self, params=["", {}, True]):
|
|
try:
|
|
assert len(params)==3
|
|
except AssertionError:
|
|
print("Error, tried to create mal-formed edge.")
|
|
else:
|
|
self.ident = params[0]
|
|
self.data = params[1]
|
|
self.verbose = params[2]
|
|
self.nodes = {}
|
|
|
|
def getNeighbor(self, nodeIdent):
|
|
# Given one node identity, check that the node
|
|
# identity is in the edge's node list and
|
|
# return the identity of the other adjacent node.
|
|
result = (nodeIdent in self.nodes)
|
|
if result:
|
|
for otherIdent in self.nodes:
|
|
if otherIdent != nodeIdent:
|
|
result = otherIdent
|
|
assert result in self.nodes
|
|
return result
|
|
|
|
class Graph(object):
|
|
'''
|
|
Graph object. Contains some data, a dict of nodes, and a dict of edges.
|
|
'''
|
|
def __init__(self, params={}, verbosity=True):
|
|
self.data=params
|
|
self.verbose = verbosity
|
|
self.nodes = {}
|
|
self.edges = {}
|
|
|
|
def createGraph(self, numNodes, probEdge, maxNeighbors):
|
|
# Create a new random graph with numNodes nodes, a
|
|
# likelihood any unordered pair of vertices has an edge
|
|
# probEdge, and maximum number of neighbors per node
|
|
# maxNeighbors.
|
|
|
|
# First, include inputted information into self.data
|
|
self.data.update({"probEdge":probEdge, "maxNeighbors":maxNeighbors})
|
|
|
|
# Next, for each node to be added, create the node and name it.
|
|
for i in range(numNodes):
|
|
nIdent = newIdent(i)
|
|
bl = Blockchain([], verbosity=True)
|
|
dat = {"blockchain":bl, "intensity":newIntensity(["uniform"]), "offset":newOffset("sumOfSkellams")}
|
|
# A node needs an ident, a data object, a verbosity, and a difficulty
|
|
n = Node([nIdent, dat, self.verbose, 1.0])
|
|
self.nodes.update({n.ident:n})
|
|
|
|
# Next, for each possible node pair, decide if an edge exists.
|
|
touched = {} # Dummy list of node pairs we have already considered.
|
|
for nIdent in self.nodes:
|
|
n = self.nodes[nIdent] # Pick a node
|
|
for mIdent in self.nodes:
|
|
m = self.nodes[mIdent] # Pick a pair element
|
|
notSameNode = (nIdent != mIdent) # Ensure we aren't dealing with (x,x)
|
|
nOpenSlots = (len(n.edges) < self.data["maxNeighbors"]) # ensure both nodes have open slots available for new edges
|
|
mOpenSlots = (len(m.edges) < self.data["maxNeighbors"])
|
|
untouched = ((nIdent, mIdent) not in touched) # make sure the pair and its transposition have not been touched
|
|
dehcuotnu = ((mIdent, nIdent) not in touched)
|
|
if notSameNode and nOpenSlots and mOpenSlots and untouched and dehcuotnu:
|
|
# Mark pair as touhed
|
|
touched.update({(nIdent,mIdent):True, (mIdent,nIdent):True})
|
|
if random.random() < self.data["probEdge"]:
|
|
# Determine if edge should exist and if so, add it.
|
|
nonce = len(self.edges)
|
|
e = Edge([newIdent(nonce),{"length":random.random(), "pendingBlocks":[]},self.verbose])
|
|
e.nodes.update({n.ident:n, m.ident:m})
|
|
self.nodes[nIdent].edges.update({e.ident:e})
|
|
self.nodes[mIdent].edges.update({e.ident:e})
|
|
self.edges.update({e.ident:e})
|
|
|
|
def addNode(self):
|
|
# Add new node
|
|
n = Node([self.newIdent(len(self.nodes)), {}, self.verbose, 1.0])
|
|
self.nodes.update({n.ident:n})
|
|
for mIdent in self.nodes:
|
|
# For every other node, check if an edge should exist and if so add it.
|
|
m = self.nodes[mIdent]
|
|
notSameNode = (n.ident != mIdent)
|
|
nOpenSlots = (len(n.edges) < self.data["maxNeighbors"])
|
|
mOpenSlots = (len(m.edges) < self.data["maxNeighbors"])
|
|
if notSameNode and nOpenSlots and mOpenSlots and random.random() < self.data["probEdge"]:
|
|
nonce = len(self.edges)
|
|
e = Edge([self.newIdent(nonce), {"length":random.random(), "pendingBlocks":[]}, self.verbose])
|
|
e.nodes.update({n.ident:n, m.ident:m})
|
|
n.edges.update({e.ident:e})
|
|
self.nodes[mIdent].edges.update({e.ident:e})
|
|
self.edges.update({e.ident:e})
|
|
return n.ident
|
|
|
|
def delNode(self, ident):
|
|
# Remove a node and wipe all memory of its edges from history.
|
|
edgesToDelete = self.nodes[ident].edges
|
|
for edgeIdent in edgesToDelete:
|
|
e = edgesToDelete[edgeIdent]
|
|
otherIdent = e.getNeighbor(ident)
|
|
del self.edges[edgeIdent]
|
|
del self.nodes[otherIdent].edges[edgeIdent]
|
|
del self.nodes[ident]
|
|
|
|
class Test_Graph(unittest.TestCase):
|
|
def test_graph(self):
|
|
greg = Graph()
|
|
greg.createGraph(3, 0.5, 10)
|
|
self.assertEqual(len(greg.nodes),3)
|
|
greg.addNode()
|
|
self.assertEqual(len(greg.nodes),4)
|
|
for edge in greg.edges:
|
|
self.assertEqual(len(greg.edges[edge].nodes),2)
|
|
nodeToKill = random.choice(list(greg.nodes.keys()))
|
|
greg.delNode(nodeToKill)
|
|
for edge in greg.edges:
|
|
self.assertEqual(len(greg.edges[edge].nodes),2)
|
|
for nodeIdent in greg.edges[edge].nodes:
|
|
self.assertTrue(nodeIdent in greg.nodes)
|
|
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(Test_Graph)
|
|
unittest.TextTestRunner(verbosity=1).run(suite)
|
|
|
|
class FishGraph(StochasticProcess):
|
|
'''
|
|
Stochastic process on a graph
|
|
with the graph growing in a stochastic process too
|
|
'''
|
|
# TODO: Check if output.txt exists before beginning. If so, clear it and create a new one.
|
|
# TODO: Instead of/in addition to storing graph data in a text file, can we plot with ggplot in R?
|
|
def __init__(self, params=None, verbosity=True):
|
|
# Initialize
|
|
|
|
assert "maxTime" in params
|
|
self.maxTime = copy.deepcopy(params["maxTime"])
|
|
del params["maxTime"]
|
|
|
|
assert "numNodes" in params
|
|
numNodes = params["numNodes"]
|
|
del params["numNodes"]
|
|
|
|
self.data = params
|
|
self.t = 0.0
|
|
self.state = Graph()
|
|
self.filename = "output.txt"
|
|
self.verbose = verbosity
|
|
|
|
# Create graph
|
|
self.state.createGraph(numNodes, self.data["probEdge"], self.data["maxNeighbors"])
|
|
|
|
# Update node data
|
|
for nIdent in self.state.nodes:
|
|
n = self.state.nodes[nIdent]
|
|
difficulty = 1.0
|
|
intensity = newIntensity(params="uniform")
|
|
offset = newOffset(params="sumOfSkellams")
|
|
dat = {"intensity":intensity, "offset":offset, "blockchain":Blockchain([], verbosity=self.verbose)}
|
|
n.data.update(dat)
|
|
|
|
# Update edge data.
|
|
for eIdent in self.state.edges:
|
|
e = self.state.edges[eIdent]
|
|
e.data.update({"pendingBlocks":{}})
|
|
|
|
def go(self):
|
|
assert self.maxTime > 0.0
|
|
while self.t <= self.maxTime and len(self.state.nodes) > 0:
|
|
deltaT = self.getNextTime()
|
|
self.updateState(self.t, deltaT)
|
|
self.record()
|
|
|
|
def getNextTime(self):
|
|
# Each Poisson process event generates an exponential random variable.
|
|
# The smallest of these is selected
|
|
# The rate of the smallest determines event type.
|
|
eventTag = None
|
|
|
|
u = 0.0
|
|
while(u == 0.0):
|
|
u = copy.deepcopy(random.random())
|
|
u = -1.0*math.log(copy.deepcopy(u))/self.data["birthRate"] # Time until next stochastic birth
|
|
eventTag = "birth"
|
|
|
|
v = 0.0
|
|
while(v == 0.0):
|
|
v = copy.deepcopy(random.random())
|
|
v = -1.0*math.log(copy.deepcopy(v))/self.data["deathRate"] # Time until next stochastic death
|
|
if v < u:
|
|
u = copy.deepcopy(v)
|
|
eventTag = "death"
|
|
|
|
for nIdent in self.state.nodes:
|
|
n = self.state.nodes[nIdent] # n.ident = nIdent
|
|
v = 0.0
|
|
while(v == 0.0):
|
|
v = copy.deepcopy(random.random())
|
|
v = -1.0*math.log(copy.deepcopy(v))/n.data["intensity"]
|
|
if v < u:
|
|
u = copy.deepcopy(v)
|
|
eventTag = ["discovery", n.ident]
|
|
|
|
# Now that all the STOCHASTIC arrivals have been decided,
|
|
# We check if any of the deterministic events fire off instead.
|
|
for eIdent in self.state.edges:
|
|
e = self.state.edges[eIdent] # e.ident = eIdent
|
|
pB = e.data["pendingBlocks"]
|
|
if len(pB) > 0:
|
|
for pendingIdent in pB:
|
|
arrivalInfo = pB[pendingIdent]
|
|
v = arrivalInfo["timeOfArrival"] - self.t
|
|
if v < u and 0.0 < v:
|
|
u = copy.deepcopy(v)
|
|
eventTag = ["arrival", e.ident, pendingIdent]
|
|
|
|
deltaT = (u, eventTag)
|
|
# Formats:
|
|
# eventTag = ["arrival", e.ident, pendingIdent]
|
|
# eventTag = ["discovery", n.ident]
|
|
# eventTag = "death"
|
|
# eventTag = "birth"
|
|
return deltaT
|
|
|
|
def updateState(self, t, deltaT, mode="Nakamoto", targetRate=1.0/1209600.0):
|
|
# Depending on eventTag, update the state...
|
|
u = deltaT[0]
|
|
shout = ""
|
|
eventTag = deltaT[1]
|
|
|
|
if type(eventTag)==type("birthordeath"):
|
|
if eventTag == "death":
|
|
# Picks random nodeIdent and kills it
|
|
toDie = random.choice(list(self.state.nodes.keys()))
|
|
x = len(self.state.nodes)
|
|
shout += "DEATH, Pop(Old)=" + str(x) + ", Pop(New)="
|
|
if self.verbose:
|
|
print(shout)
|
|
self.state.delNode(toDie)
|
|
y = len(self.state.nodes)
|
|
assert y == x - 1
|
|
shout += str(y) + "\n"
|
|
|
|
elif eventTag == "birth":
|
|
# Adds node with some randomly determined edges
|
|
x = len(self.state.nodes)
|
|
shout += "BIRTH, Pop(Old)=" + str(x) + ", Pop(New)="
|
|
if self.verbose:
|
|
print(shout)
|
|
nIdent = self.state.addNode()
|
|
n = self.state.nodes[nIdent]
|
|
intensity = random.random()/1000.0
|
|
offset = 2.0*random.random() - 1.0
|
|
n.data.update({"intensity":intensity, "offset":offset, "blockchain":{}})
|
|
# Auto syncs new node.
|
|
for eIdent in n.edges:
|
|
e = n.edges[eIdent]
|
|
e.data.update({"pendingBlocks":{}})
|
|
mIdent = e.getNeighbor(n.ident)
|
|
m = self.state.nodes[mIdent]
|
|
mdata = m.data["blockchain"]
|
|
n.data["blockchain"].update(mdata)
|
|
y = len(self.state.nodes)
|
|
assert y == x + 1
|
|
shout += str(y) + "\n"
|
|
else:
|
|
print("Error: eventTag had length 1 but was neighter a birth or a death, this shouldn't happen so this else case will eventually be removed, I guess? Our eventTag = ", eventTag)
|
|
elif len(eventTag)==2:
|
|
# Block is discovered and plunked into each edge's pendingBlock list.
|
|
|
|
shout += "DISCOVERY"
|
|
if self.verbose:
|
|
print(shout)
|
|
|
|
assert eventTag[0]=="discovery"
|
|
assert eventTag[1] in self.state.nodes
|
|
nIdent = eventTag[1] # get founding node's identity
|
|
n = self.state.nodes[nIdent] # get founding node
|
|
s = self.t + n.data["offset"] # get founding node's wall clock
|
|
|
|
newBlockIdent = newIdent(len(n.data["blockchain"].blocks)) # generate new identity
|
|
disco = s
|
|
arriv = s
|
|
parent = n.data["blockchain"].miningIdent
|
|
diff = copy.deepcopy(n.diff)
|
|
verbosity = self.verbose
|
|
|
|
newBlock = Block([newBlockIdent, disco, arriv, parent, diff, verbosity])
|
|
n.updateBlockchain({newBlockIdent:newBlock})
|
|
n.updateDifficulty(mode, targetRate)
|
|
n.propagate(newBlockIdent)
|
|
|
|
elif len(eventTag)==3:
|
|
#eventTag = ("arrival", e.ident, pendingIdent)
|
|
# A block deterministically arrives at the end of an edge.
|
|
|
|
assert eventTag[0]=="arrival"
|
|
shout += "ARRIVAL"
|
|
if self.verbose:
|
|
print(shout)
|
|
|
|
eIdent = eventTag[1]
|
|
pendingIdent = eventTag[2]
|
|
e = self.state.edges[eIdent]
|
|
pB = e.data["pendingBlocks"]
|
|
arrivalInfo = pB[pendingIdent] # arrivalInfo = {"timeOfArrival":toa, "destIdent":mIdent, "block":newBlock}
|
|
|
|
assert arrivalInfo["destIdent"] in self.state.nodes
|
|
assert self.t + u == arrivalInfo["timeOfArrival"]
|
|
receiver = self.state.nodes[arrivalInfo["destIdent"]]
|
|
arriv = self.t + u + receiver.data["offset"]
|
|
newBlock = arrivalInfo["block"]
|
|
newBlock.arrivTimestamp = copy.deepcopy(arriv)
|
|
receiver.data["blockchain"].updateBlockchain({newBlock.ident:newBlock})
|
|
receiver.updateDifficulty(mode, targetRate)
|
|
receiver.propagate(newBlock.ident)
|
|
|
|
else:
|
|
print("Error: eventTag was not a string, or not an array length 2 or 3. In fact, we have eventTag = ", eventTag)
|
|
|
|
if self.verbose:
|
|
print("u = ", u)
|
|
self.t += u
|
|
if self.verbose:
|
|
print(str(self.t) + "\t" + shout)
|
|
|
|
def record(self):
|
|
with open(self.filename, "a") as f:
|
|
line = ""
|
|
# Format will be edgeIdent,nodeAident,nodeBident
|
|
line += str("t=" + str(self.t) + ",")
|
|
ordKeyList = sorted(list(self.state.edges.keys()))
|
|
for key in ordKeyList:
|
|
entry = []
|
|
entry.append(key)
|
|
nodeKeyList = sorted(list(self.state.edges[key].nodes))
|
|
for kkey in nodeKeyList:
|
|
entry.append(kkey)
|
|
line += str(entry) + ","
|
|
f.write(line + "\n")
|
|
|
|
class Test_FishGraph(unittest.TestCase):
|
|
def test_fishGraph(self):
|
|
for i in range(10):
|
|
params = {"numNodes":10, "probEdge":0.5, "maxNeighbors":10, "maxTime":10.0, "birthRate":0.001, "deathRate":0.001}
|
|
greg = FishGraph(params, verbosity=True)
|
|
greg.go()
|
|
|
|
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(Test_FishGraph)
|
|
unittest.TextTestRunner(verbosity=1).run(suite)
|
|
|
|
|