This allows flushing internal caches (for now, the bad tx cache,
which will allow debugging a stuck monerod after it has failed to
verify a transaction in a block, since it would otherwise not try
again, making subsequent log changes pointless)
b3a9a4d add a quick early out to get_blocks.bin when up to date (moneromooo-monero)
2899379 daemon, wallet: new pay for RPC use system (moneromooo-monero)
ffa4602 simplewallet: add public_nodes command (moneromooo-monero)
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.
This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo
This has some advantages:
- incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
- incentive to run your own node instead of using a third party's, thereby promoting decentralization
- decentralized: payment is done between a client and server, with no third party needed
- private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
- no payment occurs on the blockchain, so there is no extra transactional load
- one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
- no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
- Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
- no large credit balance maintained on servers, so they have no incentive to exit scam
- you can use any/many node(s), since there's little cost in switching servers
- market based prices: competition between servers to lower costs
- incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
- increases network security
- helps counteract mining pools' share of the network hash rate
- zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner
And some disadvantages:
- low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
- payment is "random", so a server might go a long time without a block before getting one
- a public node's overall expected payment may be small
Public nodes are expected to compete to find a suitable level for
cost of service.
The daemon can be set up this way to require payment for RPC services:
monerod --rpc-payment-address 4xxxxxx \
--rpc-payment-credits 250 --rpc-payment-difficulty 1000
These values are an example only.
The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.
The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).
There are three new settings in the wallet:
- credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.
- auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25
- persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.
To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.
The wallet has a few new commands too:
- start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
- stop_mining_for_rpc: stop mining to acquire more credits
- rpc_payments: display information about current credits with
the currently selected daemon
The node has an extra command:
- rpc_payments: display information about clients and their
balances
The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
added for mainnet, testnet, and stagenet.
server is owner by snipa, both snipa and I have access to it. No idea where its hosted.
xmrchain.net is a block explorer thats been around a while.
* Faster cache initialization with SSSE3/AVX2
* Automatic detection of CPU capabilities in RandomX
* Fixed a possible out-of-bounds access in superscalar program generator
* Use MONERO_RANDOMX_UMASK to manually disable RandomX flags in monerod
In case of a 0 tx weight, we use a placeholder value to insert in the
fee-per-byte set. This is used for pruning and mining, and those txes
are pruned, so will not be too large, nor added to the block template
if mining, so this is safe.
CID 204465
Use the lesser of the short and long terms medians, rather then
the long term median alone
From ArticMine:
I found a bug in the new fee calculation formula with using only the long term median
It actually needs to be the lesser of the long term median and the old (modified short term median)
short term median with the last 10 blocks calculated as empty
Yes the issue occurs if there is a large long term median and, the short term median then falls and tries to then rise again
The fees are could be not high enough
for example LTM and STM rise to say 2000000 bytes
STM falls back to 300000 bytes
Fees are now based on 2000000 bytes until LTM also falls
So the STM is could prevented from rising back up
STM short term median LTM long term median
If the peer (whether pruned or not itself) supports sending pruned blocks
to syncing nodes, the pruned version will be sent along with the hash
of the pruned data and the block weight. The original tx hashes can be
reconstructed from the pruned txes and theur prunable data hash. Those
hashes and the block weights are hashes and checked against the set of
precompiled hashes, ensuring the data we received is the original data.
It is currently not possible to use this system when not using the set
of precompiled hashes, since block weights can not otherwise be checked
for validity.
This is off by default for now, and is enabled by --sync-pruned-blocks
Unbound uses a 64 kb large character array on the stack, which
leads to a stack overflow for some libc implementations. musl
only gives 80 kb in total. This PR changes the stack size for
these threads to 1mb, which solves the segmentation fault.
2cd4fd8 Changed the use of boost:value_initialized for C++ list initializer (JesusRami)
4ad191f Removed unused boost/value_init header (whyamiroot)
928f4be Make null hash constants constexpr (whyamiroot)
11f13da blockchain: fix logging bad number of blocks if first one fails (moneromooo-monero)
19bfe7e simplewallet: fix warnings about useless std::move (moneromooo-monero)
Such a template would yield an invalid block, though would require
an attacker to have mined a long blockchain with drifting times
(assuming the miner's clock is roughly correct)
Fixed by crCr62U0
9f68669 blockchain_blackball: add --historical-stat which prints historical stats of spent ratio (stoffu)
2425f27blockchain_blackball: use is_output_spent instead of ringdb.blackballed for spentness test (stoffu)
50813c1 ringdb: fix bug in blackballing (stoffu)
The issue is triggered by the captured `this` in RPC server, which
passes reference to throwable `core_rpc_server`:
`core_rpc_server.cpp:164: m_bootstrap_daemon.reset(new bootstrap_daemon([this]{ return get_random_public_node(); }));`
The solution is to simply remove noexcept from the remaining `bootstrap_daemon`
constructors because noexcept is false in this context.
>"An exception of type "boost::exception_detail::clone_impl<boost::exception_detail::error_info_injector<boost::asio::invalid_service_owner>>" is thrown but the throw list "noexcept" doesn't allow it to be thrown. This will cause a call to unexpected() which usually calls terminate()."
One considers the blockchain, while the other considers the
blockchain and some recent actions, such as a recently created
transaction which spend some outputs, but isn't yet mined.
Typically, the "balance" command wants the latter, to reflect
the recent action, but things like proving ownership wants
the former.
This fixes a crash in get_reserve_proof, where a preliminary
check and the main code used two concepts of "balance".
bdfc63a Add ref-counted buffer byte_slice. Currently used for sending TCP data. (vtnerd)
3b24b1d Added support for 'noise' over I1P/Tor to mask Tx transmission. (vtnerd)
The 98th percentile position in the agebytes map was incorrectly
calculated: it assumed the transactions in the mempool all have unique
timestamps at second-granularity. This commit fixes this by correctly
finding the right cumulative number of transactions in the map suffix.
This bug could lead to an out-of-bounds write in the rare case that
all transactions in the mempool were received (and added to the mempool)
at a rate of at least 50 transactions per second. (More specifically,
the number of *unique* receive_time values, which have second-
granularity, must be at most 2% of the number of transactions in the
mempool for this crash to trigger.) If this condition is satisfied, 'it'
points to *before* the agebytes map, 'delta' gets a nonsense value, and
the value of 'i' in the first stats.histo-filling loop will be out of
bounds of stats.histo.
It does not leak much since you can make a fair guess by RPC
version already, and some people want to avoid non release
clients when using third parties' nodes (because they'd never
lie about it)
New CLI wallet variable: export-format with options "binary" (the default),
or "ascii". "Binary" behaves as before, "ascii" forces the wallet to convert
data to ASCII using base64.
Reading files from the disk tries to auto detect what format has been
used (using a magic string added when exporting the data).
Implements https://github.com/monero-project/monero/issues/2859
c8709fe wallet: do not print log settings when unset (moneromooo-monero)
7b18e83 unit_tests: check return values on test data parsing (moneromooo-monero)
The check added here (in #5732/#5733) is supposed to disconnect behind
peers when the current node is syncing, but actually disconnects behind
peers always.
We are syncing when `target > our_height`, but the check here triggers
when `target > remote_height`, which is basically always true when the
preceding `m_core.have_block(hshd.top_id)` check is true.
fcbf7b3 p2p: propagate out peers limit to payload handler (moneromooo-monero)
098aadf p2p: close the right number of connections on setting max in/out peers (moneromooo-monero)