Merge pull request #5707

3a0451a MLSAG speedup and additional checks (SarangNoether)
This commit is contained in:
luigi1111 2019-08-28 02:22:00 -05:00
commit 85014813cf
No known key found for this signature in database
GPG key ID: F4ACA0183641E010
7 changed files with 75 additions and 101 deletions

View file

@ -101,7 +101,10 @@ static rct::key get_exponent(const rct::key &base, size_t idx)
{
static const std::string salt("bulletproof");
std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx);
const rct::key e = rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
rct::key e;
ge_p3 e_p3;
rct::hash_to_p3(e_p3, rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
ge_p3_tobytes(e.bytes, &e_p3);
CHECK_AND_ASSERT_THROW_MES(!(e == rct::identity()), "Exponent is point at infinity");
return e;
}

View file

@ -620,45 +620,17 @@ namespace rct {
sc_reduce32(rv.bytes);
return rv;
}
key hashToPointSimple(const key & hh) {
key pointk;
ge_p1p1 point2;
ge_p2 point;
ge_p3 res;
key h = cn_fast_hash(hh);
CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&res, h.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_p3_to_p2(&point, &res);
ge_mul8(&point2, &point);
ge_p1p1_to_p3(&res, &point2);
ge_p3_tobytes(pointk.bytes, &res);
return pointk;
}
key hashToPoint(const key & hh) {
key pointk;
ge_p2 point;
ge_p1p1 point2;
ge_p3 res;
key h = cn_fast_hash(hh);
ge_fromfe_frombytes_vartime(&point, h.bytes);
ge_mul8(&point2, &point);
ge_p1p1_to_p3(&res, &point2);
ge_p3_tobytes(pointk.bytes, &res);
return pointk;
// Hash a key to p3 representation
void hash_to_p3(ge_p3 &hash8_p3, const key &k) {
key hash_key = cn_fast_hash(k);
ge_p2 hash_p2;
ge_fromfe_frombytes_vartime(&hash_p2, hash_key.bytes);
ge_p1p1 hash8_p1p1;
ge_mul8(&hash8_p1p1, &hash_p2);
ge_p1p1_to_p3(&hash8_p3, &hash8_p1p1);
}
void hashToPoint(key & pointk, const key & hh) {
ge_p2 point;
ge_p1p1 point2;
ge_p3 res;
key h = cn_fast_hash(hh);
ge_fromfe_frombytes_vartime(&point, h.bytes);
ge_mul8(&point2, &point);
ge_p1p1_to_p3(&res, &point2);
ge_p3_tobytes(pointk.bytes, &res);
}
//sums a vector of curve points (for scalars use sc_add)
void sumKeys(key & Csum, const keyV & Cis) {
identity(Csum);

View file

@ -172,10 +172,7 @@ namespace rct {
key cn_fast_hash(const key64 keys);
key hash_to_scalar(const key64 keys);
//returns hashToPoint as described in https://github.com/ShenNoether/ge_fromfe_writeup
key hashToPointSimple(const key &in);
key hashToPoint(const key &in);
void hashToPoint(key &out, const key &in);
void hash_to_p3(ge_p3 &hash8_p3, const key &k);
//sums a vector of curve points (for scalars use sc_add)
void sumKeys(key & Csum, const key &Cis);

View file

@ -163,14 +163,11 @@ namespace rct {
return verifyBorromean(bb, P1_p3, P2_p3);
}
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
//This is a just slghtly more efficient version than the ones described below
//(will be explained in more detail in Ring Multisig paper
//These are aka MG signatutes in earlier drafts of the ring ct paper
// c.f. https://eprint.iacr.org/2015/1098 section 2.
// Gen creates a signature which proves that for some column in the keymatrix "pk"
// the signer knows a secret key for each row in that column
// Ver verifies that the MG sig was created correctly
// MLSAG signatures
// See paper by Noether (https://eprint.iacr.org/2015/1098)
// This generalization allows for some dimensions not to require linkability;
// this is used in practice for commitment data within signatures
// Note that using more than one linkable dimension is not recommended.
mgSig MLSAG_Gen(const key &message, const keyM & pk, const keyV & xx, const multisig_kLRki *kLRki, key *mscout, const unsigned int index, size_t dsRows, hw::device &hwdev) {
mgSig rv;
size_t cols = pk.size();
@ -188,6 +185,7 @@ namespace rct {
size_t i = 0, j = 0, ii = 0;
key c, c_old, L, R, Hi;
ge_p3 Hi_p3;
sc_0(c_old.bytes);
vector<geDsmp> Ip(dsRows);
rv.II = keyV(dsRows);
@ -208,7 +206,8 @@ namespace rct {
rv.II[i] = kLRki->ki;
}
else {
Hi = hashToPoint(pk[index][i]);
hash_to_p3(Hi_p3, pk[index][i]);
ge_p3_tobytes(Hi.bytes, &Hi_p3);
hwdev.mlsag_prepare(Hi, xx[i], alpha[i] , aG[i] , aHP[i] , rv.II[i]);
toHash[3 * i + 2] = aG[i];
toHash[3 * i + 3] = aHP[i];
@ -235,7 +234,8 @@ namespace rct {
sc_0(c.bytes);
for (j = 0; j < dsRows; j++) {
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
hashToPoint(Hi, pk[i][j]);
hash_to_p3(Hi_p3, pk[i][j]);
ge_p3_tobytes(Hi.bytes, &Hi_p3);
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
toHash[3 * j + 1] = pk[i][j];
toHash[3 * j + 2] = L;
@ -260,43 +260,42 @@ namespace rct {
return rv;
}
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
//This is a just slghtly more efficient version than the ones described below
//(will be explained in more detail in Ring Multisig paper
//These are aka MG signatutes in earlier drafts of the ring ct paper
// c.f. https://eprint.iacr.org/2015/1098 section 2.
// Gen creates a signature which proves that for some column in the keymatrix "pk"
// the signer knows a secret key for each row in that column
// Ver verifies that the MG sig was created correctly
// MLSAG signatures
// See paper by Noether (https://eprint.iacr.org/2015/1098)
// This generalization allows for some dimensions not to require linkability;
// this is used in practice for commitment data within signatures
// Note that using more than one linkable dimension is not recommended.
bool MLSAG_Ver(const key &message, const keyM & pk, const mgSig & rv, size_t dsRows) {
size_t cols = pk.size();
CHECK_AND_ASSERT_MES(cols >= 2, false, "Error! What is c if cols = 1!");
CHECK_AND_ASSERT_MES(cols >= 2, false, "Signature must contain more than one public key");
size_t rows = pk[0].size();
CHECK_AND_ASSERT_MES(rows >= 1, false, "Empty pk");
CHECK_AND_ASSERT_MES(rows >= 1, false, "Bad total row number");
for (size_t i = 1; i < cols; ++i) {
CHECK_AND_ASSERT_MES(pk[i].size() == rows, false, "pk is not rectangular");
CHECK_AND_ASSERT_MES(pk[i].size() == rows, false, "Bad public key matrix dimensions");
}
CHECK_AND_ASSERT_MES(rv.II.size() == dsRows, false, "Bad II size");
CHECK_AND_ASSERT_MES(rv.ss.size() == cols, false, "Bad rv.ss size");
CHECK_AND_ASSERT_MES(rv.II.size() == dsRows, false, "Wrong number of key images present");
CHECK_AND_ASSERT_MES(rv.ss.size() == cols, false, "Bad scalar matrix dimensions");
for (size_t i = 0; i < cols; ++i) {
CHECK_AND_ASSERT_MES(rv.ss[i].size() == rows, false, "rv.ss is not rectangular");
CHECK_AND_ASSERT_MES(rv.ss[i].size() == rows, false, "Bad scalar matrix dimensions");
}
CHECK_AND_ASSERT_MES(dsRows <= rows, false, "Bad dsRows value");
CHECK_AND_ASSERT_MES(dsRows <= rows, false, "Non-double-spend rows cannot exceed total rows");
for (size_t i = 0; i < rv.ss.size(); ++i)
for (size_t j = 0; j < rv.ss[i].size(); ++j)
CHECK_AND_ASSERT_MES(sc_check(rv.ss[i][j].bytes) == 0, false, "Bad ss slot");
CHECK_AND_ASSERT_MES(sc_check(rv.cc.bytes) == 0, false, "Bad cc");
for (size_t i = 0; i < rv.ss.size(); ++i) {
for (size_t j = 0; j < rv.ss[i].size(); ++j) {
CHECK_AND_ASSERT_MES(sc_check(rv.ss[i][j].bytes) == 0, false, "Bad signature scalar");
}
}
CHECK_AND_ASSERT_MES(sc_check(rv.cc.bytes) == 0, false, "Bad initial signature hash");
size_t i = 0, j = 0, ii = 0;
key c, L, R, Hi;
key c, L, R;
key c_old = copy(rv.cc);
vector<geDsmp> Ip(dsRows);
for (i = 0 ; i < dsRows ; i++) {
CHECK_AND_ASSERT_MES(!(rv.II[i] == rct::identity()), false, "Bad key image");
precomp(Ip[i].k, rv.II[i]);
}
size_t ndsRows = 3 * dsRows; //non Double Spendable Rows (see identity chains paper
size_t ndsRows = 3 * dsRows; // number of dimensions not requiring linkability
keyV toHash(1 + 3 * dsRows + 2 * (rows - dsRows));
toHash[0] = message;
i = 0;
@ -304,9 +303,14 @@ namespace rct {
sc_0(c.bytes);
for (j = 0; j < dsRows; j++) {
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
hashToPoint(Hi, pk[i][j]);
CHECK_AND_ASSERT_MES(!(Hi == rct::identity()), false, "Data hashed to point at infinity");
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
// Compute R directly
ge_p3 hash8_p3;
hash_to_p3(hash8_p3, pk[i][j]);
ge_p2 R_p2;
ge_double_scalarmult_precomp_vartime(&R_p2, rv.ss[i][j].bytes, &hash8_p3, c_old.bytes, Ip[j].k);
ge_tobytes(R.bytes, &R_p2);
toHash[3 * j + 1] = pk[i][j];
toHash[3 * j + 2] = L;
toHash[3 * j + 3] = R;
@ -317,6 +321,7 @@ namespace rct {
toHash[ndsRows + 2 * ii + 2] = L;
}
c = hash_to_scalar(toHash);
CHECK_AND_ASSERT_MES(!(c == rct::zero()), false, "Bad signature hash");
copy(c_old, c);
i = (i + 1);
}

View file

@ -57,7 +57,6 @@
#include "rct_mlsag.h"
#include "equality.h"
#include "range_proof.h"
#include "rct_mlsag.h"
#include "bulletproof.h"
#include "crypto_ops.h"
#include "multiexp.h"
@ -214,14 +213,8 @@ int main(int argc, char** argv)
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 32);
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 16384);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, true);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, true);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, true);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, true);
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, false);
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, true);
TEST_PERFORMANCE2(filter, p, test_equality, memcmp32, true);
TEST_PERFORMANCE2(filter, p, test_equality, memcmp32, false);
@ -251,15 +244,6 @@ int main(int argc, char** argv)
TEST_PERFORMANCE6(filter, p, test_aggregated_bulletproof, false, 2, 1, 1, 0, 64);
TEST_PERFORMANCE6(filter, p, test_aggregated_bulletproof, true, 2, 1, 1, 0, 64); // 64 proof, each with 2 amounts
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, false);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 3, true);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 5, true);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 10, true);
TEST_PERFORMANCE3(filter, p, test_ringct_mlsag, 1, 100, true);
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_add);
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_sub);
TEST_PERFORMANCE1(filter, p, test_crypto_ops, op_sc_mul);

View file

@ -35,13 +35,13 @@
#include "single_tx_test_base.h"
template<size_t inputs, size_t ring_size, bool ver>
template<size_t ring_size, bool ver>
class test_ringct_mlsag : public single_tx_test_base
{
public:
static const size_t cols = ring_size;
static const size_t rows = inputs;
static const size_t loop_count = 100;
static const size_t rows = 2; // single spend and commitment data
static const size_t loop_count = 1000;
bool init()
{
@ -65,7 +65,7 @@ public:
{
sk[j] = xm[ind][j];
}
IIccss = MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows, hw::get_device("default"));
IIccss = MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows-1, hw::get_device("default"));
return true;
}
@ -73,9 +73,9 @@ public:
bool test()
{
if (ver)
MLSAG_Ver(rct::identity(), P, IIccss, rows);
MLSAG_Ver(rct::identity(), P, IIccss, rows-1);
else
MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows, hw::get_device("default"));
MLSAG_Gen(rct::identity(), P, sk, NULL, NULL, ind, rows-1, hw::get_device("default"));
return true;
}

View file

@ -788,7 +788,20 @@ TEST(ringct, HPow2)
{
key G = scalarmultBase(d2h(1));
key H = hashToPointSimple(G);
// Note that H is computed differently than standard hashing
// This method is not guaranteed to return a curvepoint for all inputs
// Don't use it elsewhere
key H = cn_fast_hash(G);
ge_p3 H_p3;
int decode = ge_frombytes_vartime(&H_p3, H.bytes);
ASSERT_EQ(decode, 0); // this is known to pass for the particular value G
ge_p2 H_p2;
ge_p3_to_p2(&H_p2, &H_p3);
ge_p1p1 H8_p1p1;
ge_mul8(&H8_p1p1, &H_p2);
ge_p1p1_to_p3(&H_p3, &H8_p1p1);
ge_p3_tobytes(H.bytes, &H_p3);
for (int j = 0 ; j < ATOMS ; j++) {
ASSERT_TRUE(equalKeys(H, H2[j]));
addKeys(H, H, H);