monero-site/_i18n/it/resources/moneropedia/ringsignatures.md
el00ruobuob 4c1e8dd858
Moneropedia relocalized
+ correction on Italian Account
+ Removed leftover miners.md (replaced by mining.md)
+ Removed Dust and update Copyright
+ Code improvement to avoid reading the config file and to use the builtin jekyll config variable passed in the content
+ Ammount.md:25/26 glitch "\@transaction-privacy" corrected. PL to be checked twice.
+ Italian ammount.md moneropedia links corrected (terms added to destination entries, unnecessary markdown links removed)
+ Polish corrections
+ extend ruby \word-boundary in regex to match `-based` `-like` `-form`
+ Updated readme according to the new way to add or translate a moneropedia entry
+ fix mining with CryptoNight variant
+ rebased to include AR
+ chery picked #820 to avoid conflicts
2018-08-03 06:34:28 +02:00

1.9 KiB

entry terms summary
Ring Signature
ring-signature
ring-signatures
a group of cryptographic signatures with at least one real participant, but no way to tell which in the group is the real one as they all appear valid

{% include untranslated.html %}

The Basics

In cryptography, a ring signature is a type of digital signature that can be performed by any member of a group of users that each have keys. Therefore, a message signed with a ring signature is endorsed by someone in a particular group of people. One of the security properties of a ring signature is that it should be computationally infeasible to determine which of the group members' keys was used to produce the signature.

For instance, a ring signature could be used to provide an anonymous signature from "a high-ranking White House official", without revealing which official signed the message. Ring signatures are right for this application because the anonymity of a ring signature cannot be revoked, and because the group for a ring signature can be improvised (requires no prior setup).

Application to Monero

A ring signature makes use of your @account keys and a number of public keys (also known as outputs) pulled from the @blockchain using a triangular distribution method. Over the course of time, past outputs could be used multiple times to form possible signer participants. In a "ring" of possible signers, all ring members are equal and valid. There is no way an outside observer can tell which of the possible signers in a signature group belongs to your @account. So, ring signatures ensure that transaction outputs are untraceable. Moreover, there are no @fungibility issues with Monero given that every transaction output has plausible deniability (e.g. the network can not tell which outputs are spent or unspent).

To read how Monero gives you privacy by default (unlinkability), see @stealth-addresses.