research-lab/source-code/Poisson-Graphs/FishGraph.py

308 lines
12 KiB
Python
Raw Normal View History

2018-01-28 19:16:13 +00:00
import unittest, copy, random, math, time
from scipy.stats import skew
from numpy import var
from numpy import random as nprandom
2018-01-23 05:59:06 +00:00
2018-01-28 19:16:13 +00:00
#TODO: Node.data["blockchain"] != node.data
def newIdent(params):
nonce = params
# Generate new random identity.
return hash(str(nonce) + str(random.random()))
def newIntensity(params):
mode = params
if mode=="uniform":
return random.random()
def newOffset(params):
mode = params
if mode=="unifDST":
r = 2.0*random.random() - 1.0 # hours
r = 60.0*60.0*r #60 min/hr, 60 sec/min
return r
if mode=="sumOfSkellams":
# This mode uses a skellam distribution, which is
# the difference of two poisson-distributed random
# variables.
# HourOffset = skellam
# SecondOffset = skellam
# TotalOffset = 60*60*HourOffset + 60*MinuteOffset + SecondOffset
# Each skellam = poisson(1) - poisson(1)
# Reasoning: We consider most computers' local time offset from UTC
# to be a two time-scale random variable, one on the hour scale and one on
# the second scale. We make
x = nprandom.poisson(1, (2,2))
totalOffset = 60.0*60.0*float(x[0][0] - x[1][0]) + float((x[0][1] - x[1][1]))
return totalOffset
class FishGraph(StochasticProcess):
'''
Stochastic process on a graph
with the graph growing in a stochastic process too
'''
# TODO: Check if output.txt exists before beginning. If so, clear it and create a new one.
# TODO: Instead of/in addition to storing graph data in a text file, can we plot with ggplot in R?
def __init__(self, params=None, verbosity=True):
# Initialize
assert "maxTime" in params
self.maxTime = copy.deepcopy(params["maxTime"])
del params["maxTime"]
assert "numNodes" in params
numNodes = params["numNodes"]
del params["numNodes"]
2018-01-23 05:59:06 +00:00
self.data = params
self.t = 0.0
self.state = Graph()
2018-01-28 19:16:13 +00:00
self.filename = "output.txt"
self.verbose = verbosity
# Create graph
self.state.createGraph(numNodes, self.data["probEdge"], self.data["maxNeighbors"])
# Update node data
2018-01-23 05:59:06 +00:00
for nIdent in self.state.nodes:
n = self.state.nodes[nIdent]
2018-01-28 19:16:13 +00:00
difficulty = 1.0
intensity = newIntensity(params="uniform")
offset = newOffset(params="sumOfSkellams")
dat = {"intensity":intensity, "offset":offset, "blockchain":Blockchain([], verbosity=self.verbose)}
n.data.update(dat)
# Update edge data.
2018-01-23 05:59:06 +00:00
for eIdent in self.state.edges:
e = self.state.edges[eIdent]
2018-01-28 19:16:13 +00:00
e.data.update({"pendingBlocks":{}})
2018-01-23 05:59:06 +00:00
def go(self):
assert self.maxTime > 0.0
while self.t <= self.maxTime and len(self.state.nodes) > 0:
deltaT = self.getNextTime()
2018-01-28 19:16:13 +00:00
self.updateState(self.t, deltaT)
self.record()
2018-01-23 05:59:06 +00:00
def getNextTime(self):
2018-01-28 19:16:13 +00:00
# Each Poisson process event generates an exponential random variable.
# The smallest of these is selected
# The rate of the smallest determines event type.
2018-01-23 05:59:06 +00:00
eventTag = None
2018-01-28 19:16:13 +00:00
u = 0.0
while(u == 0.0):
u = copy.deepcopy(random.random())
2018-01-23 05:59:06 +00:00
u = -1.0*math.log(copy.deepcopy(u))/self.data["birthRate"] # Time until next stochastic birth
eventTag = "birth"
2018-01-28 19:16:13 +00:00
v = 0.0
while(v == 0.0):
v = copy.deepcopy(random.random())
2018-01-23 05:59:06 +00:00
v = -1.0*math.log(copy.deepcopy(v))/self.data["deathRate"] # Time until next stochastic death
if v < u:
u = copy.deepcopy(v)
eventTag = "death"
for nIdent in self.state.nodes:
n = self.state.nodes[nIdent] # n.ident = nIdent
2018-01-28 19:16:13 +00:00
v = 0.0
while(v == 0.0):
v = copy.deepcopy(random.random())
2018-01-23 05:59:06 +00:00
v = -1.0*math.log(copy.deepcopy(v))/n.data["intensity"]
if v < u:
u = copy.deepcopy(v)
eventTag = ["discovery", n.ident]
2018-01-28 19:16:13 +00:00
# Now that all the STOCHASTIC arrivals have been decided,
# We check if any of the deterministic events fire off instead.
2018-01-23 05:59:06 +00:00
for eIdent in self.state.edges:
e = self.state.edges[eIdent] # e.ident = eIdent
2018-01-28 19:16:13 +00:00
pB = e.data["pendingBlocks"]
if len(pB) > 0:
for pendingIdent in pB:
arrivalInfo = pB[pendingIdent]
v = arrivalInfo["timeOfArrival"] - self.t
if v < u and 0.0 < v:
2018-01-23 05:59:06 +00:00
u = copy.deepcopy(v)
eventTag = ["arrival", e.ident, pendingIdent]
deltaT = (u, eventTag)
2018-01-28 19:16:13 +00:00
# Formats:
# eventTag = ["arrival", e.ident, pendingIdent]
# eventTag = ["discovery", n.ident]
# eventTag = "death"
# eventTag = "birth"
2018-01-23 05:59:06 +00:00
return deltaT
2018-01-28 19:16:13 +00:00
def updateState(self, t, deltaT, mode="Nakamoto", targetRate=1.0/1209600.0):
# Depending on eventTag, update the state...
2018-01-23 05:59:06 +00:00
u = deltaT[0]
2018-01-28 19:16:13 +00:00
shout = ""
2018-01-23 05:59:06 +00:00
eventTag = deltaT[1]
if type(eventTag)==type("birthordeath"):
if eventTag == "death":
# Picks random nodeIdent and kills it
toDie = random.choice(list(self.state.nodes.keys()))
2018-01-28 19:16:13 +00:00
x = len(self.state.nodes)
shout += "DEATH, Pop(Old)=" + str(x) + ", Pop(New)="
if self.verbose:
print(shout)
2018-01-23 05:59:06 +00:00
self.state.delNode(toDie)
2018-01-28 19:16:13 +00:00
y = len(self.state.nodes)
assert y == x - 1
shout += str(y) + "\n"
2018-01-23 05:59:06 +00:00
elif eventTag == "birth":
# Adds node with some randomly determined edges
2018-01-28 19:16:13 +00:00
x = len(self.state.nodes)
shout += "BIRTH, Pop(Old)=" + str(x) + ", Pop(New)="
if self.verbose:
print(shout)
2018-01-23 05:59:06 +00:00
nIdent = self.state.addNode()
n = self.state.nodes[nIdent]
2018-01-28 19:16:13 +00:00
intensity = random.random()/1000.0
2018-01-23 05:59:06 +00:00
offset = 2.0*random.random() - 1.0
n.data.update({"intensity":intensity, "offset":offset, "blockchain":{}})
# Auto syncs new node.
for eIdent in n.edges:
e = n.edges[eIdent]
2018-01-28 19:16:13 +00:00
e.data.update({"pendingBlocks":{}})
2018-01-23 05:59:06 +00:00
mIdent = e.getNeighbor(n.ident)
m = self.state.nodes[mIdent]
mdata = m.data["blockchain"]
n.updateBlockchain(mdata)
2018-01-28 19:16:13 +00:00
y = len(self.state.nodes)
assert y == x + 1
shout += str(y) + "\n"
2018-01-23 05:59:06 +00:00
else:
2018-01-28 19:16:13 +00:00
print("Error: eventTag had length 1 but was neighter a birth or a death, this shouldn't happen so this else case will eventually be removed, I guess? Our eventTag = ", eventTag)
2018-01-23 05:59:06 +00:00
elif len(eventTag)==2:
2018-01-28 19:16:13 +00:00
# Block is discovered and plunked into each edge's pendingBlock list.
shout += "DISCOVERY\n"
2018-01-28 19:16:13 +00:00
if self.verbose:
print(shout)
if self.verbose:
print("Checking formation of eventTag = [\"discovery\", nodeIdent]")
2018-01-23 05:59:06 +00:00
assert eventTag[0]=="discovery"
2018-01-28 19:16:13 +00:00
assert eventTag[1] in self.state.nodes
if self.verbose:
print("Retrieving discoverer's identity")
2018-01-28 19:16:13 +00:00
nIdent = eventTag[1] # get founding node's identity
if self.verbose:
print("Retrieving discoverer")
2018-01-28 19:16:13 +00:00
n = self.state.nodes[nIdent] # get founding node
if self.verbose:
print("Computing discoverer's wall clock")
2018-01-28 19:16:13 +00:00
s = self.t + n.data["offset"] # get founding node's wall clock
if self.verbose:
print("Generating new block identity")
2018-01-28 19:16:13 +00:00
newBlockIdent = newIdent(len(n.data["blockchain"].blocks)) # generate new identity
if self.verbose:
print("Setting timestamps")
2018-01-28 19:16:13 +00:00
disco = s
arriv = s
if self.verbose:
print("Retrieving parent")
2018-01-28 19:16:13 +00:00
parent = n.data["blockchain"].miningIdent
if self.verbose:
print("getting difficulty")
2018-01-28 19:16:13 +00:00
diff = copy.deepcopy(n.diff)
if self.verbose:
print("setting verbosity")
2018-01-28 19:16:13 +00:00
verbosity = self.verbose
if self.verbose:
print("Initializing a new block")
2018-01-28 19:16:13 +00:00
newBlock = Block([newBlockIdent, disco, arriv, parent, diff, verbosity])
if self.verbose:
print("Updating discovering node's blockchain")
2018-01-28 19:16:13 +00:00
n.updateBlockchain({newBlockIdent:newBlock})
if self.verbose:
print("Computing discoverer's new difficulty")
2018-01-28 19:16:13 +00:00
n.updateDifficulty(mode, targetRate)
if self.verbose:
print("propagating new block.")
n.propagate(self.t, newBlockIdent)
if self.verbose:
print("discovery complete")
2018-01-28 19:16:13 +00:00
elif len(eventTag)==3:
#eventTag = ("arrival", e.ident, pendingIdent)
# A block deterministically arrives at the end of an edge.
2018-01-23 05:59:06 +00:00
assert eventTag[0]=="arrival"
2018-01-28 19:16:13 +00:00
shout += "ARRIVAL"
if self.verbose:
print(shout)
eIdent = eventTag[1]
pendingIdent = eventTag[2]
e = self.state.edges[eIdent]
pB = e.data["pendingBlocks"]
arrivalInfo = pB[pendingIdent] # arrivalInfo = {"timeOfArrival":toa, "destIdent":mIdent, "block":newBlock}
assert arrivalInfo["destIdent"] in self.state.nodes
assert self.t + u == arrivalInfo["timeOfArrival"]
receiver = self.state.nodes[arrivalInfo["destIdent"]]
arriv = self.t + u + receiver.data["offset"]
newBlock = arrivalInfo["block"]
newBlock.arrivTimestamp = copy.deepcopy(arriv)
receiver.updateBlockchain({newBlock.ident:newBlock})
2018-01-28 19:16:13 +00:00
receiver.updateDifficulty(mode, targetRate)
receiver.propagate(self.t, newBlock.ident)
2018-01-28 19:16:13 +00:00
2018-01-23 05:59:06 +00:00
else:
print("Error: eventTag was not a string, or not an array length 2 or 3. In fact, we have eventTag = ", eventTag)
2018-01-28 19:16:13 +00:00
if self.verbose:
print("u = ", u)
self.t += u
if self.verbose:
print(str(self.t) + "\t" + shout)
def record(self):
with open(self.filename, "a") as f:
line = ""
# Format will be edgeIdent,nodeAident,nodeBident
line += str("t=" + str(self.t) + ",")
ordKeyList = sorted(list(self.state.edges.keys()))
for key in ordKeyList:
entry = []
entry.append(key)
nodeKeyList = sorted(list(self.state.edges[key].nodes))
for kkey in nodeKeyList:
entry.append(kkey)
line += str(entry) + ","
f.write(line + "\n")
2018-01-23 05:59:06 +00:00
class Test_FishGraph(unittest.TestCase):
def test_fishGraph(self):
2018-01-28 19:16:13 +00:00
for i in range(10):
params = {"numNodes":10, "probEdge":0.5, "maxNeighbors":10, "maxTime":10.0, "birthRate":0.1, "deathRate":0.1}
2018-01-28 19:16:13 +00:00
greg = FishGraph(params, verbosity=True)
greg.go()
2018-01-23 05:59:06 +00:00
suite = unittest.TestLoader().loadTestsFromTestCase(Test_FishGraph)
unittest.TextTestRunner(verbosity=1).run(suite)