German translation for getmonero.org

main:
 - [x] translated: de.yml - Status: peer-reviewed
 - [x] translated: lang\de\ - Status: peer-reviewed
 - [x] added: "de: Deutsch in other ymls"

resources:
 * untranslated: moneropedia - some terms added to match de.yml
 * untranslated: user guides
 * untranslated:  developer guides

Special thanks to ErCiccione and rodolfo912 as well as to rbrunner7
This commit is contained in:
Leza89 2018-12-06 00:11:30 +01:00
parent 8d3986e6e6
commit 8d79f880dc
218 changed files with 9380 additions and 1 deletions

View file

@ -24,7 +24,7 @@ plugins:
- jekyll-multiple-languages-plugin
# jekyll-multiple-languages-plugin settings:
languages: ["en", "es", "it", "pl", "fr", "ar", "ru"]
languages: ["en", "es", "it", "pl", "fr", "ar", "ru", "de"]
exclude_from_localizations: ["img", "css", "fonts", "media", "404", "feed.xml", "404", "meta", "forum-funding-system", "_posts", "legal"]

View file

@ -0,0 +1,52 @@
- title: Ressourcen
subfolderitems:
- name: Über Monero
url: resources/about/
- name: Moneropedia
url: resources/moneropedia/
- name: Anleitungen für Entwickler
url: resources/developer-guides/
- name: Anleitungen für Nutzer
url: resources/user-guides/
- name: Bibliothek
url: library
- name: RSS-Feed
url: https://getmonero.org/feed.xml
- title: IRC-Channels
subfolderitems:
- name: monero
url: irc://chat.freenode.net/#monero
- name: monero-dev
url: irc://chat.freenode.net/#monero-dev
- name: monero-markets
url: irc://chat.freenode.net/#monero-markets
- name: monero-pools
url: irc://chat.freenode.net/#monero-pools
- name: monero-community
url: irc://chat.freenode.net/#monero-community
- name: monero-translations
url: irc://chat.freenode.net/#monero-translations
- name: monero-hardware
url: irc://chat.freenode.net/#monero-hardware
- title: Community
subfolderitems:
- name: Reddit
url: https://reddit.com/r/monero
- name: Stack Exchange
url: https://monero.stackexchange.com/
- name: Thread auf BitcoinTalk
url: https://bitcointalk.org/index.php?topic=583449.0
- name: Mattermost-Chat
url: https://mattermost.getmonero.org/
- name: Telegram-Chat
url: https://telegram.me/bitmonero
- title: Das Monero-Projekt
subfolderitems:
- name: OpenAlias
url: https://openalias.org/
- name: Kovri
url: https://kovri.io/
- name: Monero Research Lab
url: resources/research-lab/
- name: Monero-Presseunterlagen
url: press-kit

View file

@ -0,0 +1,6 @@
- name: Rechtliches
url: legal
- name: Quellcode
url: https://github.com/monero-project
- name: Technische Spezifikationen
url: technical-specs/

View file

@ -0,0 +1,54 @@
- title: Einstieg
subfolderitems:
- page: Was ist Monero?
url: get-started/what-is-monero
- page: Nutzen
url: get-started/using
- page: Akzeptieren
url: get-started/accepting
- page: Unterstützen
url: get-started/contributing
- page: Mining
url: get-started/mining
- page: Häufig gestellte Fragen
url: get-started/faq
- title: Downloads
url: downloads/
- title: Neuigkeiten
subfolderitems:
- page: Alle Einträge
url: blog
- page: Ankündigungen
url: blog/tags/monero%20missives.html
- page: Protokolle
url: blog/tags/dev%20diaries.html
- page: Versionen
url: blog/tags/releases.html
- title: Community
subfolderitems:
- page: Team
url: community/team
- page: Hangouts
url: community/hangouts
- page: Sponsoren
url: community/sponsorships
- page: Händler
url: community/merchants
- title: Ressourcen
subfolderitems:
- page: Über
url: resources/about
- page: Roadmap
url: resources/roadmap
- page: Research Lab
url: resources/research-lab
- page: Moneropedia
url: resources/moneropedia
- page: Anleitungen für Nutzer
url: resources/user-guides
- page: Anleitungen für Entwickler
url: resources/developer-guides
- page: Technische Spezifikationen
url: technical-specs
- page: Bibliothek
url: library

120
_data/lang/de/roadmap.yml Normal file
View file

@ -0,0 +1,120 @@
- year: 2014
accomplishments:
- name: Veröffentlicht auf Bitcointalk
date: 2014-04-18
status: completed
- name: Umbenennung von Bitmonero zu Monero
date: 2014-04-23
status: completed
- name: Erholung von einer Spamattacke
date: 2014-09-04
status: completed
- name: „Monero Research Lab“-Papers 1 und 2 veröffentlicht
date: 2014-09-12
status: completed
- name: „Monero Research Lab“-Paper 3 veröffentlicht
date: 2014-09-25
status: completed
- name: 0.8.8.6 veröffentlicht
date: 2014-12-08
status: completed
- year: 2015
accomplishments:
- name: „Monero Research Lab“-Paper 4 veröffentlicht
date: 2015-01-26
status: completed
- year: 2016
accomplishments:
- name: 0.9.0 Hydrogen Helix veröffentlicht
date: 2016-01-01
status: completed
- name: „Monero Research Lab“-Paper 5 veröffentlicht
date: 2016-02-10
status: completed
- name: Netzwerkupgrade, das eine minimale Ringgröße von 3 für alle Transaktionen voraussetzt
date: 2016-03-22
status: completed
- name: 0.10.0 Wolfram Warptangent veröffentlicht
date: 2016-09-18
status: completed
- name: Netzwerkupgrade um ungleiche Transaktionsbeträge unter den Ringen zu ermöglichen
date: 2016-09-21
status: completed
- name: 0.10.1 Wolfram Warptangent veröffentlicht
date: 2016-12-14
status: completed
- name: Offizielle GUI Beta 1 veröffentlicht
date: 2016-12-22
status: completed
- year: 2017
accomplishments:
- name: Netzwerkupgrade, um RingCT Transaktionen zu ermöglichen
date: 2017-01-05
status: completed
- name: 0.10.2 veröffentlicht; kritische Schwachstelle gepatcht
date: 2017-02-22
status: completed
- name: 0.10.3.1 Wolfram Warptangent veröffentlicht
date: 2017-03-27
status: completed
- name: Netzwerkupgrade, das die kleinstmögliche Blockgröße und den dynamischen Gebührenalgorithmus anpasst
date: 2017-04-15
status: completed
- name: Webseite neu gestaltet
date: 2017-07-04
status: completed
- name: 0.11.0.0 Helium Hydra veröffentlicht
date: 2017-09-07
status: completed
- name: Fluffy-Blocks
date: 2017-09-07
status: completed
- name: Betaphase der GUI beendet
date: 2017-09-10
status: completed
- name: Netzwerkupgrade, das die minimale Ringgröße auf 5 anhebt und RingCT voraussetzt
date: 2017-09-15
status: completed
- name: 0MQ/ZeroMQ
date: September, 2017
status: completed
- name: Subadressen
date: October, 2017
status: completed
- name: Mehrfachsignaturen (multisig)
date: December, 2017
status: completed
- year: 2018
accomplishments:
- name: Neuer PoW CryptoNoteV7
date: 2018-04-06
status: completed
- name: Netzwerkupgrade, das die minimale Ringgröße auf 7 erhöht, Mehrfachsignaturen und Subadressen integriert und den PoW-Algorithmus ändert
date: 2018-04-06
status: completed
- name: "Getmonero.org: Übersetzungen in Französisch und Polnisch"
date: 2018-04-24
status: completed
- name: Hardware-Wallets von Ledger werden unterstützt
date: 2018-06-04
status: completed
- name: Kovri Alpha veröffentlicht
date: 2018-08-01
status: completed
- name: Forum-Finanzierungs-System neu gestaltet
date:
status: ongoing
- name: Implementation von BulletProofs anstelle von RingCT, um Transaktionsgrößen zu verringern
date:
status: ongoing
- name: Kovri Beta
date:
status: upcoming
- year: 2019
accomplishments:
- name: Zweitschichtlösungen für bessere Geschwindigkeit und Skalierbarkeit
date:
status: upcoming
- name: Weitere „Monero Research Lab“-Papers
date:
status: upcoming

View file

@ -6,6 +6,7 @@ langs:
fr: Français
ar: Arabic
ru: Русский
de: Deutsch
global:
date: '%Y/%m/%d'

640
_i18n/de.yml Normal file
View file

@ -0,0 +1,640 @@
langs:
en: English
es: Español
it: Italiano
pl: Polski
fr: Français
ar: العربية
ru: Русский
de: Deutsch
global:
date: '%Y/%m/%d'
monero: Monero
getting_started: Erste Schritte
copyright: Copyright
monero_project: Das Monero-Projekt
sitename: getmonero.org, The Monero Project
wiki: Moneropedia
tags: Einträge nach Tags
wikimeta: auf Moneropedia, der freien Enzyklopädie über Monero
tagsmeta: Alle Monero-Blogeinträge, die getagged sind
titlemeta: das Zuhause von Monero einer digitalen Währung, die sicher, privat und nicht nachverfolgbar ist.
terms: Bedingungen
privacy: Datenschutz
copyright: Urheberrecht
untranslated: Diese Seite ist noch nicht übersetzt. Wenn du uns mit Übersetzungen unterstützen möchtest, schau bitte hier
outdatedMax: Diese Seite ist nicht auf aktuellem Stand. Wir empfehlen dir, stattdessen die
outdatedVersion: englische Version
outdatedMin: Seit der Übersetzung dieser Seite wurden Aktualisierungen vorgenommen. Du kannst auf dieser Seite bleiben, aber sie könnte unvollständig sein.
upgrade: Um Monero weiterhin nutzen zu können, stelle sicher, dass deine Software mit dem Netzwerkupgrade vom 18. Oktober auf aktuellem Stand ist.
moreinfo: Mehr Info
lang_tag: "@lang_tag_de"
titles:
index: Start
whatismonero: Was ist Monero (XMR)?
using: Monero nutzen
accepting: Monero akzeptieren
contributing: Monero verbessern
mining: Monero-Mining
faq: FAQ
downloads: Downloads
allposts: Alle Blogeinträge
team: Monero-Team
hangouts: Hangouts
events: Veranstaltungen
sponsorships: Sponsoren
merchants: Händler & Dienstleistungen
about: Über Monero
roadmap: Roadmap
researchlab: Monero Research Lab
moneropedia: Moneropedia
userguides: Anleitungen für Nutzer
developerguides: Anleitungen für Entwickler
technicalspecs: Technische Spezifikationen
themoneroproject: Das Monero-Projekt
presskit: Monero-Pressemappe
legal: Rechtliches
ffs: Forum-Finanzierungs-System
ffs-cp: Vollendete Vorschläge
ffs-fr: Unterstützung benötigt
ffs-ideas: Ideen
ffs-ot: Offene Aufgaben
ffs-wip: In Bearbeitung
blogbytag: Blog nach Tags
library: Bibliothek
index:
page_title: "Monero sicher, privat, nicht nachverfolgbar"
home:
translated: "yes"
heading2: Private Digitale Währung
monero_is_cash: Monero ist digitales Bargeld einer verbundenen Welt. Es ist schnell, privat und sicher. Mit Monero bist du deine eigene Bank du kannst dein Geld ausgeben, ohne befürchten zu müssen, dass andere herausfinden, wie viel du besitzt und was du mit deinem Geld machst.
get_started: Einstieg
why_monero_is_different: Wieso Monero anders ist
monero_is_secure: Monero ist sicher
monero_is_secure_para: Monero ist eine dezentrale Kryptowährung. Das heißt, es ist ein sicheres, digitales Bargeld, welches innerhalb eines Netzwerkes gleichberechtigter Nutzer verwaltet wird. Transaktionen werden mithilfe eines verteilten Konsens bestätigt und unveränderlich auf der Blockchain festgeschrieben. Du musst niemandem vertrauen, um deiner Monero sicher zu sein.
monero_is_private: Monero ist privat
monero_is_private_para: Monero macht Gebrauch von Ringsignaturen, vertraulichen Ringtransaktionen (ring confidential transactions) und Schattenadressen, um den Ursprung, den Betrag und das Ziel von Transaktionen zu verschleiern. Monero bietet alle Vorteile einer dezentralen Kryptowährung ohne deren üblicher Zugeständnisse beim Datenschutz.
monero_is_untraceable: Monero ist nicht nachverfolgbar
monero_is_untraceable_para: Sendende und empfangende Adressen sowie deren überwiesene Beträge sind standardmäßig verschleiert. Transaktionen auf der Monero-Blockchain können nicht mit Personen oder Identitäten verknüpft werden.
monero_is_fungible: Monero ist fungibel
monero_is_fungible_para1: Monero ist
monero_is_fungible_para2: fungibel
monero_is_fungible_para3: ", weil es standardmäßig privat ist. Einzelne Monero können nicht auf eine schwarze Liste von Händlern oder Börsen gesetzt werden, da ihre Geschichte nicht nachverfolgt werden kann."
downloads: Downloads
downloads_windows: Monero für Windows
downloads_mac: Monero für Mac
downloads_linux: Monero für Linux
downloads_blockchain: Letzte Blockchaindatei
different_system: Benutzt du ein anderes Beriebssystem?
view_all_downloads: Hier findest du alle verfügbaren Versionen.
latest_news: Aktuelle Meldungen
more_news: Weitere Neuigkeiten
moneropedia: Moneropedia
moneropedia_para: Interessierst du dich für die Terminologie und die Konzepte hinter Monero? Hier findest du eine alphabetisch geordnete Anleitung über die in Monero und Kovri verwendeten Wörter und deren Bedeutung.
moneropedia_button: Moneropedia besuchen
user_guides: Benutzeranleitungen
user_guides_para: „Schritt für Schritt“-Anleitungen über alles, was Monero anbelangt und in Kategorien geordnet angefangen mit deiner ersten Wallet bis hin zur Bearbeitung dieser Webseite.
user_guides_button: Anleitungen für Nutzer
faq: Häufige Fragen
faq_para: Im Laufe der Zeit haben wir viele Fragen gehört und hier die zusammengestellt, die häufig vorkamen. Keine Sorge wenn du eine Frage hast, die hier nicht beantwortet ist, hilft dir die Community gerne weiter.
faq_button: Zeige Antworten
hangouts:
translated: "yes"
intro: Die Monero-Community ist wild zusammengewürfelt. Wir kommen von überall her, aber es gibt gewisse Plätze, an denen wir uns gerne treffen. Einen Großteil findest du unten. Schau doch mal vorbei!
resources: Arbeitsgruppen
resources_para: Um organische Arbeitsgruppen zu fördern, bietet Monero verschiedene Möglichkeiten, die die Community nutzen kann, um sich zu treffen und Projekte voranzubringen. Mattermost hat sogar Verknüpfungen zu den beliebtesten Monero-IRC-Channels.
irc: IRC-Channels
irc_para: Die Monero-Community verteilt sich auf viele IRC-Channels, die unterschiedlichen Zwecken dienen. Einige, um zu arbeiten und andere, um einfach nur miteinander zu reden. Ein paar davon findest du weiter unten.
stack_exchange: Stack Exchange
stack_exchange_para: Die Monero Stack Exchange ist ein schneller und einfacher Weg, um Fragen zu stellen und Antworten zu bekommen. Weiter unten findest du einige Beispiele für gute, häufige Fragen und deren Antworten.
stack_exchange_link: Stack Exchange besuchen
irc_channels:
- channel: monero
description: Hier wird alles rund um Monero diskutiert.
- channel: monero-community
description: In diesem Channel versammelt sich die Community, um Ideen zu besprechen.
- channel: monero-dev
description: Die vielen Entwickler und Mitwirkenden an Monero treffen sich hier, um über die Weiterentwicklung von Monero zu sprechen.
- channel: monero-markets
description: Hier wird über den Preis und den Markt von Monero und anderen Kryptowährungen diskutiert.
- channel: monero-offtopic
description: Mit anderen Monero-Nutzern über Dinge sprechen, die mit Monero nichts zu tun haben.
- channel: monero-otc
description: OTC-Handel (Over The Counter) von Monero. Komm' hierher, wenn du Monero außerhalb von Börsen und Mittelsmännern erwerben oder verkaufen möchtest.
- channel: monero-pools
description: Hier wird über alles rund ums Mining gesprochen.
- channel: monero-research-lab
description: Forschung rund um die finanzielle Privatsphäre im Bereich von Kryptowährungen
- channel: monero-translations
description: Monero in andere Sprachen übersetzen
- channel: monero-hardware
description: Hardware-Wallets verwenden, um deine Monero sicher zu verwahren
- channel: kovri
description: Alles rund um Kovri
- channel: kovri-dev
description: Die vielen Entwickler und Mitwirkenden an Kovri treffen sich hier, um über die Weiterentwicklung von Kovri zu sprechen.
merchants:
translated: "yes"
intro1: Händler aller Art haben die Privatsphäre, die Monero bietet, zu schätzen gelernt. Weiter unten findest du eine Liste von vielen Firmen, die ihre Waren und Dienstleistungen im Austausch für Monero anbieten. Falls eine Firma Monero nicht mehr akzeptiert oder du hier aufgeführt sein möchtest,
intro2: erstelle eine Meldung („Issue“) auf GitLab.
disclaimer: |
"Beachte bitte: Die folgenden Links werden auf einer rein informativen Basis bereit gestellt; sie stellen keine Befürwortung der Monero-Community für Produkte, Dienstleistungen oder Meinungen der aufgelisteten Firmen, Organisationen oder Personen dar. Die Monero-Community übernimmt keine Verantwortung für die Richtigkeit, Legalität, oder den Inhalt der verlinkten Seiten. Bei Fragen sind die Betreiber der jeweiligen Seite zu kontaktieren. Wie immer wird eine Gewährleistung ausgeschlossen. Es ist an dir, dich selbst zu informieren. Benutze immer deinen gesunden Menschenverstand, wenn du online einkaufst."
sponsorships:
translated: "yes"
intro: Die folgenden Organisationen und Firmen haben Monero dabei unterstützt, finanziellen Datenschutz und Freiheit in die Welt zu bringen. Wir sind unendlich dankbar für ihre Unterstützung. Wenn auch du das Monero-Projekt unterstützen und hier genannt werden willst, sende bitte eine E-Mail an dev@getmonero.org.
team:
translated: "yes"
core: Core
developers: Entwickler
developers_para1: "Das Monero-Projekt hat im Laufe der Zeit deutlich über 400 Mitwirkende angezogen. Eine komplette Liste kann hier eingesehen werden:"
developers_para2: OpenHub contributors page.
developers_para3: Weiter unten findest du einige Leute, die für Monero bis ans Ende der Welt gegangen sind.
community: Community
mrl: Research Lab
thanks: Danksagungen
downloads:
translated: "yes"
choose: Wähle dein Betriebssystem
sourceblockchain: Quellcode & Blockchain
mobilelight: Mobile & Light
hardware: Hardware
intro1: Wenn du Hilfe brauchst, um das richtige Programm zu finden, klicke bitte
intro2: hier
intro3: für eine schnelle Antwort und wähle die entsprechende Version für dein Betriebssystem weiter unten aus.
note1: "Anmerkung: Die SHA256 Hashes sind bei den Downloads zur Bequemlichkeit aufgeführt. Eine GPG-signierte Liste der Hashes findest du unter"
note2: " . Bestätigen kannst du diese, wenn die Signatur mit dem entsprechenden GPG-Schlüssel im Quellcode (in /utils/gpg_keys) übereinstimmt."
currentversion: Aktuelle Version
sourcecode: Quellcode
blockchain1: Wenn du nicht von Null auf die Blockchain herunterladen möchtest, kannst du eine Vorlage unter
blockchain2: diesem Link für die aktuellste Vorlage finden.
blockchain3: Üblicherweise ist es allerdings schneller von Null auf zu beginnen und es benötigt auch weniger Arbeitsspeicher.
hardware1: Die Monero-Community hat eine
hardware2: eigene Hardware-Wallet
hardware3: finanziert, die aktuell in Entwicklung ist. Zusätzlich hat seit CLI 0.12.1 und GUI 0.12.3 Ledger
hardware4: Monero in ihre Hardware-Wallets integriert.
mobilelight1: Nachfolgend aufgeführt sind einige Light- und Mobile-Wallets, die von der Community als sicher erachtet werden. Fehlt deiner Meinung nach eine Wallet hier, kannst du diese Wallet gerne der Community vorstellen. Gehe zu unseren
mobilelight2: Hangouts
mobilelight3: ", um zu sehen, wo wir so sind."
clionly: ausschließlich Befehlszeilenprogramme
monero-project:
translated: "yes"
kovri: "Das Kovri-Projekt nutzt Ende-zu-Ende-Verschlüsselung, sodass weder Sender noch Empfänger einer Monero-Transaktion ihre IP-Adresse der anderen Seite oder Dritten (dem Netzwerk) preisgeben müssen. Das wird mit der gleichen Technologie erreicht, die auch dem DarkNet unterliegt: i2p (Invisible Internet Protocol). Das Projekt befindet sich aktuell noch in Entwicklung und steht noch nicht in Monero zur Verfügung."
kovri_button: Zur Kovri-Webseite
openalias: Das OpenAlias-Projekt vereinfacht Zahlungen mit Kryptowährungen, indem es FQDNs (Fully Qualified Domain Names, z.Bsp. example.openalias.org) für Monero-Adressen in einer Art bereitstellt, die gewährleistet, dass jedermanns Privatsphäre gewahrt bleibt. Das Projekt befindet sich in erweiterter Entwicklung und hat es bereits in mehrere Wallets geschafft.
openalias_button: Zur OpenAlias-Webseite
press-kit:
translated: "yes"
intro1: Hier findest du das Monero-Symbol und -Logo. Du kannst eine beliebige Größe auswählen oder die .ai-Datei herunterladen, um selbst etwas mit dem Logo anzustellen.
intro2: Beachte, dass die Versionen für einen weißen Hintergrund NUR unter dem Monero Symbol einen weißen Hintergrund haben und nicht für das gesamte Bild.
intro3: Oder du kannst einfach alles auf dieser Seite in einem .zip-Archiv herunterladen. Klicke einfach
intro4: hier.
noback: Kein Hintergrund
whiteback: Weißer Hintergrund
symbol: Monero-Symbol
logo: Monero-Logo
small: Klein
medium: Normal
large: Groß
symbol_file: Symbol .ai-Datei
logo_file: Logo .ai-Datei
documents:
- category: Presseunterlagen
publications:
- name: "Kurzübersicht (englisch)"
url_file: "http://www.monerooutreach.org/pubs/2018/QuickFacts/QuickFacts.pdf"
abstract: >
Ein kurzer Abriss des Grundwissens um Monero: Geschichte, herausstechende Unterscheidungsmerkmale, technische Grundlagen und Besonderheiten der Entwicklung.<br>
Auf der Webseite <a target="_blank" href="https://www.monerooutreach.org/index.php">Monero Outreachs</a> gibt es weitere Informationen.
accepting:
translated: "yes"
title: Anleitungen für das Befehlszeilenprogramm
basics: Die Grundlagen
basics_para1: Monero funktioniert etwas anders, als du es vielleicht von anderen @Kryptowährungen gewohnt bist. Im Falle einer digitalen Währung wie beispielsweise Bitcoin und seinen vielen Ablegern erzeugen Bezahlsysteme normalerweise eine neue @Adresse für jeden neuen Zahlvorgang.
basics_para2: Weil Monero jedoch @Schattenadressen nutzt, gibt es keinen Anlass, jedes Mal unterschiedliche Adressen zu nutzen und es genügt, eine einzelne Adresse des @Accounts zu veröffentlichen. Stattdessen wird das Bezahlsystem des Händlers dem Kunden eine „Payment-ID“ zur Zuordnung mitteilen.
basics_para3: "Eine @payment-ID ist eine hexadezimale Zeichenkette, die 64 Zeichen lang ist und üblicherweise vom Händler zufällig generiert wird. Ein Beispiel für so eine Payment-ID ist:"
checking: Einen Zahlvorgang in monero-wallet-cli prüfen
checking_para1: |
Wenn du mit monero-wallet-cli einen Zahlvorgang überprüfen willst, kannst du den „payments“- Befehl, gefolgt von der Payment-ID bzw. den Payment-IDs, den oder die du prüfen willst, nutzen. Zum Beispiel:
checking_para2: Wenn du automatisiert Zahlungen überprüfen willst, folge den Details des nachfolgenden Abschnittes.
receiving: Eine Zahlung empfangen Schritt für Schritt
receiving_list1: Generiere eine zufällige, 64 Zeichen lange, hexadezimale Zeichenkette für den Zahlvorgang
receiving_list2: Teile diese „Payment-ID“ und deine Monero-Adresse deinem Kunden mit
receiving_list3: Überprüfe die Zahlung mithilfe des „payments“-Befehls in monero-wallet-cli
program: Zahlungen automatisiert überprüfen
program_para1: Um Zahlungen automatisiert zu überprüfen, kannst du die „get_payments“ oder „get_bulk_payments“ JSON-RPC-API-Aufrufe nutzen.
program_para2: Dies erfordert einen „payment_id“-Parameter in Verbindung mit einer einzelnen Payment-ID.
program_para3: Dies ist die bevorzugte Methode und benötigt zwei Parameter „payment_ids“, ein JSON-Array von Payment-IDs und eine optionale „min_block_height“ die Blockhöhe, ab der geprüft werden soll.
program_para4: |
Ein Beispiel, wie eine Ausgabe aussehen kann, siehst du hier:
program_para5: Es ist wichtig anzumerken, dass die ausgegebenen Beträge in grundlegenden Monero-Einheiten angegeben sind und nicht in Einheiten, die normalerweise in Endnutzeranwendungen verwendet werden. Aufgrund der Tatsache, dass eine Transaktion üblicherweise mehrere Outputs hat, die zum Gesamtbetrag zusammenaddiert werden, sollten die Beträge nach „tx_hash“ oder der „payment_id“ gruppiert und zusammengerechnet werden. Da mehrere Outputs den gleichen Betrag haben können, ist es notwendig, die ausgegebenen Daten nicht durch einen einzigen „get_bulk_payments“-Aufruf herausfiltern zu wollen.
program_para6: Bevor man nach Zahlungen sucht, ist es eine gute Idee, mit einem RPC-API-Aufruf des Dienstes „monerod“ (der „get_info“-RPC-Aufruf) nachzuschauen, ob weitere Blöcke empfangen wurden. Üblicherweise wirst du dann nur ab dem empfangenden Block suchen wollen, indem du diesen als „min_block_height“ festlegst, um die „get_bulk_payments“ zu bekommen.
scanning: Automatisiert nach Zahlungen suchen
scanning_list1: Erfrage die aktuelle Blockhöhe vom Dienst. Fahre nur fort, wenn sie sich seit der letzten Abfrage erhöht hat.
scanning_list2: Rufe die „get_bulk_payments“-RPC-API auf mit der letzten von uns gescannten Höhe und einer Liste aller Payment-IDs in unserem System.
scanning_list3: Setze die aktuelle Blockhöhe als letzte durchsuchte Blockhöhe.
scanning_list4: Entferne Duplikate anhand von Transaktionshashes, die wir bereits verarbeitet haben.
contributing:
translated: "yes"
intro: Monero ist ein Open-Source-Projekt, das von der Community angetrieben wird. Weiter unten sind einige Wege beschrieben, wie du dich einbringen kannst.
network: Unterstütze das Netzwerk
develop: Entwicklung
develop_para1: Monero ist großteils in C++ geschrieben. Da es ein dezentralisiertes Projekt ist, ist jeder eingeladen, Code beizutragen oder abzuändern. „Pull Requests“ werden bei Akzeptanz der Community mit dem Projekt vereint. Schau nach in den
develop_para2: Repositories
develop_para3: und ausstehenden
develop_para4: Issues.
full-node: Betreibe einen Full-Node
full-node_para: Führe monerod aus und öffne Port 18080. Selbst einen Full-Node zu betreiben, garantiert ein Höchstmaß an Datenschutz bei Monero-Transaktionen. Außerdem verbessert es die Verteilung der Blockchain an neue Nutzer.
mine: Mine
mine_para1: Mining gewährleistet die Dezentralität und Sicherheit des Monero-Netzwerkes. In der graphischen Nutzeroberfläche (GUI) Moneros und dem Befehlszeilenprogramm (CLI) kann Mining im Hintergrund aktiviert werden. Weitere Informationen zum Thema Mining findest du mit einem Klick
mine_para2: hier.
ffs: Besuche das Forum-Finanzierungs-System (FFS)
ffs_para1: Monero finanziert sich durch ein
ffs_para2: Forum-Finanzierungs-System
ffs_para3: ", bei dem Projekte vorgeschlagen und von der Community finanziell unterstützt werden können. Die Beiträge werden treuhänderisch verwahrt und freigegeben, sobald bestimmte Meilensteine erreicht wurden. Jeder kann neue Vorschläge unterbreiten oder vorhandene finanziell unterstützen."
donate: Spenden
donate_para1: Die anhaltende Entwicklung wird von Spenden unterstützt sowie von
donate_para2: Sponsoren.
donate-xmr: Monero spenden
donate-xmr_para: Spenden können gesendet werden an
or: oder
donate-btc: Bitcoin spenden
donate-btc_para: Spenden können gesendet werden an
donate-other: Andere
donate-other_para1: Schreibe eine E-Mail an
donate-other_para2: für andere Möglichkeiten zu spenden, oder wenn du ein Sponsor für das Monero Projekt werden möchtest.
faq:
translated: "yes"
q1: Wie erhält Monero einen Wert?
a1: Monero hat einen Wert, weil es Menschen gibt, die es kaufen wollen. Gäbe es keinen, der Monero kaufen möchte, hätte Monero keinen Wert. Monero wird wertvoller, wenn die Nachfrage das Angebot übersteigt und günstiger, wenn das Angebot die Nachfrage übersteigt.
q2: Wie bekomme ich Monero?
a2: Du kannst Monero auf einer Börse oder von einer Person kaufen. Alternativ kannst du dein Glück beim Mining versuchen, um Monero als Belohnung für die Erstellung eines Blockes zu erhalten.
q3: Was ist ein mnemonischer Seed?
a3: Ein mnemonischer Seed ist ein Set von 25 Wörtern, mit dem du überall deinen Account wiederherstellen kannst. Hüte diese Worte wie einen Schatz und teile sie mit niemandem. Selbst wenn dein PC den Geist aufgibt und deine Festplatte in Flammen aufgeht, kannst du mit dem mnemonischen Seed alles wiederherstellen.
q4: Wie unterscheidet sich die Privatsphäre Moneros von anderen Kryptowährungen?
a4: |
Monero nutzt drei verschiedene Datenschutztechnologien: Ringsignaturen, vertrauliche Ringtransaktionen (RingCT) und Schattenadressen. Diese verschleiern jeweils den Sender, Betrag und Empfänger einer Transaktion. Alle Transaktionen im Netzwerk müssen privat sein; es ist unmöglich, beabsichtigt oder aus Versehen, eine öffentlich einsehbare Transaktion zu verschicken. Nur Monero bietet dieses Maß an Datenschutz und dafür musst du keinen Dritten vertrauen.
q5: Warum dauert die Synchronisierung meiner Wallet so lang?
a5: Wenn du einen Full-Node auf deinem Computer betreibst, musst du die komplette Blockchain herunterladen. Das kann sehr lange dauern besonders dann, wenn du eine alte Festplatte oder langsame Internetverbindung hast. Benutzt du einen Drittanbieter-Node, muss die Blockchain dennoch nach Outputs durchsucht werden, was manchmal einige Stunden dauern kann. Sei geduldig. Wenn du etwas Privatsphäre für schnellere Synchronisierungen opfern möchtest, kannst du aber stattdessen auch eine Light-Wallet nutzen.
q6: Was ist der Unterschied zwischen einer normalen und einer Light-Wallet?
a6: Für eine Light-Wallet gibst du deinen View-Key an einen Drittanbieter-Node, der die Blockchain für dich scannt und nach eingehenden Transaktionen Ausschau hält. Dieser Node wird wissen, wann du Geld empfängst (aber nicht wie viel und woher). Wohin du Geld schickst, ist ebenso immer privat. Je nachdem welches Programm du nutzt, kannst du deinen eigenen Node auswählen, um Datenleaks zu vermeiden. Verwende eine normale (Full-) Wallet, um deine Privatsphäre noch besser zu schützen.
q7: Was unterscheidet Monero von Bitcoin?
a7: Monero basiert nicht auf Bitcoin, sondern auf dem CryptoNote-Protokoll. Bitcoin ist völlig transparent und jeder kann exakt sehen, wie viel Geld von einem Nutzer zum anderen gesendet wurde. Monero versteckt diese Information, um die Privatsphäre seiner Nutzer zu wahren. Weiterhin hat es eine dynamische Blockgröße, dynamisch angepasste Gebühren, einen ASIC-resistenten Proof-of-Work(PoW) und eine kleine, aber stetige Ausschüttung neuer Monero nach Erreichung der initialen Distribution.
q8: Ist die Blockgröße Moneros limitiert?
a8: Nein. In Monero gibt es keine festgelegte, maximale Blockgröße. Stattdessen passt sich die Blockgröße im Laufe der Zeit an den Bedarf an. Die Rate, mit der sie wachsen kann, ist jedoch begrenzt, um ein übertriebenes Anschwellen der Blockchain zu verhindern.
q9: Was ist eine Blockchain?
a9: Eine Blockchain ist ein System, das die Geschichte aller Transaktionen des Netzwerks speichert. Bei Monero werden alle zwei Minuten aktuelle Transaktionen in einen neuen Block am Ende der Blockchain eingefügt. Diese Kette von Blöcken ermöglicht es dem Netzwerk, die Guthaben der Accounts zu verifizieren und es gleichzeitig gegen Angriffe und Zentralisierungsversuche resistent zu machen.
q10: Was ist Kovri?
a10: Kovri ist ein in C++ programmierter I2P-Router. I2P (Invisible Internet Project) ist ein verstecktes Netzwerk, ähnlich Tor, mit einigen technischen Unterschieden. Kovri ist ein von Monero unabhängiges Projekt, welches allerdings mit Monero und anderen kompatibel sein wird. Kovri versteckt die Übermittlung von Transaktionen, sodass andere Knoten nicht herausfinden können, woher eine Transaktion stammt. In Konfliktsituationen kann Kovri genutzt werden, um allen Netzwerkverkehr Moneros durch I2P zu leiten. Dies würde es unmöglich machen, zu erkennen, dass Monero genutzt wird. Kovri befindet sich gegenwärtig in der Alphaphase und ist noch nicht vollständig in Monero integriert. Finde mehr über Kovri auf der <a href="https://kovri.io">Webseite des Kovri-Projektes</a> heraus.
q11: Was ist Fungibilität und warum ist sie wichtig?
a11: Fungibilität ist eine einfache Eigenschaft von Geld und bedeutet, dass es keine Unterschiede im Wert zweier identischer Beträge gibt. Wenn ein Mensch mit einem anderen eine Zehn gegen zwei Fünfen tauscht, verliert niemand. Nimmt man nun aber an, dass die Zehn vorher bei einer Erpressung zum Einsatz kam würde der Zweite dann noch den Handel durchführen? Wohl eher nicht selbst dann nicht, wenn der aktuelle Besitzer der Zehn keinerlei Verbindung zu dem Verbrechen hat. Das ist ein Problem, da der Empfänger sein empfangenes Geld kontinuierlich überprüfen muss, um kein „schmutziges“ Geld zu erhalten. Monero ist fungibel niemand muss sich mit Monero diese Mühe machen.
q12: Woher wissen wir, dass Monero nicht aus dem Nichts geschaffen werden, wenn sie so privat sind?
a12-1: In Monero ist jede Transaktion an ein einzigartiges Schlüsselbild gebunden, welches nur durch den Besitzer des Transaktionsausgangs erzeugt werden kann. Wiederverwendete Schlüsselbilder werden von den Minern als doppelte Ausgabe zurückgewiesen und können nicht in einen gültigen Block aufgenommen werden. Wenn eine neue Transaktion empfangen wird, prüfen die Miner, dass das Schlüsselbild nicht bereits existiert, um sicherzustellen, dass es sich nicht um eine doppelte Ausgabe handelt.
a12-2: Wir können auch verifizieren, dass die Beträge der Transaktionen korrekt sind, obwohl die Eingänge, die ausgegeben werden und die Ausgänge, die gesendet werden, verschlüsselt sind (sie sind vor jedem außer dem Empfänger versteckt). Da die Beträge mit „Pedersen-Commitments“ verschlüsselt sind, kann kein Außenstehender die Beträge der Ein- und Ausgänge sehen, aber er kann verifizieren, dass die Beträge der Eingänge denen der Ausgänge entsprechen und somit keine Monero aus dem Nichts geschaffen wurden.
a12-3: Solange die verschlüsselten Ausgangsbeträge (üblicherweise ein Ausgang für den Empfänger, ein Ausgang für dein Wechselgeld und einen für die unverschlüsselte Transaktionsgebühr), die du kreierst, der Summe der Eingänge, die ausgegeben werden, entsprechen, ist deine Transaktion gültig. „Pedersen-Commitments“ bedeuten, dass die Summen als gleich groß verifiziert werden können, aber die individuelle Zusammensetzung der Summen und der Gesamtbetrag der Einzelsummen unbestimmbar sind.
q13: Ist Monero magisch und kann meine Privatsphäre schützen, egal was ich mache?
a13: Monero ist kein Wundermittel. Wenn du Monero nutzt, aber deinen Namen, deine Adresse usw. an einen Außenstehenden gibst, wird dieser nicht auf magische Weise deinen Namen und deine Adresse vergessen. Wenn du deine privaten Schlüssel weitergibst, können andere nachvollziehen, was du gemacht hast. Wenn du dir einen Virus einfängst oder abgehört wirst, können deine Informationen abgegriffen werden. Wenn dein Passwort schwach ist, könnten andere (erfolgreich) versuchen, deine privaten Schlüssel zu knacken. Wenn du deine (verschlüsselten) privaten Schlüssel in die Cloud hochlädst, könntest du schneller arm sein als gedacht.
q14: Ist Monero 100% anonym?
a14: 100%ige Anonymität gibt es nicht. Wenn du absolut keinen Fehler machst, ist deine Anonymität so gut wie die Anzahl der Leute, die Monero nutzen. Manche Leute nutzen Monero nicht; Monero könnte Bugs haben. Es könnten Wege existieren oder hinzukommen, Informationen aus Moneros Schichten zum Schutz der Privatsphäre zu extrahieren. Die Attacken werden nur stärker werden. Auch wenn du angeschnallt bist, kannst du trotzdem bei einem Unfall ums Leben kommen. Nutze deinen gesunden Menschenverstand und gehe mit ausgiebiger Vorsicht und Vernunft vor.
mining:
translated: "yes"
intro1: Monero ist eine Kryptowährung, die auf Proof-of-Work-Mining zurückgreift, um einen dezentralen Konsens zu erreichen. Weiter unten findest du weitere Informationen rund um die ersten Schritte des Minings.
intro2: Das Monero-Projekt empfiehlt keinen speziellen Pool, keine bestimmte Software oder Hardware und die nachfolgenden Informationen sind rein informativ.
support: Support
support_para1: Siehe
support_para2: Hangouts,
support_para3: /r/moneromining (Englisch)
support_para4: und
pools: Pools
pools_para1: Eine Auflistung bisher ehrlich agierender Mining-Pools findest du
pools_para2: hier.
benchmarking: Hardware-Leistungsvergleich
benchmarking_para1: Hier
benchmarking_para2: findest du eine Zusammenstellung verschiedener Grafikkarten und CPUs und deren Hashraten.
software: Mining-Software
software_para: Beachte, dass einige Miningprogramme Gebühren für deren Entwickler abführen können.
using:
translated: "yes"
intro: Monero zu schicken und zu empfangen, kann sehr einfach sein. Diese Seite gibt dir einen kurzen Einblick.
learn: 1. Grundlagen
learn_para1: Monero ist eine sichere, private und nicht nachverfolgbare Kryptowährung. Die Entwickler und die Community sind entschlossen, diese Werte zu schützen. Lerne mehr darüber durch das Lesen der
learn_para2: „Was ist Monero“
learn_para3: "-Seite. Der"
learn_para4: Quellcode
learn_para5: ist ebenso zum Überprüfen und für weitere Diskussion verfügbar.
support: 2. Erfrage Unterstützung
support_para1: Es gibt eine große und hilfsbereite Community, die dir helfen wird, wenn du auf Probleme stößt. Schau bei den
support_para2: Hangouts
support_para3: vorbei, um weitere Informationen zu erhalten.
generate: 3. Erzeuge eine Wallet
generate_para1: Eine Monero-Wallet ist notwendig, um dein Guthaben sicher zu verwahren. Bei den
generate_para2: Downloads
generate_para3: findest du verfügbare Wallets, die du nutzen kannst.
generate_para4: Der einfachste Weg, einen eigenen Monero-Node zu betreiben, ohne deine eigene Internetleitung zu belasten, ist es, einen VPS (Virtuellen Privaten Server) zu kaufen. Wir empfehlen dir,
generate_para5: und den
generate_para6: Coupon-Code zu nutzen, um einen Rabatt auf den bereits günstigen Preis von 6$ pro Monat und VPS zu erhalten. Durch Eingabe des Coupons und/oder Nutzung
generate_para7: unseres Partnerlinks
generate_para8: wird die weitere Entwicklung Moneros unterstützt.
acquire: 4. Monero bekommen
acquire_para1: Monero können auf einer
acquire_para2: Börse
acquire_para3: mit staatlicher Währung (FIAT) oder anderen Kryptowährungen erworben werden. Alternativ kann Monero durch
acquire_para4: Mining,
acquire_para5: den rechenintensiven Prozess durch den Transaktionen unveränderlich auf die Blockchain geschrieben werden, erworben werden.
send-receive: 5. Sende und Empfange Monero
send-receive_para1: Lerne, wie Monero gesendet und empfangen werden in der
send-receive_para2: Anleitung.
transact: 6. Mache deine Geschäfte mit Monero
transact_para1: Monero können für den Kauf vieler Produkte und Dienstleistungen genutzt werden. Eine Übersicht findest du in der
transact_para2: Händlerübersicht.
what-is-monero:
translated: "yes"
need-to-know: Was du wissen solltest
leading: Monero ist die führende Kryptowährung mit einem Fokus auf private und zensurresistente Transaktionen.
leading_para1: Die meisten Kryptowährungen, inklusive Bitcoin und Ethereum, haben transparente Blockchains. Das heißt, dass alle Transaktionen öffentlich und weltweit verifizierbar sind. Dadurch können Empfangs- und sendende Adressen den tatsächlichen Besitzern zugeordnet werden.
leading_para2: Monero macht Gebrauch von Kryptographie, um diese Adressen und die verschickten Beträge zu verschleiern.
confidential: Transaktionen mit Monero sind vertraulich und nicht nachverfolgbar.
confidential_para1: Jede Transaktion mit Monero verschleiert immer die Sende- und Empfangsadresse und die verschickten Beträge. Dieser, vom Protokoll bedingte, Datenschutz bedeutet, dass jeder Nutzer Moneros die Privatsphäre anderer Moneronutzer verbessert. In anderen Kryptowährungen, wie beispielsweise Z-Cash, die eine Unterscheidung zwischen öffentlichen und privaten Transaktionen machen, ist dies nicht der Fall.
confidential_para2: Monero ist fungibel. Dadurch, dass Transaktionen verschleiert werden, können Monero nicht „schmutzig“ durch deren vorherige Verwendung werden. Das bedeutet, dass Monero immer akzeptiert werden, egal woher sie stammen und ohne die Möglichkeit, einzelne Monero zu zensieren und auszuschließen.
confidential_para3: Das Kovri-Projekt,
confidential_para4: gegenwärtig in der Entwicklung
confidential_para5: ", wird Transaktionen über I2P-Netzwerkknoten (Invisible Internet Project) leiten und verschlüsseln. Dies wird die IP-Adresse eines Nutzers verstecken und weiteren Schutz gegen eine Überwachung des Netzwerkes bieten."
grassroots: Monero ist eine unabhängige Community, die die besten Forscher und Entwickler der Kryptowährungsszene anzieht.
grassroots_para1: Über
grassroots_para2: 420 Entwickler
grassroots_para3: ", darunter 30 Hauptentwickler, haben etwas zum Monero-Projekt beigetragen. Die Foren und Chats sind aufgeschlossen und aktiv."
grassroots_para4: Moneros „Research Lab“, sein Hauptentwicklungsteam und Entwickler der Community erweitern ständig die Möglichkeiten des Datenschutzes und der Sicherheit von Kryptowährungen.
grassroots_para5: Monero ist keine Firma. Es wird von Experten der Kryptographie und dezentralen Systemen entwickelt, die aus der ganzen Welt stammen und ihre Zeit dem Projekt widmen. Einige Entwickler werden durch Spenden der Community unterstützt. Beides zusammen bedeutet, dass kein Land und keine Regierung in der Lage ist, Monero zu unterbinden und dass Monero keiner spezifischen Gesetzgebung unterliegt.
electronic: Monero ist elektronisches Bargeld, das schnelle und günstige Bezahlungen von jedem und an jeden weltweit ermöglicht.
electronic_para1: Es gibt keine mehrtägigen Verzögerungen zur Bestätigung und kein Risiko von betrügerischen Rückbuchungen. Es ist vor „Kapitalkontrollen“ sicher Kapitalkontrollen sind Maßnahmen, die den Geldfluss steuern sollen, was teilweise, in z.Bsp. wirtschaftlich instabilen Ländern, bis zur vollständigen Unterbindung reichen kann.
videos: Monero-Videos (English)
about:
translated: "yes"
history: Überblick über die Geschichte
history_para1: "Monero wurde im April 2014 veröffentlicht. Es war ein fairer, vorher angekündigter Start des Referenzcodes CryptoNote. Es gab keinen Pre- oder Instantmine und kein Anteil des Minings geht an die Entwickler. All das kannst du im Thread auf Bitcointalk sehen:"
history_para2: Hier
history_para3: Der Gründer, thankful_for_today, hat der Community einige kontroverse Änderungen vorgeschlagen. Als diese abgelehnt wurden, kam es zu einer Dissonanz und die Hauptentwickler haben mit der Unterstützung der Community das Projekt abgespalten. Diese Hauptentwickler übernehmen die hauptsächliche Verwaltung bis heute.
history_para4: Seit Monero veröffentlicht wurde, hat es verschiedene, weitreichende Verbesserungen durchlebt. Die Blockchain wurde auf ein neues Datenformat gesetzt, welches eine bessere Effizienz, Flexibilität und schnellere Zugriffszeiten ermöglicht; die Anzahl der nötigen Verschleierungspartner wurde angehoben, um einen Mindestdatenschutz zu gewährleisten und RingCT wurde implementiert, um die Beträge der Transaktionen zu verstecken. Nahezu alle Verbesserungen dienten der Erweiterung der Sicherheit, des Datenschutzes oder der Erleichterung der Benutzung. Monero wird weiterhin mit der Priorität auf Datenschutz und Sicherheit entwickelt. Können diese gewahrt werden, werden Benutzerfreundlichkeit und Effizienz verbessert.
values: Unsere Werte
values_para: Monero ist mehr als nur Technologie. Es ist auch das, was die Technologie verkörpern soll. Die wichtigsten Grundwerte sind unten aufgeführt.
security: Sicherheit
security_para: Nutzer müssen Monero mit ihren Transaktionen vertrauen können, ohne dem Risiko eines Angriffs ausgetzt zu sein. Monero gibt den wichtigsten Mitgliedern des Netzwerkes im Bezug auf Sicherheit, den Minern, die volle Blockbelohnung. Transaktionen sind kryptographisch abgesichert mit den stärksten zur Verfügung stehenden Verschlüsselungstechnologien.
privacy: Datenschutz
privacy_para: Monero nimmt Datenschutz sehr ernst. Monero muss in der Lage sein, seine Nutzer zu schützen auch in einem Gerichtsprozess und in Extremfällen vor der Todesstrafe. Dieses Maß an Datenschutz muss jedem Nutzer gleichermaßen zur Verfügung stehen, gleich dessen technischem Verständnis im Allgemeinen oder Moneros im Speziellen. Das Vertrauen in Monero muss gerechtfertigterweise so hoch sein können, dass ein Nutzer sein Verhalten nicht ändert aus Angst davor, dass jemand anderes etwas herausfinden könnte.
decentralization: Dezentralisation
decentralization_para: Monero strebt das größtmögliche Maß an Dezentralisierung an. Mit Monero musst du niemand anderem im Netzwerk vertrauen und es wird durch keine Firma oder Gruppe betrieben. Ein zugänglicher Proof-of-Work-Algorithmus ermöglicht es jedem mit einem Computer, Monero zu minen. Das macht es schwierig, einen großen Anteil dieser Rechenleistung zu kaufen oder zu mieten. Mit der Implementierung von Kovri werden sich Teilnehmer über I2P verbinden können, welches das Risiko, sensible Daten preiszugeben oder zensiert zu werden, minimiert. Entwicklungsentscheidungen werden deutlich und öffentlich zur Diskussion gestellt. Protokolle der Entwicklungsmeetings werden vollständig und für jeden sichtbar online veröffentlicht.
developer-guides:
translated: "yes"
outdated: "Beachte bitte, dass die nachfolgenden Anleitungen kürzlich aktualisiert wurden und schnellstmöglich auf Änderungen hin angepasst werden. Es kann jedoch sein, dass einige Methoden hinzukommen, entfernt werden oder aktualisiert werden und hier nicht exakt beschrieben werden."
rpc: RPC-Dokumentation
daemonrpc: Dienst-RPC-Dokumentation
walletrpc: Wallet-RPC-Dokumentation
soon: Weitere folgen...
user-guides:
translated: "yes"
general: Allgemeines
mining: Mining
recovery: Wiederherstellung
wallets: Wallets
offline-backup: Erstellung eines Offline-Backups
vps-node: Betreibung eines Nodes über VPS
import-blockchain: Import der Monero-Blockchain
monero-tools: Monero-Tools
purchasing-storing: Monero sicher kaufen und verwahren
verify-allos: Dateien auf Linux, Mac bzw. Windows in der Befehlszeile verifizieren (fortgeschritten)
verify-windows: Dateien unter Windows verifizieren (Anfänger)
mine-on-pool: Mining auf einem Pool mit xmr-stak-cpu
solo-mine: Solomining mit der GUI
mine-docker: Mining mit Docker und XMRig
locked-funds: Feststeckende Guthaben freigeben
restore-account: Wiederherstellung einer Wallet
qubes: "Befehlszeile: Wallet- /Dienstisolierung mit Qubes + Whonix"
cli-wallet: Grundlagen der Wallet (Befehlszeile)
remote-node-gui: Mit einem Drittanbieternode verbinden (GUI)
view-only: Eine View-Only-Wallet erstellen
prove-payment: Bezahlung beweisen
restore-from-keys: Wallet mit privaten Schlüsseln wiederherstellen
nicehash: Monero (XMR) ohne spezielle Hardware minen
ledger-wallet-cli: Eine Wallet mit Ledger erstellen (Befehlszeile)
roadmap:
translated: "yes"
completed: Abgeschlossene Aufgabe
ongoing: Laufende Aufgabe
upcoming: Kommende Aufgabe
future: Zukunft
research-lab:
translated: "yes"
intro: Monero widmet sich nicht nur einer fungiblen Währung, sondern auch einer kontinuierlichen Forschung im Bereich des finanziellen Datenschutzes, da dies Kryptowährungen mit einschließt. Weiter unten findest du Arbeiten unseres Monero Research Lab; weitere Abhandlungen werden folgen.
mrl_papers: Monero Research Lab Papers (Englisch)
abstract: Kurzfassung
introduction: Einleitung
read-paper: Abhandlung lesen
mrl1: Anmerkungen zu Kettenreaktionen im Hinblick auf Nachverfolgbarkeit in CryptoNote 2.0 (A Note on Chain Reactions in Traceability in CryptoNote 2.0)
mrl1_abstract: Diese Abhandlung beschreibt plausible Angriffe auf ein Ringsignaturen-basiertes Anonymitätssystem. Unsere Motivation soll hier das CryptoNote 2.0 Protokoll sein, welches angeblich von Nicolas van Saberhagen im Jahre 2012 veröffentlicht wurde. Es wurde bereits gezeigt, dass die Unnachverfolgbarkeit eines einmalig genutzten Schlüsselpaares davon abhängen kann, wie unnachverfolgbar die in der Ringsignatur beteiligten Schlüssel sind. Dies macht Kettenreaktionen im Hinblick auf die Nachverfolgbarkeit von Ringsignaturen plausibel, was eine kritische Verletzung der Unnachverfolgbarkeit des gesamten Netzwerkes zur Folge haben kann, wenn Parameter ungünstig gewählt werden und ein Angreifer einen maßgeblichen Anteil am Netzwerk hält. Die Signaturen sind jedoch für den einmaligen Gebrauch und ein solcher Angriff muss nicht zwingend den Verlust der Anonymität der Nutzer zur Folge haben. Nichtsdestotrotz kann ein derartiger Angriff die Widerstandsfähigkeit, die CryptoNote gegen Blockchainanalysen aufweist, schwächen. Diese Abhandlung wurde nicht peer-reviewed und spiegelt nur die Ergebnisse interner Untersuchungen wider.
mrl2: Erzeugung von Falschgeld durch Ausnutzen von Schwachstellen im Merkle-Tree innerhalb von virtuellen Währungen, die auf dem CryptoNote-Protokoll basieren (Counterfeiting via Merkle Tree Exploits within Virtual Currencies Employing the CryptoNote Protocol)
mrl2_abstract: Am 4. September 2014 wurde ein neuartiger und ungewöhnlicher Angriff gegen Moneros Kryptowährungsnetzwerk durchgeführt. Diese Attacke fragmentierte das Netzwerk in zwei abgetrennte Teile, die gegenseitig die Gültigkeit des anderen bestritten. Dies hatte eine Vielzahl von Auswirkungen, von denen noch nicht alle bekannt sind. Der Angreifer hatte ein kurzes Zeitfenster, innerhalb dessen beispielsweise Falschgeld hätte erzeugt werden können. Diese Abhandlung beschreibt Schwachstellen in der Referenz des CryptoNote-Protokolls, die diesen Angriff ermöglichten, einen Lösungsansatz, der ursprünglich von Rafal Freeman von Tigusoft.pl und in der Folge vom CryptoNote-Team vorgebracht wurde, sowie die momentane Lösung, die in Monero zum Einsatz kommt und erklärt genau, welchen Effekt der auslösende Block auf das Netzwerk hatte. Diese Abhandlung wurde nicht peer-reviewed und spiegelt nur die Ergebnisse interner Untersuchungen wider.
mrl3: Monero ist gar nicht so mysteriös (Monero is Not That Mysterious)
mrl3_abstract: In letzter Zeit zirkulierten vage Gerüchte durch's Internet über den Quellcode von CryptoNote und dessen Protokoll aufgrund der Tatsache, dass es sich um ein komplexeres Protokoll als beispielsweise Bitcoin handelt. Der Sinn dieser Abhandlung soll sein, einige Verwirrungen aufzuklären und hoffentlich einige der Rätsel um Moneros Ringsignaturen zu entwirren. Zunächst wird die Mathematik der CryptoNote-Ringsignaturen (wie in [CN] beschrieben) mit der Mathematik hinter [FS] verglichen, auf der CryptoNote aufbaut. Anschließend wird die Mathematik hinter Ringsignaturen mit dem verglichen, was im Quellcode der Implementierung von CryptoNote vorhanden ist.
mrl4: Verbesserung der Verschleierung im CryptoNote-Protokoll (Improving Obfuscation in the CryptoNote Protocol)
mrl4_abstract: Wir identifizieren verschiedene Blockchainanalyseangriffe, die zur Verfügung stehen, um die Unnachverfolgbarkeit des CryptoNote-2.0-Protokolls auszuhebeln. Es werden verschiedene Lösungen untersucht und deren jeweilige Vorzüge und Nachteile bewertet und Verbesserungen am Protokoll Moneros vorgeschlagen, die die Widerstandsfähigkeit gegen Blockchainanalysen auf hoffentlich lange Sicht gewähren können. Unsere Vorschläge beinhalten eine Änderung der netzwerkweiten Mindestzahl an Verschleierungspartnern je Ringsignatur auf Protokollebene von n = 2 und eine Anhebung dieses Werts auf n = 4 nach zwei Jahren sowie das Setzen der Standardzahl auf zunächst n = 4. Wir empfehlen weiterhin eine Torrent-ähnliche Methode, um Moneros zu versenden, sowie eine uneinheitliche, altersabhängige Selektierung der Verschleierungspartner, um anderen Formen der Blockchainanalyse entgegen zu wirken. Aus verschiedenen Gründen werden jedoch keine formellen Vorschläge zur Implementierung gegeben. Die Auswirkungen dieser Verbesserungen werden etwas genauer betrachtet. Diese Abhandlung wurde nicht peer-reviewed und spiegelt nur die Ergebnisse interner Untersuchungen wider.
mrl5: Vertrauliche Ringsignaturtransaktionen (Ring Signature Confidential Transactions)
mrl5_abstract: Dieser Artikel gibt eine Einführung in eine Methode, Transaktionsbeträge in der stark dezentralisierten, anonymen Kryptowährung Monero zu verstecken. Ähnlich wie Bitcoin ist Monero eine Kryptowährung, die durch einen dezentralen, verteilten „Proof-of-Work“-Miningprozess herausgegeben wird. Das ursprüngliche Monero-Protokoll basierte auf CryptoNote, welches Ringsignaturen und einmalige Schlüssel verwendet, um Ursprung und Ziel von Transaktionen zu verstecken. Vor kurzem wurde eine Vorgehensweise diskutiert, es mithilfe von Verpflichtungserklärungen auf Transaktionen zu ermöglichen, die Beträge der Transaktionen zu verstecken. Diese wurden von Gregory Maxwell, einem der Hauptentwickler Bitcoins, implementiert. In diesem Artikel wird ein neuer Typ von Ringsignaturen eine mehrschichtig verknüpfte, spontane, anonyme Gruppensignatur beschrieben, der es ermöglicht, Beträge, Ursprünge und Ziele von Transaktionen zu verstecken und dabei eine akzeptable Effizienz unter Beibehaltung der Verifizierbarkeit der vertrauenslosen Coingenerierung zu bewahren. Einige notwendige Erweiterungen des Protokolls werden vorgestellt, wie beispielsweise aggregierte Schnorr-Range-Proofs und Multiringsignaturen. Der Autor merkt an, dass frühe Entwürfe hiervon in der Monero-Community und dem „Bitcoin Research“-IRC-Channel veröffentlicht wurden. Auf der Blockchain hinterlegte Hashes dieser Versionen können in [14] eingesehen werden, die zeigen, dass die Arbeiten daran im Sommer 2015 aufgenommmen und Anfang Oktober 2015 vollendet wurden. Eine elektronische Version findet sich unter http://eprint.iacr.org/2015/1098.
mrl6: Eine effiziente Implementierung von Subadressen (An Efficient Implementation of Monero Subadresses)
mrl6_abstract: Nutzer der Kryptowährung Monero, die ihre Walletadressen wiederholt nutzen möchten, aber dabei eine Verknüpfbarkeit vermeiden wollen, müssen mehrere Wallets nutzen, was ein Durchsuchen der Blockchain für jede einzelne bedeutet. Wir dokumentieren eine neue Variante für Adressen, die es dem Nutzer ermöglicht, eine einzelne Hauptadresse zu verwalten und eine beliebige Anzahl an Subadressen für diese zu generieren. Dies bietet den weiteren Vorteil, dass die Blockchain nur ein Mal für eine beliebige Anzahl an Subadressen durchsucht werden muss, um zu erkennen, ob sie für eine dieser bestimmt ist. Weiterhin unterstützt diese Variante mehrfache Ausgänge an andere Subadressen und ist genauso effizient wie herkömmliche Transaktionen.
mrl7: Mengen von ausgegebenen Outputs (Sets of Spent Outputs)
mrl7_abstract: Diese technische Abhandlung verallgemeinert das Konzept von ausgegebenen Outputs unter Zuhilfenahme grundlegender Mengenlehre. Die Beschreibung vereint eine Vielzahl vorheriger Arbeiten, die sich mit der Analyse solcher ausgegebenen Outputs beschäftigen. Wir quantifizieren die Effekte solcher Analysen der Monero-Blockchain und geben eine Übersicht der Gegenmaßnahmen.
mrl8: Duale, verknüpfbare Ringsignaturen (Dual Linkable Ring Signatures)
mrl8_abstract: Diese Abhandlung beschreibt Modifikationen der verknüpfbaren Ringsignaturen Moneros, die es erlauben, doppelte Schlüsseloutputs als Ringsignaturteilnehmer zu verwenden. Schlüsselbilder werden an beide Einmalschlüssel der Outputs in einem Zwilling gebunden, der es bei beiden Schlüsseln verhindert, separat ausgegeben zu werden. Diese Methode hat Anwendungen in der automatisierten Rückbuchung von Transaktionen. Wir diskutieren die Auswirkungen auf die Sicherheit dieser Methode.
mrl9: Thringsignaturen und ihre Anwendungen in digitalen Währungen mit unbekannten Sendern (Thring Signatures and their Applications to Spender-Ambiguous Digital Currencies)
mrl9_abstract: Wir präsentieren Multigrenzwertringsignaturen (Thringsignaturen) zur kollaborativen Berechnung von Ringsignaturen, zeigen eine Demo zur grundlegenden Erstellung von Thringsignaturen und diskutieren die Anwendungen von Thringsignaturen in digitalen Währungen, die währungsübergreifende Atomic Swaps mit unbekannten Sendern für geheime Beträge ohne die Notwendigkeit des Vertrauens in eine dritte Partei ermöglichen. Wir präsentieren eine Einbindung von Thringsignaturen, die wir spontan verknüpfbare, anonyme Grenzwertgruppensignaturen nennen und beweisen, dass die Implementierung grundlegend fälschungssicher ist.
mrl10: Gruppenübergreifende diskret logarithmische Gleichheit (Discrete Logarithm Equality Across Groups)
mrl10_abstract: Diese technische Abhandlung beschreibt einen Algorithmus, der verwendet wird, um die Kenntnis desselben diskreten Logarithmus über verschiedene Gruppen hinweg zu beweisen. Diese Methode beschreibt einen gemeinsamen Wert als eine skalare Repräsentation von Bits und nutzt diese als eine Menge von Ringsignaturen um zu beweisen, dass jedes Bit ein gültiger Wert ist, der der gleiche (bis zu einem bestimmen Äquivalent) über beide Skalargruppen ist.
cryptonote: CryptoNote-Whitepapers
cryptonote-whitepaper: CryptoNote-Whitepaper
cryptonote-whitepaper_para: Dies ist die originale Abhandlung über CryptoNote, welche vom CryptoNote-Team geschrieben wurde. Eine Lektüre hiervon wird eine grundlegende Einsicht in die Funktionsweise des CryptoNote-Algorithmus geben.
annotated: Whitepaper mit Anmerkungen
annotated_para: Das Monero Research Lab veröffentlichte eine Version des Whitepapers mit Anmerkungen. Dies ist eine Art zeilenweise, informelle Besprechung der Behauptungen, die im Whitepaper gemacht wurden. Es erklärt außerdem einige komplexe Themen mit einfacheren Begriffen.
brandon: Brandon Goodells Whitepaper-Review
brandon_para: Diese Abhandlung ist eine förmliche Kritik des originalen CryptoNote-Protokolls durch den „Monero Research Lab“-Forscher Brandon Goodell. Er gibt einen tiefen Einblick in die Behauptungen und die Mathematik des CryptoNote-Protokolls.
specs:
translated: "yes"
fair_title: Kein Premine, kein Instantmine, kein Token
fair_premine: Monero wurde nicht vor Veröffentlichung oder in großen Mengen bei Veröffentlichung gemined.
fair_token: Monero hat keine Token verkauft.
fair_presale: Monero hatte keine sonstige Art von Vorverkauf.
pow_title: Proof of Work
pow_name: CryptoNight
pow_disclaimer: könnte sich in der Zukunft ändern
diff_title: Schwierigkeitsanpassung
diff_freq: jeder Block
diff_base: Anhand der letzten 720 Blöcke unter Ausschluss von 20% der Ausreißer anhand der Zeitstempel
block_time_title: Blockzeit
block_time_duration: 2 Minuten
block_time_disclaimer: Könnte sich ändern, solange die Verteilungskurve erhalten bleibt
block_reward_title: Blockbelohnung
block_reward_amount: Reduziert sich sanft und unterliegt Minderungen für Blöcke, die größer als der Median der letzten 100 Blöcke (M100) sind.
block_reward_example1: Zum Beispiel im
block_reward_example_link: letzten Block
block_reward_example2: " : Aktuelle Coinbase-Transaktion für die momentane Belohnung"
block_size_title: Blockgröße
block_size: dynamisch, maximal 2 x M100
block_emission_title: Verteilungskurve
block_emission_main: "Zunächst: Hauptverteilung: ~18,132 Millionen Coins bis ca. Ende Mai 2022"
block_emission_tail: "Danach: Anschlussverteilung: 0,6 XMR pro 2-Minuten-Block; wird aktiviert, wenn die Hauptverteilung abgeschlossen ist. Entspricht einer kontinuierlich sinkenden Inflation von unter 1%."
block_emission_disclaimer1: Siehe
block_emission_disclaimer_link: Diagramme und Details
supply_title: Maximale Anzahl an Monero
supply_amount: unendlich
sender_privacy_title: Datenschutz des Senders
sender_privacy_mode: Ringsignaturen
recipient_privacy_title: Datenschutz des Empfängers
recipient_privacy_mode: Schattenadressen
amount_hidden_title: Verschleierung des Betrages
amount_hidden_mode: vertrauliche Ringtransaktionen (Ring confidential transactions)
library:
translated: "yes"
description: "Unten gibt es Veröffentlichungen, Bücher und Magazine für dich zum Download."
books:
- category: Bücher
publications:
- name: "Zero to Monero"
file: "Zero-to-Monero-1-0-0.pdf"
abstract: >
Eine verständliche Erklärung des Konzeptes (und der Technik) hinter Monero<br>
Unser Wunsch ist es, jedem mit einem Grundverständnis von Algebra und Grundlagen der Computertechnik, wie beispielsweise der Repräsentation von Zahlen im Binärsystem, nicht nur verständlich beizubringen, wie Monero im Detail funktioniert, sondern auch, wie nützlich und schön Kryptographie sein kann.
- name: "Mastering Monero (Vorschau)"
file: "Mastering-Monero-Preview.pdf"
abstract: >
Ein Begleiter durch die scheinbar komplizierte Welt Moneros<br>
Er enthält:
<ul><li>Eine weitreichende Einführung in Blockchains und den Wert von Privatsphäre ideal für Nutzer ohne technischen Hintergrund</li>
<li>Diskussion der Schwachstellen Bitcoins und spezifische Lösungen dieser durch Monero</li>
<li>Nutzererfahrungen (die zeigen, wie Monero deine Daten schützt), Vergleiche, Beispiele, rechtliche und ethische Diskussionen und Quellcodeauszüge, die grundlegende, technische Konzepte darlegen</li>
<li>Details des dezentralisierten Monero-Netzwerkes, der Peer-to-Peer-Architektur, dem Ablauf von Transaktionen und Grundlagen der Sicherheit</li>
<li>Einführung in das technische Fundament Moneros für Entwickler, Ingenieure, Softwarearchitekten und neugierige Nutzer</li>
<li>Neue Entwicklungen wie beispielsweise Kovri, Bulletproofs, Multisignaturen, Hardware-Wallets etc.</li></ul>
Auf der Webseite von <a href="https://masteringmonero.com/">Mastering Monero</a> gibt es Informationen zur vollen Version.
- category: Magazine
publications:
- name: "Revuo Monero Q4 2017"
file: "Revuo-2017-Q4.pdf"
abstract: >
Quartalsweise erscheinendes Monero-Magazin, Ausgabe Q4 2017<br>
In dieser Ausgabe: Neuigkeiten zur Entwicklung, dem Monero Research Lab, Kovri und der Community
- name: "Revuo Monero Q3 2017"
file: "Monero-Revuo-3Q-2017.pdf"
abstract: >
Quartalsweise erscheinendes Monero-Magazin, Ausgabe Q3 2017<br>
In dieser Ausgabe: Neuigkeiten zur Entwicklung, dem Monero Research Lab, Kovri, der Community, Hardware und Monerujo
moneropedia:
translated: "yes"
add_new_button: Neuen Eintrag erstellen
add_new_text1: Wenn es einen Eintrag gibt, den du hinzufügen oder ändern möchtest,
add_new_link: eröffne bitte ein neues Issue im Repository dieser Webseite auf GitLab
add_new_text2: oder schlage Änderungen mittels eines Pull-Requests vor
entries:
account: Account
address-book: Adressbuch
address: Adresse
airgap: Airgap
atomic-units: Kleinste Einheit
base32-address: Base32-Adresse
base64-address: Base64-Adresse
blockchain: Blockchain
block: Block
bootstrap-node: Bootstrap-Node
canonically-unique-host: Eindeutig zuordenbarer Host
change: Wechselgeld
clearnet: Clearnet
coinbase: Coinbase-Transaktion
consensus: Konsens
cryptocurrency: Kryptowährung
data-directory: Datenverzeichnis
denominations: Stückelung
destination: Ziel
eepsite: Eepsite
encryption: Verschlüsselung
floodfill: Floodfill
fluffyblocks: Fluffy-Blocks
fungibility: Fungibilität
garlic-encryption: Garlic-Verschlüsselung
garlic-routing: Garlic-Routing
i2np: I2NP
i2pcontrol: I2PControl
i2p: I2P
in-net: In-net
java-i2p: Java-I2P
jump-service: Jump-Service
kovri: Kovri
lease: Lease
lease-set: Lease-Set
locally-unique-host: Lokal einzigartiger Host
message: Nachricht
mining: Mining
mnemonicseed: Mnemonischer Seed
network-database: Netzwerkdatenbank
node: Node
ntcp: NTCP
openalias: OpenAlias
paperwallet: Paper-Wallet
paymentid: Payment-ID
pedersen-commitment: Pedersen-Commitment
reseed: Reseed
ringCT: vertrauliche Ringtransaktionen (Ring CT)
ringsignatures: Ringsignatur
ring-size: Ringgröße
router-info: Router-Info
scalability: Skalierbarkeit
signature: Kryptographische Signatur
smartmining: Smart-Mining
spendkey: Spend-Key
ssu: SSU
stealthaddress: Schattenadresse
subscription: Register
tail-emission: Anschlussverteilung
transaction: Transaktionen
transports: Transport
tunnel: Tunnel
unlocktime: Freigabedauer von Transaktionen
viewkey: View-Key
wallet: Wallet
blog:
title_1: Alle
title_2: Blog
title_3: Beiträge
tagged: Getaggt mit
author: Veröffentlicht von
date: Eingesendet am
forum: Klicke hier, um der Diskussion für diesen Eintrag im Moneroforum beizutreten
tags:
all: Einträge nach Tags
notags: Es gibt für diesen Tag keine passenden Einträge.

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,9 @@
---
terms: ["", ""]
summary: ""
---
{% include untranslated.html %}
### The Basics
<Re-write summary here>

View file

@ -0,0 +1,81 @@
---
terms: ["account", "accounts", "wallet", "wallets", "Account", "Accounts"]
summary: "similar in function to a bank account, contains all of your sent and received transactions"
---
{% include untranslated.html %}
### The Basics
Those familiar with Monero's predecessors will be more familiar with the term *wallet* to describe this. In Monero we call this an account, and it is a private account owned and operated by a Monero user.
Your account contains all of the Monero @transactions you have sent and received. Your account balance is a sum of all the Monero you've received, less the Monero you've sent. When using Monero you may notice that your account has two balances, a locked and an unlocked balance. The unlocked balance contains funds that can be spent immediately, and the locked balance contains funds that you can't spend right now. You may receive a transaction that has an @unlock-time set, or you may have sent some Monero and are waiting for the @change to come back to your wallet, both situations that could lead to those funds being locked for a time.
A key difference between traditional electronic currency and Monero is that your account resides only under your control, normally on your computer, and cannot be accessed by anyone else if you [practice good security](#practicing-good-security).
### Multiple Accounts
There are no costs attached to creating a Monero account, and there are no fees charged except for individual @transaction fees that go to @miners.
This means that individuals can easily create a Monero account for themselves as well as a joint account to share with their partner, and individual accounts for their children. Similarly, a business could create separate accounts for each division or group. Since Monero's @transaction fees are quite low, moving funds between accounts is not an expensive exercise.
### Cryptographic Keys
Monero relies heavily on a cryptography principle known as *public/private key cryptography* or *asymmetric cryptography*, which is thoroughly detailed in [this Wikipedia article](https://en.wikipedia.org/wiki/Public-key_cryptography).
Your account is based on two keys, a @spend-key and a @view-key. The @spend-key is special in that it is the single key required to spend your Monero funds, whereas the @view-key allows you to reveal your @transactions to a third party, for example for auditing or accounting purposes. These keys in your account also play an important role in Monero's @transaction's privacy.
The private keys for both of these must be protected by you in order to retain your account privacy. On the other hand, the public keys are obviously public (they are part of your Monero account address). For normal public/private key cryptography someone could send you a private message by encrypting it with either of your public keys, and you would then be the only one able to decrypt it with your private keys.
### Backing Up Your Account
When you manage your own Monero Account with the private @spend-key, you are solely responsible for the security of your funds. Thankfully, Monero makes it very easy to backup your account. When creating a Monero account for the first time you will be given a unique @mnemonic-seed for your account that consists of 13 or 25 words in the language of your choosing. **This seed is the only thing you need to backup for your account**, and so it is imperative that it is written down and stored securely. Never store this seed in a form or location that would allow someone else to see it!
```
List of available languages for your wallet's seed:
0 : Deutsch
1 : English
2 : Español
3 : Français
4 : Italiano
5 : Nederlands
6 : Português
7 : русский язык
8 : 日本語
9 : 简体中文 (中国)
10 : Esperanto
Enter the number corresponding to the language of your choice: 1
Generated new wallet: 4B15ZjveuttEaTmfZjLVioPVw7bfSmRLpSgB33CJbuC6BoGtZrug9TDAmhZEWD6XoFDGz55bgzisT9Dnv61sbsA6Sa47TYu
view key: 4130fa26463d9451781771a8baa5d0b8085c47c4500cefe4746bab48f1d15903
**********************************************************************
Your wallet has been generated.
To start synchronizing with the daemon, use "refresh" command.
Use "help" command to see the list of available commands.
Always use "exit" command when closing monero-wallet-cli to save your
current session's state. Otherwise, you might need to synchronize
your wallet again (your wallet keys are NOT at risk in any case).
PLEASE NOTE: the following 25 words can be used to recover access to your wallet. Please write them down and store them somewhere safe and secure. Please do not store them in your email or on file storage services outside of your immediate control.
aunt knuckle italics moisture hawk thorn iris abort
chlorine smog uphill glass aptitude nowhere sewage plywood
dual relic fierce divers anvil nodes bubble cabin abort
**********************************************************************
Starting refresh...
Refresh done, blocks received: 21939
Balance: 0.000000000000, unlocked balance: 0.000000000000
Background refresh thread started
[wallet 4B15Zj]: █
```
As the example above indicates, it is incredibly important to store these words in safe locations. If you are concerned about the risk of critical loss at your home, for instance, you may want to store a second copy of your seed with your attorney or in a safety deposit box. It is also recommended that it is stored in a way that does not make it obvious that it is your seed, so writing it into a letter or as part of other notes is advisable.
### Practicing Good Security
Over and above backing up your @mnemonic-seed so that you have access to your account in the event of critical data loss, it is also important to practice good security. Use a secure password when creating a local Monero account (not used on [MyMonero](https://mymonero.com) or other web-based account systems).
Don't ever give your Monero account password to anyone, as this can be used to access the Monero on your computer without knowing your @mnemonic-seed. Similarly, make sure you have running and up-to-date antivirus, especially on Windows computers. Finally, be careful when clicking links in emails or on unknown and untrusted websites, as malware installed on your computer can sit and wait for you to access your Monero account before taking the funds from it.
### Leaving Your Account to Next of Kin
Providing access to your Monero account to your next of kin is just as easy as it is to backup your Monero account. Simply leave your @mnemonic-seed to them in your will, or store it somewhere safe where it will be given to them upon the execution of your will. A key advantage to this is that your next of kin won't have to wait for months for a third party to release the funds to them.

View file

@ -0,0 +1,34 @@
---
tags: ["kovri"]
terms: ["Address-Book"]
summary: "Allows you to visit I2P websites/services that have the .i2p domain"
---
{% include untranslated.html %}
### The Basics
In order to browse @I2P sites or services with @Kovri, you'll need an address book. An address book will allow you to translate @I2P websites/services that use the `.i2p` [top-level domain](https://en.wikipedia.org/wiki/Top_level_domain) into an address that @I2P network will understand.
Without an address book, you would be stuck using a @base32-address every time you visit an @I2P website/service - and that's not fun!
### In-depth information
Since [DNS](https://en.wikipedia.org/wiki/DNS) does not exist on the @I2P network, @Kovri also does **not** use DNS or any sort of @canonically-unique-host resolution. Instead, Kovri pairs a @locally-unique-host to a @base64-address @destination in a @subscription. Once your address book is filled with a @subscription, you can resolve your favorite `.i2p` domain site into a usable @I2P destination.
### Creating an Address Book
By default, your installation will come with a default public @subscription called `hosts.txt` in your @data-directory. When @Kovri starts, it loads this subscription and fetches any other subscriptions you've specified. Once loaded, your address book will be appropriately filled. For details on how to manage subscriptions, see @subscription.
### Updating the Address Book
Currently, there are several ways to update your address book:
1. Use a @jump-service to insert I2P addresses into your address book
2. Use a @jump-service to copy/paste an address into your private @subscription
3. Manually add or subtract from a private @subscription
**Note: Kovri is in heavy development. In the future there *will* be easier ways to update the address book**
### Address Book / Naming specification
For specification details and more, visit the [Address Book and Naming Specification](https://geti2p.net/en/docs/naming)

View file

@ -0,0 +1,21 @@
---
terms: ["address", "addresses", "Adresse" , "Adressen"]
summary: "either an alias, such as donate.getmonero.org, or a set of 95 characters starting with a 4"
---
{% include untranslated.html %}
### The Basics
When you send Monero to someone you only need one piece of information, and that is their Monero address. A *raw* Monero address is a set of 95 characters starting with a '4'. The Monero donation address, for instance, is <span class="long-term">44AFFq5kSiGBoZ4NMDwYtN18obc8AemS33DBLWs3H7otXft3XjrpDtQGv7SqSsaBYBb98uNbr2VBBEt7f2wfn3RVGQBEP3A</span>.
Because those addresses are long and complex, you will often encounter an @OpenAlias address instead. For example, Monero donations can be sent to <span class="long-term">donate@getmonero.org</span> or <span class="long-term">donate.getmonero.org</span>.
If you would like to get an @OpenAlias address of your own then there is some information on the [OpenAlias page](/resources/openalias).
### Integrated address
An integrated address is an address combined with an encrypted 64-bit @payment-ID. A raw integrated address is 106 characters long.
### In-depth Information
The address is actually the concatenation, in Base58 format, of the *public* @spend-key and the *public* @view-key, prefixed with the network byte (the number 18 for Monero) and suffixed with the first four bytes of the Keccac-256 hash of the whole string (used as a checksum).

View file

@ -0,0 +1,11 @@
---
terms: ["airgap"]
summary: "An airgap is a security measure to physically separate a computer or device from all other networks, such as the Internet."
---
{% include untranslated.html %}
### The Basics
"An air gap, air wall or air gapping is a network security measure employed on one or more computers to ensure that a secure computer network is physically isolated from unsecured networks, such as the public Internet or an unsecured local area network.[2] The name arises from the technique of creating a network that is physically separated (with a conceptual air gap) from all other networks. The air gap may not be completely literal, as networks employing the use of dedicated cryptographic devices that can tunnel packets over untrusted networks while avoiding packet rate or size variation can be considered air gapped, as there is no ability for computers on opposite sides of the gap to communicate."
Taken from https://en.wikipedia.org/wiki/Air_gap_(networking)

View file

@ -0,0 +1,11 @@
---
terms: ["atomic-units", "atomic-unit"]
summary: "Atomic Units refer to the smallest fraction of 1 XMR."
---
{% include untranslated.html %}
### The Basics
Atomic Units refer to the smallest fraction of 1 XMR.
One atomic unit is currently 1e-12 XMR (0.000000000001 XMR, or one @piconero).
It may be changed in the future.

View file

@ -0,0 +1,26 @@
---
tags: ["kovri"]
terms: ["Base32-address", "Base32-addresses"]
summary: "Base32 encoded hash of a Base64 address"
---
{% include untranslated.html %}
### The Basics
A Base32 address is a shortened, encoded version of an @I2P address. The Base32 address is the first part in a `.b32.i2p` hostname.
Example:
`i35yftyyb22xhcvghmev46t5knefur5v66qzekkajatwfwhyklvq.b32.i2p`
where
`i35yftyyb22xhcvghmev46t5knefur5v66qzekkajatwfwhyklvq` is the Base32 address.
### In-depth Information
Ultimately, a Base32 address is a 52 character [Base32 encoded representation](https://en.wikipedia.org/wiki/Base32) of the full SHA-256 hash of an @I2P @base64-address.
### Notes
**Note: `.b32` is not a sub-domain of `.i2p`**

View file

@ -0,0 +1,21 @@
---
tags: ["kovri"]
terms: ["Base64-address", "Base64-addresses"]
summary: "Base64 encoded I2P destination"
---
{% include untranslated.html %}
### The Basics
A @base64-address is a 516-character [Base64 encoded](https://en.wikipedia.org/wiki/Base64) @I2P @destination. @base64-addresses are primarily used for @address-book, @jump-service, and also internally.
Example:
```
AQZGLAMpI9Q0l0kmMj1vpJJYK3CjLp~fE3MfvE-e7KMKjI5cPOH6EN8m794uHJ6b09qM8mb9VEv1lVLEov~usVliTSXCSHuRBOCIwIOuDNU0AbVa4BpIx~2sU4TxKhoaA3zQ6VzINoduTdR2IJhPvI5xzezp7dR21CEQGGTbenDslXeQ4iLHFA2~bzp1f7etSl9T2W9RID-KH78sRQmzWnv7dbhNodMbpO6xsf1vENf6bMRzqD5vgHEHZu2aSoNuPyYxDU1eM6--61b2xp9mt1k3ud-5WvPVg89RaU9ugU5cxaHgR927lHMCAEU2Ax~zUb3DbrvgQBOTHnJEx2Fp7pOK~PnP6ylkYKQMfLROosLDXinxOoSKP0UYCh2WgIUPwE7WzJH3PiJVF0~WZ1dZ9mg00c~gzLgmkOxe1NpFRNg6XzoARivNVB5NuWqNxr5WKWMLBGQ9YHvHO1OHhUJTowb9X90BhtHnLK2AHwO6fV-iHWxRJyDabhSMj1kuYpVUBQAEAAcAAA==
```
### In-depth Information
See @destination for details behind @base64-address

View file

@ -0,0 +1,15 @@
---
terms: ["block", "blocks"]
summary: "a container of transactions, a sequence of which forms a blockchain"
---
{% include untranslated.html %}
### The Basics
A block is a container of @transactions, with a new block being added to the @blockchain once every 2 minutes (see constant `DIFFICULTY_TARGET_V2` defined as 120 seconds), on average.
Blocks also contain a special type of transaction, the @coinbase-transaction, which add newly created Monero to the network.
Blocks are created through the process of @mining, and the @node that successfully mines the block then broadcasts it to each of the @nodes connected to it, who subsequently re-broadcast the block until the entire Monero network has received it.
Fake or bad blocks generally cannot be created, as @nodes that receive blocks always verify the @transactions they contain against a set of consensus rules that all nodes adhere to, including validating the cryptographic @signatures on each transaction.

View file

@ -0,0 +1,12 @@
---
terms: ["blockchain", "blockchains"]
summary: "a distributed ledger of all transactions both past and present, without revealing who the funds came from or went to"
---
{% include untranslated.html %}
### The Basics
A @blockchain is a distributed database that continuously grows with a record of all of the transactions that have occurred with a given cryptocurrency. This database is often referred to as a ledger because the data contains a large list of transactions that have taken place. In Monero, these transactions are packaged together into 'blocks' every 2 minutes (on average), and all miners and nodes on the network have copies of these blocks.
### Monero's @Blockchain
Unlike Bitcoin and other cryptocurrencies, transactions in the Monero @blockchain do not reveal where funds came from or went to, providing anonymity and making the currency completely @fungible. Additionally, the amounts of all transactions are hidden by @RingCT, a feature of Monero. For auditing or other transparency purposes a user can share a @view-key to prove they control certain amounts of Moneroj.

View file

@ -0,0 +1,13 @@
---
terms: ["bootstrap-node", "bootstrap-nodes"]
summary: "A node to which a daemon connects to give immediate usability to wallets while syncing"
---
{% include untranslated.html %}
### The Basics
The daemon running on a local @node has to sync with other (remote) @nodes. While it is not fully synced, @wallet may still be connected to the local node. Therefore, the @wallet cannot access the @blocks that are bot yet synced on the local @node.
To allow the @wallet to be immediately usable, the daemon on the local @node uses a bootstrap node to which the RPC request are proxying to, giving access to the missing @blocks.
Note: the replies from the bootstrap node may be untrustworthy.

View file

@ -0,0 +1,22 @@
---
tags: ["kovri"]
terms: ["Canonically-unique-host"]
summary: "A host that is canonically resolved to an address or set of addresses"
---
{% include untranslated.html %}
### The Basics
A Canonically-unique host is a [FQDN](https://en.wikipedia.org/wiki/FQDN) that will canonically resolve to a designated address or set of addresses. Not to be confused with a @locally-unique-host.
### In-depth information
A Canonically-unique host is defined by remote authoritative sources; usually through [DNS](https://en.wikipedia.org/wiki/DNS). When resolving a peer's hostname, you will most likely use an external source for resolution unless you have the following implemented:
- a database file similar to a [hosts file](https://en.wikipedia.org/wiki/Hosts_(file))
- an internal-network resolver (which eventually pulls from external sources)
### Notes
- Monero primarily uses @canonically-unique-host resolution while @I2P only uses @locally-unique-host resolution.
- @I2P's and @Kovri's self-assigned top-level domain is currently `.i2p` and @Kovri intends to only process/use the `.i2p` [top-level domain](https://en.wikipedia.org/wiki/Top_level_domain)

View file

@ -0,0 +1,15 @@
---
terms: ["change"]
summary: "Monero sent as part of a transaction, that returns to your account instead of going to another recipient"
---
{% include untranslated.html %}
### The Basics
Monero sent as part of a transaction, that returns to your account instead of going to another recipient.
### More Information
The @wallet in the Monero software makes change automatically, but when you send a transaction, you are taking an input that you control and telling the Monero network what to do with it. The input is a "deposit" to your account that you are able to spend. Outputs are the part of the transaction that tells the Monero network where to send the funds.
You might have multiple inputs in your account, in many different denominations (For example: you deposited 0.5 XMR on Friday, and 0.75 XMR on Saturday). So, when have a transaction with an input of 0.5 XMR, but you only want to send 0.1 XMR, your transaction will include a fee to pay the @miner, an output for 0.1 XMR to send to the recipient, and the rest that you want to send back to yourself will be an output back to you (this is called "change"). Once the transaction is completed, the change becomes available to you as an input that you can again split and send with a new transaction.

View file

@ -0,0 +1,32 @@
---
tags: ["kovri"]
terms: ["Clearnet"]
summary: "The Internet in which anonymous overlay networks are built upon"
---
{% include untranslated.html %}
### The Basics
When you use the Internet for things like news, email, social media, and even Monero, you are most likely using a clearnet connection. This means that *all* of your connections can be tracked, traced, and monitored by:
- your [ISP](https://en.wikipedia.org/wiki/ISP)
- the website/service/person you're communicating with
- possibly a [Five Eyes](https://en.wikipedia.org/wiki/5_Eyes) capable entity
and even if you use [HTTPS](https://en.wikipedia.org/wiki/HTTPS) or similar (which *encrypts* your transmission), your route is not hidden nor is it anonymous, thus; it is in the *clear*.
### In-depth information
Since a traditional [VPN](https://en.wikipedia.org/wiki/VPN) cannot save you from clearnet (as you are still using *clearnet* (though you are more proxied than without a VPN)), you should use an *anonymous overlay network* to avoid using clearnet directly:
- @Kovri
- @Java-I2P
- [Tor](https://torproject.org/)
These technologies protect you from clearnet by building an anonymous network **over** clearnet to keep your transmissions both encrypted **and** anonymous.
Here is an accurate, [interactive diagram](https://www.eff.org/pages/tor-and-https) provided by the [EFF](https://www.eff.org/) which describes *clearnet* as it relates to **Tor**. The concept also (somewhat) applies to @Kovri and @I2P in terms of anonymity with the exception that:
- @Kovri does not use exit nodes when connecting to an @eepsite
- Your traffic never need to leave the @I2P network
- You do not need HTTPS to use @Kovri (with the exception of @reseed)

View file

@ -0,0 +1,9 @@
---
terms: ["coinbase-transaction"]
summary: "a special type of transaction included in each block, which contains a small amount of Monero sent to the miner as a reward for their mining work"
---
{% include untranslated.html %}
### The Basics
A special type of transaction included in each block, which contains a small amount of Monero sent to the miner as a reward for their mining work.

View file

@ -0,0 +1,9 @@
---
terms: ["consensus", "consensus-network"]
summary: "consensus describes a property of distributed networks like Monero where most of the participants follow the rules, and thus reject bad participants"
---
{% include untranslated.html %}
### The Basics
Consensus describes a property of distributed networks like Monero where most of the participants follow the rules, and thus reject bad participants.

View file

@ -0,0 +1,21 @@
---
terms: ["cryptocurrency", "cryptocurrencies", "altcoin", "altcoins", "Kryptowährungen", "Kryptowährung"]
summary: "a digital currency in which encryption techniques are used to regulate the generation of units of currency and verify the transfer of funds, usually operating independently of a central bank"
---
{% include untranslated.html %}
### The Basics
A digital currency in which encryption techniques are used to regulate the generation of units of currency and verify the transfer of funds, usually operating independently of a central bank.
### More Information
Cryptocurrency is the generic term for a large set of digital assets that use encryption techniques to generate units of currency, verify the transactions, and transfer value. Generally, cryptocurrencies are considered to be decentralized. Cryptocurrency should not be confused with virtual currency which is a type of digital money that is usually controlled by its creators or developers. Some examples of virtual currency are gametime in World of Warcraft, ROBUX in Roblox, reward points programs, or Ripple, all of which can be exchanged for currency or cash value, but are not considered cryptocurrency because they are centalized and controlled/issued by a single entity.
Monero is one of many cryptocurrencies currently available. Other examples are Bitcoin, Litecoin, Dogecoin, Dash, Zcash, etc, but nearly all other cryptocurrencies lack features that make them a true money (most importantly @fungibility which is a requirement for it to be a store-of-value).
Not all cryptocurrencies operate the same, but they usually share the properties of decentralization, encryption, and the ability to send and receive transactions. Most are irreversible, pseudonymous, global, and permissionless. Most aim to be a store-of-value or be digital cash that allows you to transact.
Most cryptocurrencies (including Monero) use a distributed ledger (called a @blockchain) to keep track of previous transactions. The blockchain serves to tell other users on the network that transactions have happened. There are many different ways for cryptocurrencies to create their blockchain, and not all are the same. Monero uses proof-of-work to craft blocks, where other cryptocurrencies may use proof-of-stake or other consolidated methods.
Ultimately, cryptocurrency is an attempt to create trustless value; that is free from borders, governments, and banks. Whether that be to transact or to be digital gold is up to the users of each.

View file

@ -0,0 +1,21 @@
---
tags: ["kovri"]
terms: ["Data-Directory"]
summary: "Where essential kovri data for runtime is stored"
---
{% include untranslated.html %}
### The Basics
Depending on your OS, @Kovri currently stores all run-time data in the following directory:
- Linux/FreeBSD:
- `$HOME/.kovri`
- OSX:
- `$HOME/Library/Application\ Support/Kovri`
- Windows:
- `"$APPDATA"\\Kovri`
This includes all configuration files, @address-book, certificates, and resources.

View file

@ -0,0 +1,39 @@
---
terms: ["denominations", "subunits", "tacoshi", "piconero", "nanonero", "micronero", "millinero", "centinero", "decinero","decanero","hectonero","kilonero","meganero","giganero"]
summary: "A denomination is a proper description of a currency amount. It is oftentimes a sub-unit of the currency. For example, traditionally a cent is 1/100th of a particular unit of currency.)"
---
{% include untranslated.html %}
### The Basics
A denomination is a proper description of a currency amount. It is oftentimes a sub-unit of the currency. For example, traditionally a cent is 1/100th of a particular unit of currency.).
Monero denomination names add SI prefixes after dropping the initial "mo" for ease of use. Actually, the smallest unit of Monero is 1 piconero (0.000000000001 XMR).
### Denominations of Monero
|------------+----------+-------------------|
| Name | Base 10 | Amount |
|-----------:|:--------:| -----------------:|
| piconero | 10^-12 | 0.000000000001 |
| nanonero | 10^-9 | 0.000000001 |
| micronero | 10^-6 | 0.000001 |
| millinero | 10^-3 | 0.001 |
| centinero | 10^-2 | 0.01 |
| decinero | 10^-1 | 0.1 |
|============+==========+===================|
| **monero** | **10^0** | **1** |
|============+==========+===================|
| decanero | 10^1 | 10 |
| hectonero | 10^2 | 100 |
| kilonero | 10^3 | 1,000 |
| meganero | 10^6 | 1,000,000 |
|------------+----------+-------------------|
### In-depth Information
Support for input using SI prefixes was [added to the Monero codebase](https://github.com/monero-project/monero/pull/1826) on March 3, 2017 by [Moneromooo](https://github.com/moneromooo-monero). The smallest unit of Monero (10^-12 XMR) was originally called a tacoshi in honor of user [Tacotime](https://bitcointalk.org/index.php?action=profile;u=19270), an early Monero contributor and was later renamed for ease of use and consistancy.
### Monerod Implementation
The smallest fraction of Monero in the current monerod implementation is also known as the @atomic-unit, which is currently one piconero.

View file

@ -0,0 +1,18 @@
---
tags: ["kovri"]
terms: ["Destination", "Destinations"]
summary: "A in-net address that serves as a final endpoint (either local or remote)"
---
{% include untranslated.html %}
### The Basics
A @destination is the @I2P @in-net address of the final endpoint you are trying to connect to (example: an @I2P website, service, or Monero node). This can also include a *local destination* of which *other* peers need to connect to in order to make contact for communication (similar to how, in @clearnet, your IP address is given to a website when you connect so it knows *where* to send the information back to).
### In-depth Information
An @I2P destination can be encoded into a @base32-address or @base64-address. Most users will only care about @base32-addresses or a `.i2p` hostname while, internally, @Kovri / @I2P @address-book uses @base64-addresses. Ultimately, all @destinations in @I2P are 516-byte (or longer) keys:
`256-byte public key + 128-byte signing key + a null certificate = 516 bytes in Base64 representation`
Note: certificates are not used now but, if they were, the keys would be longer.

View file

@ -0,0 +1,29 @@
---
tags: ["kovri"]
terms: ["Eepsite", "Hidden-Service", "Garlic-Site", "Garlic-Service"]
summary: "A website or service hosted within the I2P network"
---
{% include untranslated.html %}
### The Basics
Is it [**EEP!** *(in response to the site's content)*](https://en.wikipedia.org/wiki/Onomatopoeia), or **end-to-end protocol**, or something else entirely different?
While the original definition of eepsite has been lost with time, its use-case remains: an eepsite is a website or service that is hosted within (and only accessible by) the @I2P network.
### In-depth Information
Alternate names include:
1. *Hidden Service*
- because the site/service is *hidden* within the @I2P network and can only be visited within the network
2. *Garlic Site*
- because the website utilizes @I2P's @garlic-routing technology as a means of communicating with a client
- because the service is hosted as a website and not any other type of service
3. *Garlic Service*
- because the service utilizes @I2P's @garlic-routing technology as a means of communicating with a client
- because the service is specific to services like IRC, email, or a Monero peer (but may also include websites)
### Notes
To learn how to setup an Eepsite (Hidden Service, Garlic Site, Garlic Service) visit the @Kovri [user-guide](https://gitlab.com/kovri-project/kovri-docs/blob/master/i18n/en/user_guide.md).

View file

@ -0,0 +1,34 @@
---
tags: ["kovri"]
terms: ["encryption", "encrypted", "encrypting", "decryption", "decrypted", "decrypting"]
summary: "The process of encoding messages or information in a way that only authorized parties can decode and read"
---
{% include untranslated.html %}
### The Basics
From [Encryption](https://en.wikipedia.org/wiki/Encryption):
>
In cryptography, encryption is the process of encoding messages or information in such a way that only authorized parties can decode and read what is sent. Encryption does not of itself prevent interception, but denies the message content to the interceptor.
### In-depth information
From [Encryption](https://en.wikipedia.org/wiki/Encryption):
>
In an encryption scheme, the intended communication information or message (referred to as *plaintext*), is encrypted using an encryption algorithm, generating ciphertext that can only be read if decrypted. For technical reasons, an encryption scheme usually uses a pseudo-random encryption key generated by an algorithm. It is in principle possible to decrypt the message without possessing the key, but, for a well-designed encryption scheme, large computational resources and skill are required. An authorized recipient can easily decrypt the message with the key provided by the originator to recipients, but not to unauthorized interceptors.
>
The purpose of encryption is to ensure that only somebody who is authorized to access data (e.g. a text message or a file), will be able to read it, using the decryption key. Somebody who is not authorized can be excluded, because he or she does not have the required key, without which it is impossible to read the encrypted information.
### Kovri
@Kovri implements various types of encryption in *at least* 4 essential capacities:
- @Reseed for bootstrapping
- @Garlic-routing: three layers of encryption (@garlic-encryption) are used to verify the secure delivery of @messages to the recipient/peer/@destination
- @Tunnel encryption: garlic messages are passed through a @tunnel and encrypted by the @tunnel gateway to the @tunnel endpoint
- @Transport layer encryption prevents the ability to decrypt @messages at the [media layer](https://en.wikipedia.org/wiki/OSI_model)
For details on the types of encryption and cryptographic @signatures used in @Kovri and @I2P, visit @Java-I2P's [Cryptography](https://geti2p.net/spec/cryptography)

View file

@ -0,0 +1,14 @@
---
tags: ["kovri"]
terms: ["Floodfill"]
summary: "An I2P router which maintains a distributed network-database"
---
{% include untranslated.html %}
### The Basics
By actively managing a distributed network-database, a router with *floodfill* capability has the ability to help maintain network stability and resiliancy while also being decentralized and trust-less.
### In-depth information
Though floodfill itself is a simple storage system, the technical underpinnings of floodfill as it relates to @network-database and other protocols within @I2P are much more complex. Visit the [Network Database](https://geti2p.net/en/docs/how/network-database) page for details.

View file

@ -0,0 +1,18 @@
---
terms: ["fluffy blocks", "fluffyblocks"]
summary: "a way of saving bandwidth when sending new blocks around the network"
---
{% include untranslated.html %}
### The Basics
A @block is made up of a header and @transactions. Fluffy Blocks only contain
a header, a list of transaction indices, and any transactions that the node
recieving the block may be missing. This saves bandwidth because nodes might
already know about most or all of the transactions in the block and they don't
need to be sent them again.
### See Also
* [BIP152 "Compact Block Relay"](https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki)
* [Xthin](https://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/doc/bu-xthin-protocol.md)

View file

@ -0,0 +1,16 @@
---
terms: ["fungibility", "fungible"]
summary: "property of a currency whereby two units can be substituted in place of one another"
---
{% include untranslated.html %}
### The Basics
Property of a currency whereby two units can be substituted in place of one another.
Fungibility means that two units of a currency can be mutually substituted and the substituted currency is equal to another unit of the same size. For example, two $10 bills can be exchanged and they are functionally identical to any other $10 bill in circulation (although $10 bills have unique ID numbers and are therefore not completely fungible). Gold is probably a closer example of true fungibility, where any 1 oz. of gold of the same grade is worth the same as another 1 oz. of gold. Monero is fungible due to the nature of the currency which provides no way to link transactions together nor trace the history of any particular XMR. 1 XMR is functionally identical to any other 1 XMR.
Fungibility is an advantage Monero has over Bitcoin and almost every other cryptocurrency, due to the privacy inherent in the Monero @blockchain and the permanently traceable nature of the Bitcoin blockchain. With Bitcoin, any BTC can be tracked by anyone back to its creation @coinbase-transaction. Therefore, if a coin has been used for an illegal purpose in the past, this history will be contained in the @blockchain in perpetuity. This lack of fungibility means that certain businesses will be obligated to avoid accepting BTC that have been previously used for purposes which are illegal, or simply run afoul of their Terms of Service. Currently some large Bitcoin companies are blocking, suspending, or closing accounts that have received Bitcoin used in online gambling or other purposes deemed unsavory by said companies.
Monero has been built specifically to address the problem of traceability and non-fungibility inherent in other cryptocurrencies. By having completely private transactions Monero is truly fungible and there can be no blacklisting of certain XMR, while at the same time providing all the benefits of a secure, decentralized, permanent blockchain.

View file

@ -0,0 +1,24 @@
---
tags: ["kovri"]
terms: ["Garlic-Encryption", "Layered-Encryption"]
summary: "Layered encryption as implemented in Kovri / I2P"
---
{% include untranslated.html %}
### The Basics
@garlic-encryption is @I2P's implementation of @message based @layered-encryption (similar to flow-based [Onion-Routing](https://en.wikipedia.org/wiki/Onion_routing)).
By @encrypting @messages in layers, this allows a @message to be routed through a sequence of proxies without allowing the proxies (or any intermediaries) to read the contents of the @message. @Layered-Encryption is a fundamental feature in @Kovri, @I2P, and [Tor](https://torproject.org) and is the cornerstone for securing anonymity within these overlay-networks.
### In-depth information
For @garlic-encryption, the primary difference between @Kovri/@I2P and Tor is:
- @Kovri/@I2P bundles multiple @messages together to form garlic "cloves"
- any number of messages can be contained in a "clove" instead of *only* a single message
- @Kovri/@I2P uses [ElGamal](https://en.wikipedia.org/wiki/ElGamal)/[AES](https://en.wikipedia.org/wiki/Advanced_Encryption_Standard) @encryption for @messages and @transports
### Notes
For details, see @garlic-routing.

View file

@ -0,0 +1,44 @@
---
tags: ["kovri"]
terms: ["Garlic-Routing"]
summary: "Routing technology as implemented in Kovri"
---
{% include untranslated.html %}
### The Basics
The term *@garlic-routing* has a diverse history of varying interpretations. As it currently stands, Monero defines *@garlic-routing* as the method in which @Kovri and @I2P create a @message-based anonymous overlay network of Internet peers.
The @Garlic-Encryption of @Garlic-Routing is similar to the @Layered-Encryption of [Onion Routing](https://en.wikipedia.org/wiki/Onion_routing) and effectively conceals the IP address of the sender and secures information sent from the sender to its @destination (and vice-versa).
### History
In written form, the term *@garlic-routing* can be seen as early as June of 2000 in Roger Dingledine's [Free Haven Master's thesis](http://www.freehaven.net/papers.html) (Section 8.1.1) as derived from the term Onion Routing.
As recent as October of 2016, [#tor-dev](https://oftc.net/WebChat/) has offered insight into the creation of the term *@garlic-routing*:
[Nick Mathewson](https://en.wikipedia.org/wiki/The_Tor_Project,_Inc):
>[I think that there was some attempt to come up with a plant whose structure resembled the 'leaky-pipe' topology of tor, but I don't believe we ever settled on one.]
[Roger Dingledine](https://en.wikipedia.org/wiki/Roger_Dingledine):
>during the free haven brainstorming, there was a moment where we described a routing mechanism, and somebody said "garlic routing!", and everybody laughed.
so we for sure thought we had invented the name, at the time.
*Note: permission to use the aforementioned quotes was granted by Nick Mathewson and Roger Dingledine*
### In-depth Information
In technical terms, for @Kovri and @I2P, *@garlic-routing* translates to any/all of the following:
- @Layered-Encryption (similar to the @layered-encryption in Onion Routing)
- Bundling multiple @messages together (garlic cloves)
- ElGamal/AES @encryption
*Note: though [Tor](https://torproject.org/) uses @layered-encryption, Tor does not use ElGamal and is not message-based.*
**Read more in @garlic-encryption.**
### Notes
- In terms of Onion/Garlic Routing, another way to envision layered @encryption is by replacing the onion/garlic with a [Matryoshka doll](https://en.wikipedia.org/wiki/Matryoshka_doll) - with each outer/inner doll having a lock and public key to the next/previous doll
- For more technical details on Garlic Routing, read the @Java-I2P entry on [Garlic Routing](https://geti2p.net/en/docs/how/garlic-routing)

View file

@ -0,0 +1,27 @@
---
tags: ["kovri"]
terms: ["I2NP"]
summary: "The I2P Network Protocol: the mechanism in which I2NP messages are sent over the I2P network"
---
{% include untranslated.html %}
### The Basics
From @Java-I2P:
>
@I2NP manages the routing and mixing of messages between routers, as well as the selection of what transports to use when communicating with a peer for which there are multiple common transports supported
### In-depth information
From @Java-I2P:
>
@I2NP (@I2P Network Protocol) @messages can be used for one-hop, router-to-router, point-to-point @messages. By @encrypting and wrapping @messages in other @messages, they can be sent in a secure way through multiple hops to the ultimate @destination. @I2NP does not specify nor require any particular @transport layer but does require at least one @transport in use.
>
Whenever a @destination wants to send a message to to another @destination, it provides its local router with both the @destination structure and the raw bytes of the message to be sent. The router then determines where to send it, delivers it through outbound @tunnels, instructing the end point to pass it along to the appropriate inbound @tunnel, where it is passed along again to that @tunnel's end point and made available to the target for reception.
### Notes
Read more about the @I2NP [protocol](https://geti2p.net/en/docs/protocol/i2np) and [specification](https://geti2p.net/spec/i2np).

View file

@ -0,0 +1,30 @@
---
tags: ["kovri"]
terms: ["I2P"]
summary: "The Invisible Internet Project: an anonymizing overlay network"
---
{% include untranslated.html %}
### Monero
For Monero's implementation of @I2P, see @Kovri. For a comparison of @I2P to [Tor](https://torproject.org/), read the [Comparison](https://geti2p.net/en/comparison/tor) page.
### The Basics
From @Java-I2P:
>The I2P network provides strong privacy protections for communication over the Internet. Many activities that would risk your privacy on the public Internet can be conducted anonymously inside I2P.
### In-depth information
From @Java-I2P:
>I2P is an anonymous overlay network - a network within a network. It is intended to protect communication from dragnet surveillance and monitoring by third parties such as ISPs.
>I2P is used by many people who care about their privacy: activists, oppressed people, journalists and whistleblowers, as well as the average person.
>No network can be "perfectly anonymous". The continued goal of I2P is to make attacks more and more difficult to mount. Its anonymity will get stronger as the size of the network increases and with ongoing academic review.
### Notes
@I2P documentation and specifications are available [here](https://geti2p.net/docs/).

View file

@ -0,0 +1,16 @@
---
tags: ["kovri"]
terms: ["I2PControl"]
summary: "An API inteface for Kovri and Java-I2P that allows simple remote control"
---
{% include untranslated.html %}
### The Basics
@I2Pcontrol is a [JSONRPC2](https://en.wikipedia.org/wiki/JSON-RPC) [API](https://en.wikipedia.org/wiki/Application_programming_interface) for @Kovri and @Java-I2P which allows an @I2PControl client to remote control/monitor a running instance.
Two available @I2PControl clients are: [qtoopie](https://github.com/EinMByte/qtoopie) (C++ client) and [itoopie](https://github.com/i2p/i2p.itoopie) (Java client). Read `kovri.conf` to configure @I2PControl for @Kovri.
### In-depth information
Details and specification available on the [I2PControl](https://geti2p.net/en/docs/api/i2pcontrol) page.

View file

@ -0,0 +1,14 @@
---
tags: ["kovri"]
terms: ["In-net"]
summary: "Within the I2P network"
---
{% include untranslated.html %}
### The Basics
**In-net** is a [colloquial](https://en.wikipedia.org/wiki/Colloquial) term of which describes activities, protocols, or functionality that exist *only* within the @I2P network.
### In-depth information
Example: *in-net download* would be defined as downloading *only* within @I2P.

View file

@ -0,0 +1,14 @@
---
tags: ["kovri"]
terms: ["Java-I2P"]
summary: "The original implementation of I2P - written in Java"
---
{% include untranslated.html %}
### The Basics
The term "Java I2P" is often used to describe the original @I2P implementation currently most known and used today. There are various other @I2P implementations, including @Kovri; all of which look up to the original Java implementation.
### Notes
To download/learn more about the Java implementation, visit their [website](https://geti2p.net/).

View file

@ -0,0 +1,33 @@
---
tags: ["kovri"]
terms: ["Jump-Service"]
summary: "An I2P website service that adds addresses to your address book"
---
{% include untranslated.html %}
### The Basics
In your @I2P configured web browser, you can use a Jump Service to *jump* to an @I2P address that you don't have in your @address-book. Once you've *jumped* to the address, the address will be saved into your @address-book.
### In-depth Information
In an @I2P configured browser, visit: http://stats.i2p/i2p/lookup.html (courtesy of @Java-I2P's lead developer *zzz*)
Then, you'll have two options:
1. *Hostname lookup* the address you wish to visit and then manually copy/paste the result
2. *Jump* to the @I2P website by entering the @I2P hostname (**recommended**)
### Using hostname lookup
For example, entering `pinkpaste.i2p` into the *Hostname lookup* box (and then submitting) will return:
```
pinkpaste.i2p=m-HrPrIAsdxts0WM~P4mE8mt9P7g-QTaBvu7Gc6Nl0UX7Vwck-i~RvOPfK6W~kfdRvwhNTqevkBL2UF5l36We02Aiywu7kB2xOHRkze68h-Tg2ewvRVwokohguCD2G3wwAEz~7FVda2avYDCb9-N6TfuzxKLnmhPMvbNSjGL7ZsD2p-h207R3-2kvuMV9bfu-K~w9NI9XJhIyufvUnFYc2jnTVg8PbaR4UP57cNaOO2YIMPkbr6~yTcIu9B1sUfHK6-N~6virQDOxW4M-62rjnZkLpaCtkOsXslmCwZI--TkZ6hKi1kXZvNmJRE1rYfffYRFn38zhaqszeETX8HiIvahZhXF5fNumBziYdmLdw8hkuN1A~emU6Xz9g~a1Ixfsq1Qr~guYoOtaw-0rOFxNRS9yMehE-2LCb8c-cAg6z5OdlN4qJDl~ZHgru4d~EHp~BpAK3v7u2Gi-8l1ygVW-1CHVna~fwnbOPN3ANPwh6~~yUit0Cx1f54XiNRn6-nPBQAEAAcAAA==
```
Copy/paste this host=@base64-address pairing into your **private** @subscription.
### Directly jumping
For example, entering `pinkpaste.i2p` into the *Jump* box (and then submitting) will automatically redirect you to the website **and** insert the @locally-unique-host into @address-book.

View file

@ -0,0 +1,61 @@
---
tags: ["kovri"]
terms: ["Kovri"]
summary: "Monero's C++ router implementation of the I2P network"
---
{% include untranslated.html %}
### The Basics
[Kovri](https://gitlab.com/kovri-project/kovri/) is a C++ implementation of the @I2P network. @Kovri is currently in heavy, active development and not yet integrated with Monero. When Kovri is integrated into your Monero @node, your transactions will be more secure than ever before.
### In-depth information
Kovri will protect you and Monero from:
- @Node partitioning attacks
- Associations between a particular txid and your IP address
- Mining and/or running a node in highly adversarial environments
- Metadata leakage (e.g., @OpenAlias lookups)
...and much more.
Read [anonimal's FFS proposal](https://forum.getmonero.org/9/work-in-progress/86967/anonimal-s-kovri-full-time-development-funding-thread) for more details and for reasoning behind the project. Also read the FAQ and User Guide in the [Kovri repository](https://gitlab.com/kovri-project/kovri/).
### @Kovri / @I2P Terminology
#### Client + API
- @Address-Book
- @Base32-address
- @Base64-address
- @Canonically-unique-host
- @Eepsite (@Hidden-Service, @Garlic-Site, @Garlic-Service)
- @I2PControl
- @Jump-Service
- @Locally-unique-host
- @Reseed
- @Subscription
#### Core + Router
- @Clearnet
- @Data-Directory
- @Destination
- @Encryption
- @Floodfill
- @Garlic-Encryption
- @Garlic-Routing
- @I2NP
- @In-net
- @Java-I2P
- @Layered-Encryption
- @Lease
- @LeaseSet
- @Message @Messages
- @NTCP
- @Network-Database
- @Router-Info
- @SSU
- @Transports
- @Tunnel

View file

@ -0,0 +1,24 @@
---
tags: ["kovri"]
terms: ["LeaseSet", "LeaseSets"]
summary: "Contains all currently authorized Leases for a particular I2P Destination"
---
{% include untranslated.html %}
### The Basics
A Lease-Set contains a set of authorized @leases (and other related information) for a particular @destination.
### In-depth information
A Lease-Set contains:
- all of the currently authorized @leases for a particular @destination
- the public key to which garlic messages can be encrypted (see @garlic-routing)
- the signing public key that can be used to revoke this particular version of the structure
The Lease-Set is one of the two structures stored in the @network-database (the other being @router-info), and is keyed under the SHA256 of the contained @destination.
### Notes
For further details, read @Java-I2P's [LeaseSet](https://geti2p.net/en/docs/how/network-database#leaseSet)

View file

@ -0,0 +1,14 @@
---
tags: ["kovri"]
terms: ["Lease", "Leases"]
summary: "Authorizes an I2P tunnel to receive messages targeting a destination"
---
{% include untranslated.html %}
### The Basics
A lease defines the authorization for a particular @I2P @tunnel to receive a @messages targeting a @destination.
### In-depth information
For further details, read @Java-I2P's [Lease](https://geti2p.net/spec/common-structures#lease)

View file

@ -0,0 +1,21 @@
---
tags: ["kovri"]
terms: ["Locally-unique-host"]
summary: "A host defined by you and resolved only by you"
---
{% include untranslated.html %}
### The Basics
A locally-unique host is a [FQDN](https://en.wikipedia.org/wiki/FQDN) defined by **you** and resolved only by you; similar to how a [hosts file](https://en.wikipedia.org/wiki/Hosts_(file)) is implemented. Not to be confused with @canonically-unique-host.
### In-depth information
You have the option to share your interpretation of how the host is resolved (e.g., `localhost` always resolves to `127.0.0.1`) but the resolution is not canonically enforced (e.g., someone else can map `localhost` to any arbitrary IP address).
Hosts in a public subscription can be considered @canonically-unique-host's within the @I2P network but, ultimately, you are free to re-define them as you wish.
### Notes
- Monero primarily uses @canonically-unique-host resolution while @I2P only uses @locally-unique-host resolution.
- @I2P's and @Kovri's assigned top-level domain is currently `.i2p` and @Kovri intends to only process/use the `.i2p` [top-level domain](https://en.wikipedia.org/wiki/Top_level_domain)

View file

@ -0,0 +1,32 @@
---
tags: ["kovri"]
terms: ["Message", "Messages"]
summary: "The mechanisms in which information travels within I2P"
---
{% include untranslated.html %}
### The Basics
*Messages* (which exist on top of the @transports layer), contain varying types of information that are needed for the network but, most importantly, everything you see, do, send, or receive, will come and go in the form of *messages*.
There are 2 essential types of *messages* in @I2P:
- @Tunnel messages
- @I2NP messages
Essentially: *@tunnel messages* **contain** @I2NP **message fragments** which are then [reassembled](https://geti2p.net/en/docs/tunnels/implementation) at certain points within a @tunnel's path.
### In-depth information
@I2NP messages have a close relationship with @tunnel @messages so it is easy to get the term *messages* confused when reading @Java-I2P specifications:
>
1. First, the tunnel gateway accumulates a number of I2NP messages and preprocesses them into tunnel messages for delivery.
2. Next, that gateway encrypts that preprocessed data, then forwards it to the first hop.
3. That peer, and subsequent tunnel participants, unwrap a layer of the encryption, verifying that it isn't a duplicate, then forward it on to the next peer.
4. Eventually, the tunnel messages arrive at the endpoint where the I2NP messages originally bundled by the gateway are reassembled and forwarded on as requested.
### Notes
- @I2NP @messages need to be fragmented because they are variable in size (from 0 to almost 64 KB) and @tunnel @messages are fixed-size (approximately 1 KB).
- For details and specifications, visit the [I2NP spec](https://geti2p.net/spec/i2np) and [Tunnel Message spec](https://geti2p.net/spec/tunnel-message)

View file

@ -0,0 +1,15 @@
---
terms: ["mining", "miner", "miners"]
summary: "the process of cryptographically computing a mathematical proof for a block, containing a number of transactions, which is then added to the blockchain"
---
{% include untranslated.html %}
### The Basics
The process of cryptographically computing a mathematical proof for a block, containing a number of transactions, which is then added to the blockchain.
Mining is the distributed process of confirming transactions on the public ledger of all transactions, aka @blockchain. Monero nodes use the blockchain to distinguish legitimate transactions from attempts to re-spend coins that have already been spent elsewhere.
Monero is powered strictly by Proof of Work. It employs a mining algorithm that has the potential to be efficiently tasked to billions of existing devices (any modern x86 CPU and many GPUs). Monero uses a variant of CryptoNight Proof of Work (PoW) algorithm, which is designed for use in ordinary CPUs and GPUs.
The smart mining feature allows transparent CPU mining on the user's computer, far from the de facto centralization of mining farms and pool mining, pursuing Satoshi Nakamoto's original vision of a true P2P currency.

View file

@ -0,0 +1,19 @@
---
terms: ["mnemonic-seed", "mnemonic"]
summary: "a 13 or 25 word phrase used to backup a Monero account, available in a number of languages"
---
{% include untranslated.html %}
### The Basics
A 13 or 25 word phrase used to backup a Monero account, available in a number of languages. This 25-word phrase (13 words in the case of MyMonero) has all the information needed to view and spend funds from a Monero @account.
### In-depth Information
In the official wallet, the mnemonic seed comprises 25 words with the last word being used as a checksum. Those words correspond to a 256-bit integer, which is the account's *private* @spend-key. The *private* @view-key is derived by hashing the private spend key with Keccak-256, producing a second 256-bit integer. The corresponding *public* keys are then derived from the private keys.
By storing the 25 word mnemonic key in a secure location, you have a backup of your private keys and hence all of your Moneroj. Sharing this 25 word key is the equivalent of allowing another person complete access to your funds.
It's not a good idea to store more than you want to lose in a "hot wallet" aka a wallet which is currently or has ever been connected to the internet or loaded onto any device that has or may in the future be connected to the internet or any untrusted source!
By creating a cold, or @paper-wallet you can safely store Moneroj.

View file

@ -0,0 +1,24 @@
---
tags: ["kovri"]
terms: ["Network-Database"]
summary: "A distributed database which contains needed router information so the network can stay intact"
---
{% include untranslated.html %}
### The Basics
@network-database is a [distributed database](https://en.wikipedia.org/wiki/Distributed_database) which contains router information that peers must use so the network can stay intact.
### In-depth information
From @Java-I2P:
>
@I2P's @network-database is a specialized distributed database, containing just two types of data - router contact information (@Router-Infos) and @destination contact information (@LeaseSets). Each piece of data is signed by the appropriate party and verified by anyone who uses or stores it. In addition, the data has liveliness information within it, allowing irrelevant entries to be dropped, newer entries to replace older ones, and protection against certain classes of attack.
>
The @network-database is distributed with a simple technique called "@floodfill", where a subset of all routers, called "@floodfill routers", maintains the distributed database.
### Notes
Read [Network-Database](https://geti2p.net/en/docs/how/network-database) for details.

View file

@ -0,0 +1,24 @@
---
terms: ["node", "nodes", "full-node", "full-nodes"]
summary: "a device on the Internet running the Monero software, with a full copy of the Monero blockchain, actively assisting the Monero network"
---
{% include untranslated.html %}
### The Basics
A device on the Internet running the Monero software, with a full copy of the Monero blockchain, actively assisting the Monero network.
### More Information
Nodes participate in the Monero network and secure @transactions by enforcing the rules of the network. Nodes download the entire @blockchain to know what transactions have taken place. Nodes assist the network by relaying transactions to other nodes on the network. Nodes may also choose to contribute to the Monero network by participating in crafting @blocks (this is called @mining).
Mining is the process by which nodes create a block from the previously accepted block, transactions that are waiting to be processed in the transaction pool, and the @coinbase-transaction. When a node believes it has crafted a valid block it will transmit the completed block to other nodes on the network and those nodes signal agreement by working on the next block in the chain.
The rules that nodes follow are built into the Monero software; When all nodes agree about the rules to follow this is called @consensus. Consensus is necessary for a cryptocurrency because it is how the blockchain is built; If nodes don't agree about which blocks are valid, for example people who have not updated their Monero software, those nodes that don't agree will no longer be able to participate in the Monero network.
The Monero Core Team plans for a network upgrade every 6 months, to occur in October and April of each year. At that time, if you are running a node it must be updated to the most recent version of the Monero software or it will no longer be able to participate in the network.
---
##### Other Resources
<sub>1. *Fluffypony gives a great explanation of why mandatory network upgrades are good for Monero.* ([Monero Missives for the Week of 2016-06-20](https://getmonero.org/2016/06/20/monero-missive-for-the-week-of-2016-06-20.html))</sub>

View file

@ -0,0 +1,33 @@
---
tags: ["kovri"]
terms: ["NTCP"]
summary: "NIO-Based TCP (Non-blocking I/O based TCP): one of two Kovri transports"
---
{% include untranslated.html %}
### The Basics
*NIO-Based TCP (Non-blocking I/O based TCP)* is one of two encrypted @transports for @Kovri.
Similar to @SSU, @NTCP's *primary* purpose is to securely transmit @in-net @I2NP messages through @tunnels but, unlike @SSU, @NTCP functions solely over encrypted [TCP](https://en.wikipedia.org/wiki/Transmission_Control_Protocol).
### In-depth information
- Passes along individual @I2NP messages (both Standard and Time Sync) after:
- TCP has been established
- Establishment Sequence has been completed
- Uses the following @encryption:
- 2048-bit [Diffie-Hellman](https://en.wikipedia.org/wiki/Diffie-hellman)
- [AES-256](https://en.wikipedia.org/wiki/Advanced_Encryption_Standard)/[CBC](https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation)
- Establishment Sequence has the following *states*:
- Pre-establishment
- Establishment
- Post-establishment or "Established"
- Uses the following from the @network-database:
- Transport name: NTCP
- Host: IP (IPv4 or IPv6) or host name (shortened IPv6 address (with "::") is allowed)
- Port: 1024 - 65535
### Notes
For further details, read @Java-I2P's [NTCP](https://geti2p.net/en/docs/transport/ntcp)

View file

@ -0,0 +1,19 @@
---
terms: ["OpenAlias"]
summary: "a standard that allows you to use an email or domain syntax to pay someone instead of an address, eg. donate@getmonero.org or donate.getmonero.org"
---
{% include untranslated.html %}
### The Basics
The Monero Core Team released a standard called OpenAlias which permits much more human-readable addresses and "squares" the Zooko's triangle. OpenAlias can be used for any cryptocurrency and is already implemented in Monero, Bitcoin (in latest Electrum versions) and HyperStake.
OpenAlias seeks to provide a way to simplify aliasing amidst a rapidly shifting technology climate. Users are trying to cross the bridge to private and cryptographically secure infrastructure and systems, but many of them have just barely started remembering the email addresses of their friends and family.
As part of the ongoing development of the Monero cryptocurrency project, we asked ourselves: how can we simplify payments for users unfamiliar with cryptocurrency? Monero stealth addresses are at least 95 characters long - memorizing them is not an option, and asking someone to send a payment to <95-character-string> is only going to lead to confusion.
At its most basic, OpenAlias is a TXT DNS record on a FQDN (fully qualified domain name). By combining this with DNS-related technologies we have created an aliasing standard that is extensible for developers, intuitive and familiar for users, and can interoperate with both centralized and decentralized domain systems.
A standard that allows you to use an email or domain syntax to pay someone instead of an address, eg. donate@getmonero.org or donate.getmonero.org.
More information can be found on the [OpenAlias page](/resources/openalias) or on the [OpenAlias website](https://openalias.org)

View file

@ -0,0 +1,9 @@
---
terms: ["paperwallet", "paperwallets", "paper-wallet", "paper-wallets"]
summary: "A paper wallet stores the information necessary to send and receive Monero"
---
{% include untranslated.html %}
### The Basics
A paper wallet stores the information necessary to send and receive Monero.

View file

@ -0,0 +1,26 @@
---
terms: ["payment-ID", "payment-IDs"]
summary: "an optional flag that is added to identify transactions to merchants, consisting of 64 hexadecimal characters"
---
{% include untranslated.html %}
### The Basics
Payment ID is an **arbitrary** and **optional** transaction attachment that consists of 32 bytes (64 hexadecimal characters) or 8 bytes (in the case of integrated addresses).
The Payment ID is usually used to identify transactions to merchants and exchanges: Given the intrinsic privacy features built into Monero, where a single public address is usually used for incoming transactions, the Payment ID is especially useful to tie incoming payments with user accounts.
### Compact Payment IDs and Integrated Addresses
Since the 0.9 Hydrogen Helix version, Payment IDs can be encrypted and embedded in a payment address. The Payment IDs of this type should be 64-bits and are encrypted with a random one-time key known only to the sender and receiver.
### Creating a Payment ID
It is recommended to use the official wallet's `integrated_address` command to automatically generate Integrated Addresses that contain Compact Payment IDs. If you want to use the command line, you can generate Payment IDs as follows:
Creating a compact Payment ID for an Integrated Address:
```# openssl rand -hex 8```
Creating an old-style Payment ID:
```# openssl rand -hex 32```

View file

@ -0,0 +1,23 @@
---
terms: ["commitments", "commitment", "pedersen", "pedersen-commitment", "pedersen-commitments"]
summary: "Pedersen commitments are cryptographic algorythms that allow a prover to commit to a certain value without revealing it or being able to change it"
---
{% include untranslated.html %}
### The Basics
Pedersen commitments are cryptographic algorythms that allow a prover to commit to a certain value without revealing it or being able to change it.
When you spend Monero, the value of the inputs that you are spending and the value of the outputs you are sending are encrypted and opaque to everyone except the recipient of each of those outputs. Pedersen commitments allow you to send Monero without revealing the value of the transactions. Pedersen commitments also make it possible for people to verify that transactions on the blockchain are valid and not creating Monero out of thin air.
### What It Means
As long as the encrypted output amounts created, which include an output for the recipient and a change output back to the sender, and the unencrypted transaction fee is equal to the sum of the inputs that are being spent, it is a legitimate transaction and can be confirmed to not be creating Monero out of thin air.
Pedersen commitments mean that the sums can be verified as being equal, but the Monero value of each of the sums and the Monero value of the inputs and outputs individually are undeterminable. Pedersen commitments also mean that even the ratio of one input to another, or one output to another is undeterminable.
It is unclear which inputs are really being spent as the ring signature lists both the real inputs being spent and decoy inputs, therefore you don't actually know which input Pedersen commitments need to be summed. That's okay, because the @RingCT ring signature only has to prove that for one combination of the inputs the outputs are equal to the sum of the inputs. For mathematical reasons, this is impossible to forge.
### In-depth Information
See information in [Ring Confidential Transactions paper](https://eprint.iacr.org/2015/1098.pdf) by Shen Noether of the Monero Research Lab.

View file

@ -0,0 +1,16 @@
---
tags: ["kovri"]
terms: ["Reseed"]
summary: "The method of which Kovri uses to bootstrap into the I2P network"
---
{% include untranslated.html %}
### The Basics
When you start @Kovri for the first time (or if it's been offline for a long time), @Kovri will need a list of peers to connect to so it can [bootstrap](https://en.wikipedia.org/wiki/Bootstrap) into the @I2P network. @Kovri gets these peers from a special file stored on a reseed server. On this file are all the various pieces of information @Kovri needs in order to connect with @I2P peers.
### In-depth information
@Kovri has a list of [hard-coded](https://en.wikipedia.org/wiki/Hard-coded) reseed servers available to fetch from. These servers securely serve an [SU3](https://geti2p.net/spec/updates#su3) file (signed with a cryptographic @signature) over @clearnet with [HTTPS](https://en.wikipedia.org/wiki/HTTPS). This SU3 file contains information that's used to verify both the integrity of the file and its content.
Aside from the technical elements needed to verify and process the file, the file's main contents consist of a series of @router-info files which @Kovri and @I2P routers use to locate and communicate with other @I2P peers. These peers are then stored into a @network-database.

View file

@ -0,0 +1,10 @@
---
terms: ["ring-size"]
summary: "total number of possible signers in a ring signature"
---
{% include untranslated.html %}
### The Basics
Ring size refers to the total number of possible signers in a @ring-signature. If a ring size of 4 is selected for a given @transaction, this means that there are 3 foreign outputs in addition to your “real” output. A higher ring size number will typically provide more privacy than a lower number. However, reusing an odd, recognizable ring size number for transactions could possibly make transactions stand out.
`Ring size = foreign outputs + 1 (your output)`

View file

@ -0,0 +1,14 @@
---
terms: ["ringCT", "ring-CT"]
summary: "a way to hide the amount sent in a Monero transaction"
---
{% include untranslated.html %}
### The Basics
RingCT, short for Ring Confidential Transactions, is how transaction amounts are hidden in Monero.
Ring CT was implemented in block #1220516 in January 2017. After September 2017, this feature became mandatory for all transactions on the network.
RingCT introduces an improved version of @ring-signatures called "A Multi-layered Linkable Spontaneous Anonymous Group signature", which allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation.
For more information, please read the creator Shen Noether's paper [here](https://eprint.iacr.org/2015/1098).

View file

@ -0,0 +1,17 @@
---
terms: ["ring-signature", "ring-signatures"]
summary: "a group of cryptographic signatures with at least one real participant, but no way to tell which in the group is the real one as they all appear valid"
---
{% include untranslated.html %}
### The Basics
In cryptography, a ring signature is a type of digital signature that can be performed by any member of a group of users that each have keys. Therefore, a message signed with a ring signature is endorsed by someone in a particular group of people. One of the security properties of a ring signature is that it should be computationally infeasible to determine *which* of the group members' keys was used to produce the signature.
For instance, a ring signature could be used to provide an anonymous signature from "a high-ranking White House official", without revealing which official signed the message. Ring signatures are right for this application because the anonymity of a ring signature cannot be revoked, and because the group for a ring signature can be improvised (requires no prior setup).
### Application to Monero
A ring signature makes use of your @account keys and a number of public keys (also known as outputs) pulled from the @blockchain using a triangular distribution method. Over the course of time, past outputs could be used multiple times to form possible signer participants. In a "ring" of possible signers, all ring members are equal and valid. There is no way an outside observer can tell which of the possible signers in a signature group belongs to your @account. So, ring signatures ensure that transaction outputs are untraceable. Moreover, there are no @fungibility issues with Monero given that every transaction output has plausible deniability (e.g. the network can not tell which outputs are spent or unspent).
To read how Monero gives you privacy by default (unlinkability), see @stealth-addresses.

View file

@ -0,0 +1,67 @@
---
tags: ["kovri"]
terms: ["Router-Info", "Router-infos"]
summary: "A data structure or file which contains an I2P peer's needed network information"
---
{% include untranslated.html %}
### The Basics
@Router-Info is a data structure (periodically written to a [binary file](https://en.wikipedia.org/wiki/Binary_file)) which contains all needed information to locate, identify, and communicate with an @I2P peer. @Router-Info includes IP address, router identity, other misc. technical details; is needed for @network-database and is published to @floodfill routers.
### In-depth information
In human-readable form, Router-Info may look like this:
```
Identity: [RouterIdentity:
Hash: nYZ5Qe7gQ-~QgfgJVRUG4c0JnVeVqzM~duUX1EGT1ek=
Certificate: [Certificate: type: Key certificate
Crypto type: 0
Sig type: 7 (EdDSA_SHA512_Ed25519)]
PublicKey: [PublicKey: size: 256]
SigningPublicKey: [SigningPublicKey EdDSA_SHA512_Ed25519: size: 32]
Padding: 96 bytes]
Signature: [Signature EdDSA_SHA512_Ed25519: size: 64]
Published: Sun Oct 09 01:34:59 UTC 2016
Options (5):
[caps] = [LfR]
[netId] = [2]
[netdb.knownLeaseSets] = [37]
[netdb.knownRouters] = [2435]
[router.version] = [0.9.26]
Addresses (4):
[RouterAddress:
Type: SSU
Cost: 4
Options (5):
[caps] = [BC]
[host] = [2a01:e35:8b5c:b240:71a2:6750:8d4:47fa]
[key] = [nYZ5Qe7gQ-~QgfgJVRUG4c0JnVeVqzM~duUX1EGT1ek=]
[mtu] = [1472]
[port] = [22244]]
[RouterAddress:
Type: NTCP
Cost: 9
Options (2):
[host] = [2a01:e35:8b5c:b240:71a2:6750:8d4:47fa]
[port] = [22244]]
[RouterAddress:
Type: SSU
Cost: 6
Options (4):
[caps] = [BC]
[host] = [88.181.203.36]
[key] = [nYZ5Qe7gQ-~QgfgJVRUG4c0JnVeVqzM~duUX1EGT1ek=]
[port] = [22244]]
[RouterAddress:
Type: NTCP
Cost: 11
Options (2):
[host] = [88.181.203.36]
[port] = [22244]]]
```
### Notes
For details and specification, visit @Java-I2P [Network Database](https://geti2p.net/en/docs/how/network-database) page.

View file

@ -0,0 +1,9 @@
---
terms: ["scalability"]
summary: "Growth potential of Monero, resources required, and methods of increasing efficiency"
---
{% include untranslated.html %}
### The Basics
Monero has no hardcoded maximum block size, which means that unlike Bitcoin it does not have a 1 MB block size limit preventing scaling. However, a block reward penalty mechanism is built into the protocol to avoid a too excessive block size increase: The new block's size (NBS) is compared to the median size M100 of the last 100 blocks. If NBS>M100, the block reward gets reduced in quadratic dependency of how much NBS exceeds M100. E.g. if NBS is [10%, 50%, 80%, 100%] greater than M100, the nominal block reward gets reduced by [1%, 25%, 64%, 100%]. Generally, blocks greater than 2*M100 are not allowed, and blocks <= 60kB are always free of any block reward penalties.

View file

@ -0,0 +1,9 @@
---
terms: ["signature", "signatures"]
summary: "a cryptographic method for proving ownership of a piece of information, as well as proving that the information has not been modified after being signed"
---
{% include untranslated.html %}
### The Basics
A cryptographic method for proving ownership of a piece of information, as well as proving that the information has not been modified after being signed.

View file

@ -0,0 +1,14 @@
---
terms: ["smart-mining"]
summary: "a process of having a throttled miner mine when it otherwise does not cause drawbacks"
---
{% include untranslated.html %}
### The Basics
Smart mining is the process of having a throttled @miner mine when it otherwise does not cause drawbacks.
Drawbacks include increases heat, slower machine, depleting battery, etc. The intent of smart mining is to increase network security by allowing as many people as possible to let the smart miner on all the time. For this to work, the miner must prove unobtrusive, or it will be turned off, depriving the Monero network from a little bit of security. As such, it is likely that a smart miner will mine slower than a normal miner on the same hardware.
Smart mining is available in the official CLI and GUI wallet, which are available in the [downloads page](https://getmonero.org/downloads/).
It is hoped that the relative slowness of a smart miner (especially on low-power machines) will be offset by the large amount of people running a miner for a possible "lottery win", and thus increase the Monero network security by a non trivial amount. The increased hash rate from many different sources helps keep the Monero network decentralized.

View file

@ -0,0 +1,15 @@
---
terms: ["spend-key", "spend-keys"]
summary: "one of the two pairs of private and public cryptographic keys that each account has, with the *private* spend key used to spend any funds in the account"
---
{% include untranslated.html %}
### The Basics
One of the two pairs of private and public cryptographic keys that each account has, with the *private* spend key used to spend any funds in the account.
### In-depth Information
The *private* spend key is a 256-bit integer that is used to sign Monero transactions. With the current deterministic key derivation method of the official wallet, the private spend key is also an alternate representation of the @mnemonic-seed. It can be used to derive all other account keys.

View file

@ -0,0 +1,25 @@
---
tags: ["kovri"]
terms: ["SSU"]
summary: "Secure Semi-reliable UDP: one of two Kovri transports"
---
{% include untranslated.html %}
### The Basics
*Secure Semi-reliable UDP* is one of two encrypted @transports for @Kovri.
Similar to @NTCP, @SSU's *primary* purpose is to securely transmit @in-net @I2NP messages through @tunnels but, unlike @NTCP, @SSU functions solely over encrypted [UDP](https://en.wikipedia.org/wiki/User_Datagram_Protocol).
### In-depth information
- Like @NTCP, @SSU is a connection-oriented, point-to-point data transport
- Termed *semi-reliable* because @SSU will repeatedly retransmit *unacknowledged* messages (up to maximum number then dropped)
- @SSU also provides several unique services (in addition to its function as a @transport layer):
- IP detection (local inspection or with [peer testing](https://geti2p.net/en/docs/transport/ssu#peerTesting))
- [NAT](https://en.wikipedia.org/wiki/Network_address_translation) traversal (using [introducers](https://geti2p.net/en/docs/transport/ssu#introduction))
- [Firewall](https://en.wikipedia.org/wiki/Firewall_%28computing%29) status and, if implemented, @SSU can notify @NTCP if the external address or firewall status changes
### Notes
For further details, read @Java-I2P's [SSU](https://geti2p.net/en/docs/transport/ssu)

View file

@ -0,0 +1,15 @@
---
terms: ["stealth-address", "stealth-addresses", "Schattenadressen", "Schattenadresse"]
summary: "automatic one-time addresses for every transaction"
---
{% include untranslated.html %}
### The Basics
Stealth addresses are an important part of Monero's inherent privacy. They allow and require the sender to create random one-time addresses for every @transaction on behalf of the recipient. The recipient can publish just one address, yet have all of his/her incoming payments go to unique addresses on the @blockchain, where they cannot be linked back to either the recipient's published address or any other transactions' addresses. By using stealth addresses, only the sender and receiver can determine where a payment was sent.
When you create a Monero account youll have a private @view-key, a private @spend-key, and a Public Address. The @spend-key is used to send payments, the @view-key is used to display incoming transactions destined for your account, and the Public Address is for receiving payments. Both the @spend-key and @view-key are used to build your Monero address. You can have a “watch only” wallet that only uses the @view-key. This feature can be used for accounting or auditing purposes but is currently unreliable due to the inability to track outgoing transactions. You can decide who can see your Monero balance by sharing your @view-key. Monero is private by default and optionally semi-transparent!
When using the Monero Wallet all this is handled by the software. Sending Monero is as easy as entering the destination address, the amount, and pressing Send. To recieve Monero, simply provide the sender your Public Address.
To learn how Monero prevents tracking history (untraceability), see @ring-signatures.

View file

@ -0,0 +1,46 @@
---
tags: ["kovri"]
terms: ["Subscription"]
summary: "A file used by address book which contains I2P hosts paired with I2P destinations"
---
{% include untranslated.html %}
### The Basics
A subscription is a file which contains a list of `.i2p` hosts paired with their respective @destination. Subscriptions are used by the @address-book.
### In-depth information
Similar to how a [hosts file](https://en.wikipedia.org/wiki/Hosts_(file)) can map an Internet hostname to a specified address, a subscription matches a `.i2p` address to @base64-address by using the following format (no spaces allowed): `host=address`
More specifically, a subscription pairs a @locally-unique-host to @base64-address.
Example:
```
anonimal.i2p=AQZGLAMpI9Q0l0kmMj1vpJJYK3CjLp~fE3MfvE-e7KMKjI5cPOH6EN8m794uHJ6b09qM8mb9VEv1lVLEov~usVliTSXCSHuRBOCIwIOuDNU0AbVa4BpIx~2sU4TxKhoaA3zQ6VzINoduTdR2IJhPvI5xzezp7dR21CEQGGTbenDslXeQ4iLHFA2~bzp1f7etSl9T2W9RID-KH78sRQmzWnv7dbhNodMbpO6xsf1vENf6bMRzqD5vgHEHZu2aSoNuPyYxDU1eM6--61b2xp9mt1k3ud-5WvPVg89RaU9ugU5cxaHgR927lHMCAEU2Ax~zUb3DbrvgQBOTHnJEx2Fp7pOK~PnP6ylkYKQMfLROosLDXinxOoSKP0UYCh2WgIUPwE7WzJH3PiJVF0~WZ1dZ9mg00c~gzLgmkOxe1NpFRNg6XzoARivNVB5NuWqNxr5WKWMLBGQ9YHvHO1OHhUJTowb9X90BhtHnLK2AHwO6fV-iHWxRJyDabhSMj1kuYpVUBQAEAAcAAA==
```
1. `anonimal.i2p` is the @locally-unique-host
2. `=` is the separator
3. Everything that remains is the @base64-address
### Subscription types
For @Kovri, there are two types of subscription files: *public* and *private*.
A *public* subscription:
- is used when bootstrapping to use essential services (IRC, email, Monero, etc.)
- is static and is refreshed every 12 hours from Monero's @address-book server
- allows you to safely share the subscription with everyone as it is publically available (anyone who shares the same public subscription will also be able to resolve the same hostname to the same destination as you)
A *private* subscription:
- is used exclusively by you and is not shared with others unless you explicitly choose to share the file
- default file is `private_hosts.txt` in your @data-directory
### Updating a private subscription
You can use a @jump-service to manually update your private subscription. The updated subscription will then be fed into the @address-book for you to use.
### Notes
To learn how to subscribe to multiple subscriptions, see the [user-guide](https://gitlab.com/kovri-project/kovri-docs/blob/master/i18n/en/user_guide.md).

View file

@ -0,0 +1,15 @@
---
terms: ["Tail-Emission"]
summary: "the block reward at the end of the emission curve"
---
{% include untranslated.html %}
### The Basics
Monero block rewards will never drop to zero. Block rewards will gradually drop until tail emission commences at the end of May 2022. At this point, rewards will be fixed at 0.6 XMR per block.
### Why
Miners need an incentive to mine. Because of the dynamic blocksize, competition between @miners will cause fees to decrease. If mining is not profitable due to a high cost and low reward, miners lose their incentive and will stop mining, reducing the security of the network.
Tail emission ensures that a dynamic block size and fee market can develop.

View file

@ -0,0 +1,22 @@
---
terms: ["transaction", "transactions"]
summary: "a cryptographically signed container that details the transfer of Monero to a recipient (or recipients)"
---
{% include untranslated.html %}
### The Basics
A cryptographically signed container that details the transfer of Monero to a recipient (or recipients).
The parameters of a transaction contain one or more recipient addresses with corresponding amounts of funds and a @ring-size parameter that specifies the number outputs bound to the transaction. The more outputs that are used, a higher degree of obfuscation is possible, but that comes with a cost. Since a transaction gets larger with more outputs, the transaction fee will be higher.
It is possible to form a transaction offline, which offers additional privacy benefits.
A transaction can be uniquely identified with the use of an optional Transaction ID, which is usually represented by a 32-byte string (64 hexadecimal characters).
### In-depth Information
Every transaction involves two keys: a public @spend-key, and a public @view-key. The destination for an output in a transaction is actually a one-time public key computed from these two keys.
When a wallet is scanning for incoming transactions, every transaction is scanned to see if it is for "you". This only requires your private view key and your public spend key, and this check is immutable and cannot be faked. You cannot receive transactions and identify them without a corresponding private view key.
In order to spend the funds you have to compute a one-time private spend key for that output. This is almost always done automatically by the Monero Wallet software.

View file

@ -0,0 +1,19 @@
---
tags: ["kovri"]
terms: ["Transports", "Transport"]
summary: "The two encrypted transport layers for Kovri"
---
{% include untranslated.html %}
### The Basics
@I2P comes with two encrypted transport layer technologies that allow @Kovri to securely use [TCP/IP](https://en.wikipedia.org/wiki/Tcp/ip) connections. These technologies (@SSU and @NTCP) are called *@transports*.
### In-depth information
@SSU is encrypted [UDP](https://en.wikipedia.org/wiki/User_Datagram_Protocol) and @NTCP is encrypted [TCP](https://en.wikipedia.org/wiki/Transmission_Control_Protocol). They provide @encryption at the [transport layer](https://en.wikipedia.org/wiki/Transport_layer) so higher level @messages can be sent through @tunnels across the @I2P network.
### Notes
- Read about @I2P's transports on the [Transport](https://geti2p.net/en/docs/transport) page
- Read about the transports layer within the [OSI model](https://en.wikipedia.org/wiki/OSI_model)

View file

@ -0,0 +1,36 @@
---
tags: ["kovri"]
terms: ["Tunnel", "Tunnels"]
summary: "Uni-directional virtual paths that pass messages through a defined sequence of I2P routers"
---
{% include untranslated.html %}
### The Basics
When you communicate over @I2P (visit an @eepsite / use a @garlic-service), you'll first need to connect to a peer by using @transports and then build virtual *tunnels*. These virtual tunnels are temporary, uni-directional paths that pass information through a defined sequence of @I2P routers to your @destination. Tunnels are built, and then used, with layered @garlic-encryption and are a general-purpose mechanism to transport all @I2NP @messages.
Each peer builds, at a minimum, *two* uni-directional tunnels: one for **outbound traffic**, and one for **inbound traffic**. These tunnels are classified as either **inbound tunnels** (where @messages come toward the creator of the tunnel) or **outbound tunnels** (where the tunnel creator sends @messages away from the creator of the tunnel). Thus, *four* tunnels are required for a single round-trip @message and reply to your @destination (two for your, two for your destination).
### In-depth information
From @Java-I2P:
>
Within I2P, @messages are passed in one direction through a virtual tunnel of peers, using whatever means are available to pass the @message on to the next hop. Messages arrive at the tunnel's gateway, get bundled up and/or fragmented into fixed-size @tunnel @messages, and are forwarded on to the next hop in the tunnel, which processes and verifies the validity of the @message and sends it on to the next hop, and so on, until it reaches the @tunnel endpoint. That endpoint takes the messages bundled up by the gateway and forwards them as instructed - either to another router, to another tunnel on another router, or locally.
>
Tunnels all work the same, but can be segmented into two different groups - inbound tunnels and outbound tunnels. The inbound tunnels have an untrusted gateway which passes messages down towards the tunnel creator, which serves as the tunnel endpoint. For outbound tunnels, the tunnel creator serves as the gateway, passing messages out to the remote endpoint.
>
The tunnel's creator selects exactly which peers will participate in the tunnel, and provides each with the necessary configuration data. They may have any number of hops. It is the intent to make it hard for either participants or third parties to determine the length of a tunnel, or even for colluding participants to determine whether they are a part of the same tunnel at all (barring the situation where colluding peers are next to each other in the tunnel).
### Notes
From @Java-I2P:
>
@I2P is an inherently packet switched network, even with these tunnels, allowing it to take advantage of multiple tunnels running in parallel, increasing resilience and balancing load. Even though the tunnels within I2P bear a resemblance to a circuit switched network, everything within I2P is strictly message based - tunnels are merely accounting tricks to help organize the delivery of messages. No assumptions are made regarding reliability or ordering of messages, and retransmissions are left to higher levels (e.g. I2P's client layer streaming library).
### Documentation
For specification and detailed documentation, visit the [Tunnel-Routing](https://geti2p.net/en/docs/how/tunnel-routing) and [Tunnel-Implementation](https://geti2p.net/en/docs/tunnels/implementation) page.

View file

@ -0,0 +1,13 @@
---
terms: ["unlock-time"]
summary: "a special transaction where the recipient can only spend the funds after a future date, as set by the sender"
---
{% include untranslated.html %}
### The Basics
A special transaction where the recipient can only spend the funds after a future date, as set by the sender.
Unlock time allows you to send a transaction to someone, such that they can not spend it until after a certain number of blocks, or until a certain time.
Note that this works differently than Bitcoin's [nLockTime](https://en.bitcoin.it/wiki/NLockTime), in which the transaction is not valid until the given time.

View file

@ -0,0 +1,13 @@
---
terms: ["view-key", "view-keys"]
summary: "one of two sets of private and public cryptographic keys that each account has, with the private view key required to view all transactions related to the account"
---
{% include untranslated.html %}
### The Basics
One of two sets of private and public cryptographic keys that each account has, with the private view key required to view all transactions related to the account.
Monero features an opaque blockchain (with an explicit allowance system called the @view-key), in sharp contrast with transparent blockchains used by any other cryptocurrency not based on CryptoNote. Thus, Monero is said to be "private, optionally transparent".
Every Monero address has a private viewkey which can be shared. By sharing a viewkey, a person is allowing access to view every incoming transaction for that address. However, outgoing transactions cannot be reliably viewed as of June 2017. Therefore, the balance of a Monero address as shown via a viewkey should not be relied upon.

View file

@ -0,0 +1,18 @@
---
terms: ["wallet", "wallets"]
summary: "A wallet stores the information necessary to send and receive Monero"
---
{% include untranslated.html %}
### The Basics
A Monero account, or wallet, stores the information necessary to send and receive Moneroj. In addition to sending and receiving, the Monero Wallet software keeps a private history of your transactions and allows you to cryptographically sign messages. It also includes Monero mining software and an address book.
The term "hot wallet" describes a Monero @account which is connected to the Internet. You can send funds easily but security is much lower than a cold wallet. Never store large amounts of cryptocurrency in a hot wallet!
A cold wallet is generated on a trusted device or computer via an @airgap. If the device is to be reused, the data storage should be securely overwritten. As soon as a cold wallet is connected to the Internet or its mnemonic phrase or @spend-key is entered on an Internet-connected device, it's no longer "cold" and should be considered "hot".
A Monero @paper-wallet can be generated by downloading the source code of https://moneroaddress.org/. Verify the signature of the code on a trusted airgapped device. Create the wallet and print or store it on the media of your choice.
Monero accounts and paper-wallets can be stored on any media - paper, USB drive, CD/DVD, or a hardware wallet device (Ledger available since June 2018).

View file

@ -0,0 +1,50 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
## How to mine Monero (XMR) without a mining equipment?
If you dont have a profitable mining equipment, nor time or
money to invest into building it, you can still mine Monero with NiceHash.
NiceHash is a hashing power marketplace. Sellers of hashing
power, i.e. miners, provide the hashing power for buyers (those who want to buy
a service of mining a certain coin). Hence, NiceHash can provide you a massive
hashing power in short amount of time. You wont have to wait for years to see
if you will make a profit or not and you can control which coin, at which pool,
and for how long you want to mine.
### **Step 1:** Create new account at NiceHash
Visit [registration
page](https://www.nicehash.com/?p=register) and register with your e-mail address.
### **Step 2:** Deposit some Bitcoins to your account
You will mine Monero, but you can buy hashing power at
NiceHash only with Bitcoins. You can always withdraw unspent Bitcoins from your
account back to any Bitcoin wallet.
Visit your [wallet
page](https://www.nicehash.com/?p=wallet) and make a deposit. Note that the minimum price for placing an order
equals 0.01 BTC.
### **Step 3:** Find a suitable pool for mining and add it to your pool list
Selection of the pool plays a big role in the final amount
of mined cryptocurrency. Make sure the pool you have selected can handle
massive hashing rate and loads of shares, especially from a single connection.
You can find a list of Monero pools [here](https://bitcointalk.org/index.php?topic=583449.0).
Note that you will probably have to register an account at
selected pool as well. The pool will provide you with all the information you need.
You can save your favorite pools at [this page](https://www.nicehash.com/?p=managepools).
### **Step 4:** Create new order and start mining
When creating a [new order](https://www.nicehash.com/?p=orders&new), make sure you
select CryptoNightV7 algorithm for mining Monero (New algorithm variant since 2018 April the 6th). If you want to first learn more
about placing an order with NiceHash, we recommend you to read this [frequently asked question](https://www.nicehash.com/?p=faq#faqb0).
If you want to bid on
hashing power select Standard (bidding) order type and if you want a fixed
order that cannot be outbid, select Fixed order type. The status of marketplace
and approximate prices of mining can be checked at [live marketplace](https://www.nicehash.com/index.jsp?p=orders). 

View file

@ -0,0 +1,38 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
## Operating Systems: Various versions of Linux and Windows 7, 8
### Wallet Software: Simplewallet
#### Resource for Creating Bootable Disks: [Linux](http://www.pendrivelinux.com/), [Windows](https://www.microsoft.com/en-us/download/windows-usb-dvd-download-tool)
#### Resource for Monero Binaries: [Monero Binaries](https://getmonero.org/downloads/)
- Take any computer you have lying around, even your normal workstation. You may find it easier to use an older computer that has no wifi or bluetooth if you're particularly paranoid
- Create a Linux or Windows bootable disk, and make sure you have the Monero binaries on the same disk or on a second disk (for Linux make sure you have also downloaded copies of the dependencies you will need, libboost1.55 and miniupnpc for instance)
- Disconnect the network and/or Internet cables from your computer, physically remove the wifi card or switch the wifi/bluetooth off on a laptop if possible
- Boot into your bootable OS, install the dependencies if necessary
- Copy the Monero binaries to a RAM disk (/dev/shm in Linux, Windows bootable ISOs normally have a Z: drive or something)
- Don't run the Monero daemon. Instead, using the command line, use monero-wallet-cli to create a new Monero @account
- When prompted for a name, give it any name, it doesn't really matter
- When prompted for a password, type in like 50 - 100 random characters. Don't worry that you don't know the password, just make it LONG
- **CRITICAL STEP**: Write down (on paper) your 25 word @mnemonic-seed
**WARNING**: If you forget to write down this information your funds may be lost forever
- Write down (on your phone, on paper, on another computer, wherever you want) your address and view key
- Switch off the computer, remove the battery if there is one, and leave it physically off for a few hours
The account you've created was created in RAM, and the digital files are now inaccessible. If some adversary manages to somehow obtain the data, they will lack the long password to open it. If you need to receive payments, you have your public address, and you have the view key if needed. If you need access to it, you have your 25 word @mnemonic-seed, and you can now write out several copies of it, including an offsite copy (e.g. a bank deposit box).
Credit: Riccardo Spagni
Related: [Offline Account Generator](http://moneroaddress.org/)

View file

@ -0,0 +1,151 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
# CLI Wallet/Daemon Isolation with Qubes + Whonix
With [Qubes](https://qubes-os.org) + [Whonix](https://whonix.org) you can have a Monero wallet that is without networking and running on a virtually isolated system from the Monero daemon which has all of its traffic forced over [Tor](https://torproject.org).
Qubes gives the flexibility to easily create separate VMs for different purposes. First you will create a Whonix workstation for the wallet with no networking. Next, another Whonix workstation for the daemon which will use your Whonix gateway as it's NetVM. For communication between the wallet and daemon you can make use of Qubes [qrexec](https://www.qubes-os.org/doc/qrexec3/).
This is safer than other approaches which route the wallets rpc over a Tor hidden service, or that use physical isolation but still have networking to connect to the daemon. In this way you don't need any network connection on the wallet, you preserve resources of the Tor network, and there is less latency.
## 1. [Create Whonix AppVMs](https://www.whonix.org/wiki/Qubes/Install):
+ Using a Whonix workstation template, create two workstations as follows:
- The first workstation will be used for your wallet, it will referred to as `monero-wallet-ws`. You will have `NetVM` set to `none`.
- The second workstation will be for the `monerod` daemon, it will be referred to as `monerod-ws`. You will have `NetVM` set to the Whonix gateway `sys-whonix`.
## 2. In the AppVM `monerod-ws`:
+ Download, verify, and install Monero software.
```
user@host:~$ curl -O "https://downloads.getmonero.org/cli/monero-linux-x64-v0.11.1.0.tar.bz2" -O "https://getmonero.org/downloads/hashes.txt"
user@host:~$ gpg --recv-keys BDA6BD7042B721C467A9759D7455C5E3C0CDCEB9
user@host:~$ gpg --verify hashes.txt
gpg: Signature made Wed 01 Nov 2017 10:01:41 AM UTC
gpg: using RSA key 0x55432DF31CCD4FCD
gpg: Good signature from "Riccardo Spagni <ric@spagni.net>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: BDA6 BD70 42B7 21C4 67A9 759D 7455 C5E3 C0CD CEB9
Subkey fingerprint: 94B7 38DD 3501 32F5 ACBE EA1D 5543 2DF3 1CCD 4FCD
user@host:~$ echo '6581506f8a030d8d50b38744ba7144f2765c9028d18d990beb316e13655ab248 monero-linux-x64-v0.11.1.0.tar.bz2' | shasum -c
monero-linux-x64-v0.11.1.0.tar.bz2: OK
user@host:~$ tar xf monero-linux-x64-v0.11.1.0.tar.bz2
user@host:~$ sudo cp monero-v0.11.1.0/monerod /usr/local/bin/
```
+ Create a `systemd` file.
```
user@host:~$ sudo gedit /home/user/monerod.service
```
Paste the following contents:
```
[Unit]
Description=Monero Full Node
After=network.target
[Service]
User=user
Group=user
Type=forking
PIDFile=/home/user/.bitmonero/monerod.pid
ExecStart=/usr/local/bin/monerod --detach --data-dir=/home/user/.bitmonero \
--no-igd --pidfile=/home/user/.bitmonero/monerod.pid \
--log-file=/home/user/.bitmonero/bitmonero.log --p2p-bind-ip=127.0.0.1
Restart=always
PrivateTmp=true
[Install]
WantedBy=multi-user.target
```
+ Copy `monero-wallet-cli` executable to the `monero-wallet-ws` VM.
```
user@host:~$ qvm-copy-to-vm monero-wallet-ws monero-v0.11.1.0/monero-wallet-cli
```
+ Make `monerod` daemon run on startup by editing the file `/rw/config/rc.local`.
```
user@host:~$ sudo gedit /rw/config/rc.local
```
Add these lines to the bottom:
```
cp /home/user/monerod.service /lib/systemd/system/
systemctl start monerod.service
```
Make file executable.
```
user@host:~$ sudo chmod +x /rw/config/rc.local
```
+ Create rpc action file.
```
user@host:~$ sudo mkdir /rw/usrlocal/etc/qubes-rpc
user@host:~$ sudo gedit /rw/usrlocal/etc/qubes-rpc/user.monerod
```
Add this line:
```
socat STDIO TCP:localhost:18081
```
+ Shutdown `monerod-ws`.
## 3. In the AppVM `monero-wallet-ws`:
+ Move the `monero-wallet-cli` executable.
```
user@host:~$ sudo mv QubesIncoming/monerod-ws/monero-wallet-cli /usr/local/bin/
```
+ Edit the file `/rw/config/rc.local`.
```
user@host:~$ sudo gedit /rw/config/rc.local
```
Add the following line to the bottom:
```
socat TCP-LISTEN:18081,fork,bind=127.0.0.1 EXEC:"qrexec-client-vm monerod-ws user.monerod"
```
Make file executable.
```
user@host:~$ sudo chmod +x /rw/config/rc.local
```
+ Shutdown `monero-wallet-ws`.
## 4. In `dom0`:
+ Create the file `/etc/qubes-rpc/policy/user.monerod`:
```
[user@dom0 ~]$ sudo nano /etc/qubes-rpc/policy/user.monerod
```
Add the following line:
```
monero-wallet-ws monerod-ws allow
```

View file

@ -0,0 +1,62 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
### Operating Systems: Ubuntu
- Download the [official binaries](https://getmonero.org/downloads/) or compile the last source available on [Github](https://github.com/monero-project/bitmonero)
![image1](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/1.png)
![image2](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/2.png)
- Extract the files with the archive manager (same as Winzip on Windows). Note the path where the files "monerod" and "monero-wallet-cli" are
![image3](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/3.png)
![image4](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/4.png)
- You only need to do this step once : open a terminal (ctrl+alt+t) and install the required dependencies by typing : "*sudo apt-get install libboost-all-dev libssl-dev libevent-dev libdb++-dev*". When asked, press the Y key and then Enter to continue
![image5](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/5.png)
![image6](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/6.png)
- Open a terminal and load the path where your binaries are extracted (cf. step 2) by typing : "*cd yourPathFromStep2*"
![image7](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/7.png)
- Load monerod by typing in your terminal : "*./monerod*". Wait for the synchronization with the network (monerod is updating the blockchain you have downloaded in step 4 or is downloading it from scratch). This can take a lot of time the first time, so be patient
![image8](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/8.png)
![image9](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/9.png)
![image10](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/10.png)
![image11](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/11.png)
- Once monerod is synchronized with the network, open a new terminal, change the directory (cf. step 5), and launch monero-wallet-cli by typing "*./monero-wallet-cli*"
![image12](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/12.png)
- Enter the name you want for your portfolio and follow the instructions from the terminal
![image13](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/13.png)
![image14](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/14.png)
![image15](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/15.png)
![image16](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/16.png)
*This is your private key. Write it down and keep it in a safe place!*
![image17](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/17.png)
*This is your view key. You need it to create a view only wallet (cf. associated user guide)*
![image18](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/18.png)
*This is the address of your wallet*
![image19](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/19.png)
![image20](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/20.png)
![image21](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/21.png)
![image22](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/22.png)
![image23](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/create_wallet/23.png)
- To exit monerod or monero-wallet-cli just type "*exit*" in the associated terminal
Now to access the portfolio you have just created you will have to launch monerod, wait for it to be synchronized with the network, launch monero-wallet-cli, and type the name of your portfolio and your password.

View file

@ -0,0 +1,66 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
## How to obtain Monero
This is a guide to obtain your own Monero as of 20150919. This is perhaps the easiest way to purchase and hold Monero.
####Step 1: Buy Bitcoin
There are many ways to buy Bitcoin. Perhaps the easiest way is through circle.com. Once you have purchased some Bitcoin, you are ready to buy some Monero! Buying Bitcoin is straightforward. Please goto circle.com and just follow the instructions there.
####Step 2: Set up a mymonero.com account
MyMonero.com is an online wallet for Monero, maintained by Monero Core Developer Ricardo Spagni (fluffpony). It is the easiest wallet to use. Simply go to MyMonero.com and click on the "Create an Account" button.
![image1](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/01.png)
After clicking the button, you will see your private key. This key is what gives you access to your funds. Never share this key with anyone!
### WRITE DOWN THIS KEY IMMEDIATELY!
![image2](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/02.png)
Type in your private key in the box below, and click the button.
On the next page, you will see your address.
![image3](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/03.png)
Copy your address to the clipboard by highlighting the whole thing and hitting ctrl+c (or edit menu, copy), or clicking the little icon next to your address. Save your address somewhere. This is how others will send Monero to you, and what you will use to deposit Monero into your account!
#### Step 3: Buy Monero and transfer the Monero to your new address
Go to www.shapeshift.io . On the righthand side, of the screen, click icon under "Receive" to select Monero.
![image5](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/05.png)
![image6](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/06.png)
Paste your address into the field under the Monero logo. Select the "agree to terms" button, then hit "Start"
![image7](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/07.png)
In the new screen that pops up, copy the Deposit Address into your clipboard (select and hit ctrl+c or edit-copy)
![image8](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/08.png)
Go back to your circle.com page, hit the "transfer" button, and paste the Bitcoin address into the field
Enter the amount of Bitcoin you would like to spend.
![image4](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/04.png)
![image9](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/09.png)
You will get a text message verification code. Enter code and hit send.
![image10](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/10.png)
You will see the shapeshift change to "awaiting exchange"
![image11](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/11.png)
Then it will change to COMPLETE!
![image12](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/12.png)
After a while you will see it in your Monero account
![image13](https://github.com/luuul/monero-site/blob/master/knowledge-base/user-guides/png/easiest_way/13.png)

View file

@ -0,0 +1,32 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
Sometimes, your funds will become stuck - you will have some locked funds that never become unlocked. This is how you fix it.
- Load your wallet in monero-wallet-cli.
- Type
> seed
into the command prompt. Write down your 25 word seed, if you haven't already. This is the best way to make sure you don't loose access to your funds.
- Close monero-wallet-cli by typing
> exit
- Backup all of your wallet related files. These include:
> yourwalletname.bin
> yourwalletname.bin.keys
> yourwalletname.bin.address.txt
This can be done by copying the files to a new folder.
Sometimes, when creating your wallet, you might have named it something without the .bin part. In that case, the wallet file will be called yourwalletname without the .bin at the end.
- Delete yourwallet.bin
- Load monero-wallet-cli, type in the name of the wallet you just deleted
- Enter password. The wallet will now refresh and hopefully your locked funds will now become unlocked.

View file

@ -0,0 +1,58 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
# Importing the Blockchain to Monero GUI wallet (Windows)
### Step 1
Download the Current bootstrap from https://downloads.getmonero.org/blockchain.raw; you can skip this step if you are importing the Blockchain from another source.
### Step 2
Find the path of your Monero wallet (the folder where you extracted your wallet). For example mine is:
`D:\monero-gui-0.10.3.1`
Your path may be different depending on where you decided to download your wallet and what version of the Monero wallet you have.
### Step 3
Find the path of your downloaded Blockchain for example mine was:
`C:\Users\KeeJef\Downloads\blockchain.raw`
Yours might be different depending on where you downloaded the Blockchain to.
### Step 4
Open a Command Prompt window. You can do this by pressing the Windows key + R, and then typing in the popup box `CMD`
### Step 5
Now you need to navigate using the CMD window to the path of your Monero wallet. You can do this by typing:
`cd C:\YOUR\MONERO\WALLET\FILE\PATH\HERE`
It should look something like:
`cd D:\monero-gui-0.10.3.1`
If your Monero wallet is on another drive you can use `DriveLetter:` for example if your Monero wallet was on your D drive then before using the cd command you would do `D:`
### Step 6
Now type in your command prompt window:
`monero-blockchain-import --input-file C:\YOUR\BLOCKCHAIN\FILE\PATH\HERE`
For example I would type :
`monero-blockchain-import --input-file C:\Users\KeeJef\Downloads\blockchain.raw`
If you downloaded the Blockchain from a trusted, reputable source you may set `verify 0` this will reduce the amount of time to sync the Blockchain.
### Step 7
After the the Blockchain has finished syncing up you can open your Monero wallet normally. Your downloaded blockchain.raw can be deleted.
Author: Kee Jefferys

View file

@ -0,0 +1,165 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
## How to generate a Ledger Monero wallet with the CLI (monero-wallet-cli)
### Table of Content
* [1. Windows](#1-windows)
* [2. Mac OS X](#2-mac-os-x)
* [3. Linux](#3-linux)
* [4. Final notes](#4-a-few-final-notes)
### 1. Windows
We first have to ensure that we're sufficiently prepared. This entails the following:
1. This guide assumes you have already initialized your Ledger wallet and thus generated a 24 word mnemonic seed.
2. You need to run / use CLI v0.12.2.0, which can be found <a href="{{site.baseurl}}/downloads/">here</a>.
3. You need to install the Ledger Monero app and configure your system. Instructions can be found [here](https://github.com/LedgerHQ/blue-app-monero/blob/master/doc/user/bolos-app-monero.pdf) (sections 3.1.1 and 3.2.3 in particular). In addition, make sure to set the network to `Mainnet`
4. Your Ledger needs to be plugged in and the Ledger Monero app should be running.
5. Either your daemon (`monerod.exe`) should be running and preferably be fully synced or you should connect to a remote node.
Now that we're sufficiently prepared, let's start!
1. Go to the directory / folder monerod.exe and monero-wallet-cli.exe are located.
2. Open a new command prompt / powershell. This is done by first making sure your cursor isn't located on any of the files and subsequently doing SHIFT + right click. It will give you an option to "Open command window here". If you're using Windows 10 in latest version, it'll give you an option to "open the PowerShell window here".
3. Now type:
`monero-wallet-cli.exe --generate-from-device <new-wallet-name> --subaddress-lookahead 3:200` (Win 7 + 8)
`.\monero-wallet-cli.exe --generate-from-device <new-wallet-name> --subaddress-lookahead 3:200` (Win 10)
Note that is simply a placeholder for the actual wallet name. If you, for instance, want to name your wallet `MoneroWallet`, the command would be as follows:
`monero-wallet-cli.exe --generate-from-device MoneroWallet --subaddress-lookahead 3:200` (Win 7 + 8)
`.\monero-wallet-cli.exe --generate-from-device MoneroWallet --subaddress-lookahead 3:200` (Win 10)
4. The CLI will, after executing aforementioned command, prompt your for a password. Make sure to set a strong password and confirm it thereafter.
5. The Ledger will ask whether you want to export the private view key or not. First and foremost, your funds cannot be compromised with merely the private view key. Exporting the private view key enables the client (on the computer - Monero v0.12.2.0) to scan blocks looking for transactions that belong to your wallet / address. If this option is not utilized, the device (Ledger) will scan blocks, which will be significantly slower. There is, however, one caveat. That is, if your system gets compromised, the adversary will potentially be able to compromise your private view key as well, which is detrimental to privacy. This is virtually impossible when the private view key is not exported.
6. You may have to hit confirm twice before it proceeds.
7. Your Ledger Monero wallet will now be generated. Note that this may take up to 5-10 minutes. Furthermore, there will be no immediate feedback in the CLI nor on the Ledger.
8. `monero-wallet-cli` will start refreshing. Wait until it has fully refreshed.
Congratulations, you can now use your Ledger Monero wallet in conjunction with the CLI.
### 2. Mac OS X
We first have to ensure that we're sufficiently prepared. This entails the following:
1. This guide assumes you have already initialized your Ledger wallet and thus generated a 24 word mnemonic seed.
2. You need to run / use CLI v0.12.2.0, which can be found <a href="{{site.baseurl}}/downloads/">here</a>.
3. You need to install the Ledger Monero app and configure your system. Instructions can be found [here](https://github.com/LedgerHQ/blue-app-monero/blob/master/doc/user/bolos-app-monero.pdf) (sections 3.1.1 and 3.2.2 in particular). In addition, make sure to set the network to `Mainnet`
4. Note that the instructions for system configuration (section 3.2.2) on Mac OS X are quite elaborate and can be perceived as slightly convoluted. Fortunately, tficharmers has created a guide [here](https://monero.stackexchange.com/questions/8438/how-do-i-make-my-macos-detect-my-ledger-nano-s-when-plugged-in) that you can use for assistance.
5. Your Ledger needs to be plugged in and the Ledger Monero app should be running.
6. Either your daemon (`monerod`) should be running and preferably be fully synced or you should connect to a remote node.
Now that we're sufficiently prepared, let's start!
1. Use Finder to browse to the directory / folder `monero-wallet-cli` (CLI v0.12.2.0) is located.
2. Go to your desktop.
3. Open a new terminal (if don't know how to open a terminal, see [here](https://apple.stackexchange.com/a/256263)).
4. Drag `monero-wallet-cli` in the terminal. It should add the full path to the terminal. Do not hit enter.
5. Now type:
`--generate-from-device <new-wallet-name> --subaddress-lookahead 3:200`
Note that is simply a placeholder for the actual wallet name. If you, for instance, want to name your wallet `MoneroWallet`, the command would be as follows:
`--generate-from-device MoneroWallet --subaddress-lookahead 3:200`
Note that aforementioned text will be appended to the path of `monero-wallet-cli`. Thus, before you hit enter, your terminal should look like:
`/full/path/to/monero-wallet-cli --generate-from-device <new-wallet-name> --subaddress-lookahead 3:200`
Where the full path is, intuitively, the actual path on your Mac OS X.
7. The CLI will, after executing aforementioned command, prompt you for a password. Make sure to set a strong password and confirm it thereafter.
8. The Ledger will ask whether you want to export the private view key or not. First and foremost, your funds cannot be compromised with merely the private view key. Exporting the private view key enables the client (on the computer - Monero v0.12.2.0) to scan blocks looking for transactions that belong to your wallet / address. If this option is not utilized, the device (Ledger) will scan blocks, which will be significantly slower. There is, however, one caveat. That is, if your system gets compromised, the adversary will potentially be able to compromise your private view key as well, which is detrimental to privacy. This is virtually impossible when the private view key is not exported.
9. You may have to hit confirm twice before it proceeds.
10. Your Ledger Monero wallet will now be generated. Note that this may take up to 5-10 minutes. Furthermore, there will be no immediate feedback in the CLI nor on the Ledger.
11. `monero-wallet-cli` will start refreshing. Wait until it has fully refreshed.
12. Congratulations, you can now use your Ledger Monero wallet in conjunction with the CLI.
### 3. Linux
We first have to ensure that we're sufficiently prepared. This entails the following:
1. This guide assumes you have already initialized your Ledger wallet and thus generated a 24 word mnemonic seed.
2. You need to run / use CLI v0.12.2.0, which can be found <a href="{{site.baseurl}}/downloads/">here</a>.
3. You need to install the Ledger Monero app and configure your system. Instructions can be found [here](https://github.com/LedgerHQ/blue-app-monero/blob/master/doc/user/bolos-app-monero.pdf) (sections 3.1.1 and 3.2.1 in particular). In addition, make sure to set the network to `Mainnet`
4. Your Ledger needs to be plugged in and the Ledger Monero app should be running.
5. Either your daemon (`monerod`) should be running and preferably be fully synced or you should connect to a remote node.
Now that we're sufficiently prepared, let's start!
1. Go to the directory / folder monero-wallet-cli and monerod are located.
2. Open a new terminal
3. Now type:
`./monero-wallet-cli --generate-from-device <new-wallet-name> --subaddress-lookahead 3:200`
Note that is simply a placeholder for the actual wallet name. If you, for instance, want to name your wallet `MoneroWallet`, the command would be as follows:
`./monero-wallet-cli --generate-from-device MoneroWallet --subaddress-lookahead 3:200`
4. The CLI will, after executing aforementioned command, prompt your for a password. Make sure to set a strong password and confirm it thereafter.
5. The Ledger will ask whether you want to export the private view key or not. First and foremost, your funds cannot be compromised with merely the private view key. Exporting the private view key enables the client (on the computer - Monero v0.12.2.0) to scan blocks looking for transactions that belong to your wallet / address. If this option is not utilized, the device (Ledger) will scan blocks, which will be significantly slower. There is, however, one caveat. That is, if your system gets compromised, the adversary will potentially be able to compromise your private view key as well, which is detrimental to privacy. This is virtually impossible when the private view key is not exported.
6. You may have to hit confirm twice before it proceeds.
7. Your Ledger Monero wallet will now be generated. Note that this may take up to 5-10 minutes. Furthermore, there will be no immediate feedback in the CLI nor on the Ledger.
8. `monero-wallet-cli` will start refreshing. Wait until it has fully refreshed.
Congratulations, you can now use your Ledger Monero wallet in conjunction with the CLI.
### 4. A few final notes
1. We'd strongly advise to test the full process first. That is, send a small amount to the wallet and subsequently restore it (using aforementioned guide) to verify that you can recover the wallet. Note that, upon recreating / restoring the wallet, you ought to append the `--restore-height` flag (with a block height before the height of your first transaction to the wallet) to the command in step 3 (Windows), step 5 (Mac OS X), or step 3 (Linux). More information about the restore height and how to approximate it can be found [here](https://monero.stackexchange.com/questions/7581/what-is-the-relevance-of-the-restore-height).
2. If you use a remote node, append the `--daemon-address host:port` flag to the command in step 3 (Windows), step 5 (Mac OS X), or step 3 (Linux).
3. If desired, you can manually tweak the `--subaddress-lookahead` value. The first value is the number of accounts and the second value is the number of subaddresses per account. Thus, if you, for instance, want to pregenerate 5 accounts with 100 subaddresses each, use `--subaddress-lookahead 5:100`. Bear in mind that, the more subaddresses you pregenerate, the longer it takes for the Ledger to create your wallet.
4. You only have to use the `--generate-from-device` flag once (i.e. upon wallet creation). Thereafter, you'd basically use it similar to how you normally use the CLI. That is:
1. Make sure your Ledger is plugged in and the Monero app is running.
2. Open `monero-wallet-cli`.
3. Enter the wallet name of your Ledger Monero wallet.
4. Enter the password to open the wallet.
If the Ledger wallet files are not in the same directory as `monero-wallet-cli`, you ought to open `monero-wallet-cli` with the `--wallet-file /path/to/wallet.keys/file` flag. Alternatively, you can copy the Ledger wallet files to the same directory as `monero-wallet-cli`.
5. If you have any further questions or need assistance, please leave a comment to the original [StackExchange](https://monero.stackexchange.com/questions/8503/how-do-i-generate-a-ledger-monero-wallet-with-the-cli-monero-wallet-cli) answer.
Author: dEBRUYNE
Secondary scribe: el00ruobuob

View file

@ -0,0 +1,115 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
# Selecting a pool
There are many pools to choose from, a list is available at
[moneropools.com](https://moneropools.com). Mining on a larger pool could mean
more frequent payouts, but mining on a smaller pool helps to keep the network
decentralized.
# Selecting a CPU miner
Just like pools, there are a lot of miners to choose from. The one that you
should pick depends on the hardware you want to mine on. This guide will only
use a CPU miner, and will be using
[xmr-stak-cpu](https://github.com/fireice-uk/xmr-stak-cpu). Alternatives include
[wolf's CPUMiner](https://github.com/wolf9466/cpuminer-multi) and
[sgminer-gm](https://github.com/genesismining/sgminer-gm). However, their
configuration is slightly different and will not be covered in this guide.
## For Windows Systems
If you are using a Windows system, the developer of xmr-stak-cpu provides
binaries to download on the
[GitHub release page](https://github.com/fireice-uk/xmr-stak-cpu/releases).
Download `xmr-stak-cpu-win64.zip` and extract it somewhere you'll be able to
find it again.
## For Other Operating Systems
If you're not using Windows, you will have to compile xmr-stak-cpu for yourself,
luckily this isn't as hard as it sounds. Before you can compile the miner, you
will need to install some of its prerequisites.
For Debian-based distros:
sudo apt-get install libmicrohttpd-dev libssl-dev cmake build-essential
For Red Hat based distros:
sudo yum install openssl-devel cmake gcc-c++ libmicrohttpd-devel
<!-- TODO: Add dependencies for other operating systems? -->
Following this, you just need to use cmake to generate the build files, run
make and copy the config file:
mkdir build-$(gcc -dumpmachine)
cd $_
cmake ../
make -j$(nproc)
cp ../config.txt bin/
cd bin
Don't celebrate just yet, as the miner needs to be configured. Running the miner
now should give you a block of text to copy and paste:
![image1](png/mine_to_pool/1.png)
Open `config.txt` and *replace* the two `"cpu_threads_conf"` lines with the text
you just copied. It should look something like this afterwards:
![image2](png/mine_to_pool/2.png)
Scroll down in the file until you see the lines containing `"pool_address"`.
*Replace* the contents of the second set of quotes with the address and port of
the pool you chose earlier. You can find this information on the pool's website.
Put your wallet address between the quotes on the wallet address. You may leave
the password blank unless the pool specifies otherwise.
After this, your config should look something like this:
![image3](png/mine_to_pool/3.png)
# Running the miner
**Save the config** file and run the miner!
![image4](png/mine_to_pool/4.png)
Some pools allow you to monitor your hashrate by pasting your address into their
website. You can also monitor your hashrate by pressing the `h` key.
# Tuning the miner
You might see nasty messages like this:
[2017-07-09 12:04:02] : MEMORY ALLOC FAILED: mmap failed
This means that you can get around a 20% hashrate boost by enabling large pages.
## Large pages on Linux
Firstly stop the miner (if it's running), run the following commands to enable
large pages and then start the miner as root:
sudo sysctl -w vm.nr_hugepages=128
sudo ./xmr-stak-cpu
## Large pages on Windows
Taken from `config.txt`:
>By default we will try to allocate large pages. This means you need to "Run As Administrator" on Windows
You need to edit your system's group policies to enable locking large pages. Here are the steps from MSDN
1. On the Start menu, click Run. In the Open box, type gpedit.msc.
2. On the Local Group Policy Editor console, expand Computer Configuration, and then expand Windows Settings.
3. Expand Security Settings, and then expand Local Policies.
4. Select the User Rights Assignment folder.
5. The policies will be displayed in the details pane.
6. In the pane, double-click Lock pages in memory.
7. In the Local Security Setting Lock pages in memory dialog box, click Add User or Group.
8. In the Select Users, Service Accounts, or Groups dialog box, add an account that you will run the miner on
9. Reboot for change to take effect.

View file

@ -0,0 +1,38 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
## Introduction
This guide is two fold, ease of use for mining on Linux distributions and some extra security around mining as most of these miners have not had security auditing.
At the end of this guide you will be able to sleep a little easier knowing that if the miner gets exploited it will not migrate to your OS.
### Why Docker
[Docker](https://www.docker.com/) is being used as it is the most well known and has the biggest chance to be already installed.
The container I am using is [alpine-xmrig](https://hub.docker.com/r/bitnn/alpine-xmrig/) as per the name it is built on the [Alpine Linux](https://www.alpinelinux.org/) image.
If you are interested in getting started with Docker, here are some really good starting references.
* Arch Linux Wiki [Docker Page](https://wiki.archlinux.org/index.php/Docker)
* Container Solutions [Security Cheat Sheet](http://container-solutions.com/content/uploads/2015/06/15.06.15_DockerCheatSheet_A2.pdf)
* Digital Oceans [Dockerfile Howto](https://www.digitalocean.com/community/tutorials/docker-explained-using-dockerfiles-to-automate-building-of-images).
For distribution specific installation please refer to the [Docker Docs](https://docs.docker.com/engine/installation/) website.
### Why XMRig
[XMRig](https://github.com/xmrig/xmrig) is just a really solid miner to me. Nice output and statistics, no flashy web-ui's or dependencies. The XMRig container is only ~4MB what makes it extremely portable.
#### Step 1: Mining with XMRig
Run the following
```bash
# docker run --restart unless-stopped --read-only -m 50M -c 512 bitnn/alpine-xmrig -o POOL01 -o POOL02 -u WALLET -p PASSWORD -k
# docker run --restart unless-stopped --read-only -m 50M -c 512 bitnn/alpine-xmrig -o pool.supportxmr.com:7777 -u 45CJVagd6WwQAQfAkS91EHiTyfVaJn12uM4Su8iz6S2SHZ3QthmFM9BSPHVZY388ASWx8G9Wbz4BA24RQZUpGczb35fnnJz -p docker:secret -k
```
#### Step 2: There is no Step 2
You have already done everything you need to do. You are now mining in a docker container with XMRig `ctrl+c` to exit the miner or add `-d` just after `docker run` to background the miner.

View file

@ -0,0 +1,147 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
# monero-wallet-cli
`monero-wallet-cli` is the wallet software that ships with the Monero tree. It is a console program,
and manages an account. While a bitcoin wallet manages both an account and the blockchain,
Monero separates these: `monerod` handles the blockchain, and `monero-wallet-cli` handles the account.
This guide will show how to perform various operations from the `monero-wallet-cli` UI. The guide assumes you are using the most recent version of Monero and have already created an account according to the other guides.
## Checking your balance
Since the blockchain handling and the wallet are separate programs, many uses of `monero-wallet-cli`
need to work with the daemon. This includes looking for incoming transactions to your address.
Once you are running both `monero-wallet-cli` and `monerod`, enter `balance`.
Example:
This will pull blocks from the daemon the wallet did not yet see, and update your balance
to match. This process will normally be done in the background every minute or so. To see the
balance without refreshing:
balance
Balance: 64.526198850000, unlocked balance: 44.526198850000, including unlocked dust: 0.006198850000
In this example, `Balance` is your total balance. The `unlocked balance` is the amount currently available to spend. Newly received transactions require 10 confirmations on the blockchain before being unlocked. `unlocked dust` refers to very small amounts of unspent outputs that may have accumulated in your account.
## Sending monero
You will need the standard address you want to send to (a long string starting with '4'), and
possibly a payment ID, if the receiving party requires one. In that latter case, that party
may instead give you an integrated address, which is both of these packed into a single address.
### Sending to a standard address:
transfer ADDRESS AMOUNT PAYMENTID
Replace `ADDRESS` with the address you want to send to, `AMOUNT` with how many monero you want to send,
and `PAYMENTID` with the payment ID you were given. Payment ID's are optional. If the receiving party doesn't need one, just
omit it.
### Sending to an integrated address:
transfer ADDRESS AMOUNT
The payment ID is implicit in the integrated address in that case.
### Specify the number of outputs for a transaction:
transfer RINGSIZE ADDRESS AMOUNT
Replace `RINGSIZE` with the number of outputs you wish to use. **If not specified, the default is 7.** It's a good idea to use the default, but you can increase the number if you want to include more outputs. The higher the number, the larger the transaction, and higher fees are needed.
## Receiving monero
If you have your own Monero address, you just need to give your standard address to someone.
You can find out your address with:
address
Since Monero is anonymous, you won't see the origin address the funds you receive came from. If you
want to know, for instance to credit a particular customer, you'll have to tell the sender to use
a payment ID, which is an arbitrary optional tag which gets attached to a transaction. To make life
easier, you can generate an address that already includes a random payment ID:
integrated_address
This will generate a random payment ID, and give you the address that includes your own account
and that payment ID. If you want to select a particular payment ID, you can do that too:
integrated_address 12346780abcdef00
Payments made to an integrated address generated from your account will go to your account,
with that payment id attached, so you can tell payments apart.
## Proving to a third party you paid someone
If you pay a merchant, and the merchant claims to not have received the funds, you may need
to prove to a third party you did send the funds - or even to the merchant, if it is a honest
mistake. Monero is private, so you can't just point to your transaction in the blockchain,
as you can't tell who sent it, and who received it. However, by supplying the per-transaction
private key to a party, that party can tell whether that transaction sent monero to that
particular address. Note that storing these per-transaction keys is disabled by default, and
you will have to enable it before sending, if you think you may need it:
set store-tx-info 1
You can retrieve the tx key from an earlier transaction:
get_tx_key 1234567890123456789012345678901212345678901234567890123456789012
Pass in the transaction ID you want the key for. Remember that a payment might have been
split in more than one transaction, so you may need several keys. You can then send that key,
or these keys, to whoever you want to provide proof of your transaction, along with the
transaction id and the address you sent to. Note that this third party, if knowing your
own address, will be able to see how much change was returned to you as well.
If you are the third party (that is, someone wants to prove to you that they sent monero
to an address), then you can check this way:
check_tx_key TXID TXKEY ADDRESS
Replace `TXID`, `TXKEY` and `ADDRESS` with the transaction ID, per-transaction key, and destination
address which were supplied to you, respectively. monero-wallet-cli will check that transaction
and let you know how much monero this transaction paid to the given address.
## Getting a chance to confirm/cancel payments
If you want to get a last chance confirmation when sending a payment:
set always-confirm-transfers 1
## How to find a payment to you
If you received a payment using a particular payment ID, you can look it up:
payments PAYMENTID
You can give more than one payment ID too.
More generally, you can review incoming and outgoing payments:
show_transfers
You can give an optional height to list only recent transactions, and request
only incoming or outgoing transactions. For example,
show_transfers in 650000
will only show incoming transfers after block 650000. You can also give a height
range.
If you want to mine, you can do so from the wallet:
start_mining 2
This will start mining on the daemon usin two threads. Note that this is solo mining,
and may take a while before you find a block. To stop mining:
stop_mining

View file

@ -0,0 +1,19 @@
{% assign version = '1.1.0' | split: '.' %}
{% include disclaimer.html translated="false" version=page.version %}
# Monero tools
These tools can be used to gain information about the Monero network or your transaction data in the blockchain.
### [Check that a recipient has received your funds](http://xmrtests.llcoins.net/checktx.html)
### [Tools for monero address generation](https://xmr.llcoins.net/)
### [Monero node count](http://moneronodes.i2p.xyz/)
### [Monero node map](https://monerohash.com/nodes-distribution.html)
### [Monero offline wallet generator](http://moneroaddress.org/)
### [Monero network statistics](http://moneroblocks.info/stats)
### [Monero.how statistics](https://www.monero.how/)

Binary file not shown.

After

Width:  |  Height:  |  Size: 215 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 191 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 237 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Some files were not shown because too many files have changed in this diff Show more