monero_is_cash:Monero is cash for a connected world. It’s fast, private, and secure. With Monero, you are your own bank. You can spend safely, knowing that others cannot see your balances or track your activity.
get_started:Get Started
why_monero_is_different:Why Monero is different
monero_is_secure:Monero is secure
monero_is_secure_para:Monero is a decentralized cryptocurrency, meaning it is secure digital cash operated by a network of users. Transactions are confirmed by distributed consensus and then immutably recorded on the blockchain. Third-parties do not need to be trusted to keep your Monero safe.
monero_is_private:Monero is private
monero_is_private_para:Monero uses ring signatures, ring confidential transactions, and stealth addresses to obfuscate the origins, amounts, and destinations of all transactions. Monero provides all the benefits of a decentralized cryptocurrency, without any of the typical privacy concessions.
monero_is_untraceable:Monero is untraceable
monero_is_untraceable_para:Sending and receiving addresses as well as transacted amounts are obfuscated by default. Transactions on the Monero blockchain cannot be linked to a particular user or real-world identity.
monero_is_fungible:Monero is fungible
monero_is_fungible_para1:Monero is
monero_is_fungible_para2:fungible
monero_is_fungible_para3:because it is private by default. Units of Monero cannot be blacklisted by vendors or exchanges due to their association in previous transactions.
downloads:Downloads
downloads_windows:Monero for Windows
downloads_mac:Monero for Mac
downloads_linux:Monero for Linux
downloads_blockchain:Latest Blockchain
different_system:Need it for a different operating system?
view_all_downloads:View all available downloads here.
latest_news:Latest News
more_news:More news
moneropedia:Moneropedia
moneropedia_para:Would you like to look up the meanings of the terms and concepts used in Monero? Here you will find an alphabetical guide to terms and their meanings from both the Monero and Kovri projects.
moneropedia_button:Read Moneropedia
user_guides:User Guides
user_guides_para:Step-by-step guides to all things Monero are separated by category and cover everything from creating a wallet to supporting the network, and even how to edit this website.
user_guides_button:Read user guides
faq:FAQ
faq_para:We've heard a lot of questions over the years and have compiled, for your convenience, a thorough and varied FAQ. Don't worry, if your questions are not on here, you can always ask the community.
faq_button:Read answers
hangouts:
intro:The Monero community is diverse and varied. We come from all over, but we definitely have some places we like to hang out together. You'll find most of them below. Join us!
resources:Workgroup Resources
resources_para:In an effort to support organic workgroups, Monero has several resources that the community can use to meet and plan projects. Mattermost even has relays into the most popular Monero-related IRC channels.
irc:IRC Channels
irc_para:The Monero community utilizes a lot of IRC channels that each serve different purposes. Some to work, and some just to hang out. You'll find the more popular ones below.
description:This channel is used to discuss all things Kovri related.
- channel:kovri-dev
description:The many contributors and developers come here to discuss Kovri dev-y things.
merchants:
intro1:Merchants of all kinds have come to value the financial privacy that Monero brings. Below is a list of the merchants that we know of that currently accept Monero for their goods and services. If a company no longer accepts Monero or you would like your business to be listed, please
"Please note: these links are being provided as a convenience and for informational purposes only; they do not constitute an endorsement by the Monero community of any products, services or opinions of the corporations or organizations or individuals listed. The Monero community bears no responsibility for the accuracy, legality, or content of these external sites. Contact the external site for answers to questions regarding its content. As always, caveat emptor ('buyer beware'); you are responsible for doing your own research. Always use judgement when making online purchases."
sponsorships:
intro:The following businesses have supported the Monero Project in its goal to bring financial privacy to the world. We couldn't be more grateful for their contributions. If you would like to sponsor the Monero Project and be listed on this page, please send an email to dev@getmonero.org.
team:
core:Core
developers:Developers
developers_para1:The Monero Project has had well over 500 contributors over the life of the project. For a complete list, please see the
developers_para2:OpenHub contributors page.
developers_para3:Below you'll find some individuals that have gone above and beyond for Monero.
blockchain1:If you'd prefer to use a raw blockchain instead of syncing from scratch, you can use the most current bootstrap. It is typically much faster to sync from scratch, however, and it also takes a lot less RAM.
gui_intro:The GUI wallet provides a nice user interface, adaptable to all kinds of users, but it is especially recommended for less technical people who want to quickly send and receive XMR.
simplemode1:Created for less technical users who only want to use Monero in the easiest and quickest way possible. Open the wallet, automatically connect to a @remote-node, send/receive XMR, done!
cli_intro:The CLI wallet gives you the total control over your Monero node and funds. Highly customizable and includes various analysis tools, as well as an HTTP RPC and 0MQ interface.
yesissuesgui:Release 0.15.0.4 (Linux) was accidentally compiled without Trezor support. Thus, Trezor Monero users on Linux are recommend to wait until next release (0.15.0.5) or compile the GUI by themselves
helpsupport1:"A guide with an explanation of every section of the wallet is available:"
helpsupport2:"See latest release"
gui_helpsupport:"If you are experiencing issues or you need more info, feel free to reach out to the community. You can find the GUI team at #monero-gui, or else check out the Hangouts page for a more complete list of contacts and chatrooms"
cli_helpsupport:"If you are experiencing issues or you need more info, feel free to reach out to the community. You can find the CLI team at #monero or #monero-dev, or else check out the Hangouts page for a more complete list of contacts and chatrooms"
localremote:Local or remote node
localremote1:Use your own copy of the blockchain or a publicly available one
bootstrapnode1:Use a @remote-node while downloading the blockchain locally, this will allow you to use Monero immediately and switch to your local node once it's completely synced
payforrpc1:A new feature that allows node operators to get rewarded when their node is used
verify:Verify
verify1:You are strongly advised to verify the hashes of the archive you downloaded. This will confirm that the files you downloaded perfectly match the files uploaded by the Monero development workgroup. Please don't underestimate this step, a corrupted archive could result in lost funds.
mobilelight1:The following are mobile or light wallets that are deemed safe by respected members of the community. If there is a wallet that is not on here, you can request the community check it out. Go to our
kovri:The Kovri project uses end-to-end encryption so that neither the sender nor receiver of a Monero transaction need to reveal their IP address to the other side or to third-party observers (the blockchain). This is done using the same technology that powers the dark net, i2p (Invisible Internet Protocol). The project is currently in heavy, active development and is not yet integrated with Monero.
kovri_button:Visit Kovri Website
openalias:The OpenAlias project simplifies cryptocurrency payments by providing FQDNs (Fully Qualified Domain Names, i.e. example.openalias.org) for Monero wallet addresses in a way that ensures everyone's privacy is secure. The project is well underway and has already been implemented in many Monero wallets.
openalias_button:Visit OpenAlias Website
press-kit:
intro1:Here you'll find the Monero symbol and logo below. You can choose any size that you want, or download the .ai file to mess with the logo yourself.
intro2:Note that the white background options have a white background under the Monero symbol ONLY, not as a background to the whole image.
intro3:Lastly, you can download everything on this page in one zip file by clicking
A quick and easy to read document to know everything about Monero:history, key differentiating factors, technical fundamentals, and features in development.<br>
gui1:"Accepting a payment with the GUI is very easy. Doesn't matter if you are a merchant or an user, you will have two pages available: Receive and Merchants."
gui2:The receive page (shown below) is explained in every detail
To receive XMR you only need to provide the payer with an @address where they can send funds to. Most of the time it's easier to just share a QR code and let the payer scan it, instead of copy-pasting the alphanumeric string.
With the GUI every generated address come with its QR code. Make the person scan the QR code with the Monero @wallet on their phone and receive your XMR in minutes.
Remember you can generate as many addresses (subaddresses) as you want. This is useful if you want to keep funds separated for any reason.
guimerchant:Merchants will probably find more convenient to use the 'Merchant' page (screenshot below), which is explained in detail in the 'Merchant view' section of
you will see the payments while they arrive in real time in your wallet, along with the number of confirmations.
guisteps:"These two pages give everybody the possibility to easily receive XMR following these steps:"
guiol:"Go to the 'Receive' page and create/select the address where you want to receive your coins."
guiol1:Share the address composed by letters and numbers to the person you want to receive coins from. You probably prefer to use the more user friendly QR code.
guiol2:"If you want to specify the amount to receive, got to the 'Merchant' page (after you selected in the 'Receive' page the @account that will be used to receive XMR)."
guiol3:"Insert the amount to receive, then share with the payer the payment URL or the QR code. If you want to track the payment in real time, tick the 'enable sales tracker' option."
guiol4:Wait until the payment is arrived and has enough confirmations (The more confirmations, the safer the transaction is. You need at least 10 confirmations before you can spend the funds.).
When you create your wallet for the first time, an @address will be automatically shown to you. That's your primary address.
If you want, you can simply use that address to receive payments. You should be concerned about who knows about this address (since one address in different locations can be associated),
but you do not need to worry about blockchain observers watching transactions to this address like with Bitcoin. A friend can send transactions to the same address without reduced privacy.
useful if you want to control multiple accounts. For example, you may want to have an @account for receiving donations and another one for your daily use.
That will allow you to easily monitor incoming funds to your 'donations' account, without mixing it with your primary account.
clicreateaccount:"To create an account, simply run this command:"
clicreateaccount1:Now you have another account separated from your primary one. You can switch anytime between accounts.
you can do so by giving your CLI this command `account switch 1`. Now you are sitting on your 'Donations' account and you can start using it right away.
The CLI offer more capillary ways to handle accounts and the wallet in general. Use the command 'help' to list all the available options.
merchantstitle:Instructions for merchants
merchantsreceive:If you are a business and you wish to programmatically receive @transactions or use advanced features like multisignature, it's suggested to consult the
merchdevguides:developer guides
merchantsreceive1:"If you need support, the community will always be happy to help. Come chat on #monero, the chatroom is on Freenode, but also relayed on MatterMost and Matrix."
merchantsint:"If you prefer to not directly deal with the wallets, you can use a third party payment system. Members of the monero community has created a set of integrations for various platform and languages. You can find more info on"
merchantsintlink:the GitHub organization
merchantsthirdp:If you are looking for other third party integration system, there is a list of payment gateways on
merchthirdlink:the merchant page
merchantsthirdp1:Some of those offer nice features like the possibility to automatically convert part of your income in fiat money or to accept other cryptocurrencies along with Monero.
intro:Monero is an open-source, community-driven project. Described below are several ways to support the project.
network:Support the Network
develop:Develop
develop_para1:Monero is primarily written in C++. As it is a decentralized project, anyone is welcome to add or make changes to existing code. Pull requests are merged based on community consensus. See the
develop_para2:repositories
develop_para3:and outstanding
develop_para4:issues.
full-node:Run a Full Node
full-node_para:Run monerod with port 18080 open. Running a full node ensures maximum privacy when transacting with Monero. It also improves distribution of the blockchain to new users.
mine:Mine
mine_para1:Mining ensures the Monero network remains decentralized and secure. In the Monero graphical user interface and command-line interface, background mining may be activated. Additional resources for mining may be viewed
ffs_para3:whereby projects are proposed for development and community-funded. Funding is held in escrow and remunerated to developers once programming milestones are achieved. Anyone may generate new proposals or fund existing ones.
donate:Donate
donate_para1:Ongoing development is supported by donations and
donate_para2:sponsorships.
donate-xmr:Donating Monero
donate-xmr_para:Donations may be sent to
or:or
donate-btc:Donating Bitcoin
donate-btc_para:Donations may be sent to
donate-other:Other
donate-other_para1:E-mail
donate-other_para2:for alternative means of donating or if you would like to become a sponsor for the Monero Project.
intro:List of common questions with relative answers and resources
toc:Table Of Contents
general:General
advanced:Advanced
nodeandwallet:Node and Wallet
additional:"More Info:"
resandhelp:Resources & Help
stackexchange:One of the most complete resources about Monero. If you have a question which is not in this FAQ, you will likely find the answer on the Monero StackExchange.
userguides:A collection of documents to help users interact with the Monero network and its components.
devguides:Guides and resources for developers.
monerosupport:The subreddit dedicated to help monero users. Basically community members helping each others. Use the search option.
monerohow:"Old and known resources with a good number of guides and howto's"
qword:"What's the meaning of [technical word]?"
aword:"The terminology used in Monero can be quite complex, for this reason we have the"
aword1:"A comprehensive list of terms that you often see and their explanation. If you don't know what a world means or you would like to have more info about it, just visit the Moneropedia. Some example of often searched terms are: @node, @fungibility, @view-key, @pruning."
qcontribute:How can I contribute?
acontribute:"Monero is an open source community project. Meaning that there is no company who runs it and there is no CEO who hires people. Everything is built by volunteers or community-funded contributors who dedicate their time to the project. There are many ways to contribute:"
acontribute1:Translations. It's easy and anybody speaking a language beside English can help. Translations happen mostly on
acontribute2:"Contact a Workgroup. Almost everything in Monero is managed by workgroups, which are groups of contributors (often lead by a coordinator) working on some specific aspect of the development. Some examples are: the localization workgroup (translations), the community workgroup, the GUI workgroup, the Outreach workgroup and so on. Workgroups are mostly independent and have their own structure. Contact the workgroup that interests you and ask how you can help. for a list of contacts see the"
acontribute3:Do what you can do best. Are you a designer? create Monero related images and spread them around. Are you a writer? Write about Monero. The only limit is your imagination. Find what you like to do and do it for Monero!
acontribute4:"The Outreach workgroup wrote a useful article to help newcomers:"
a1:Monero has value because people are willing to buy it. If no one is willing to buy Monero, then it will not have any value. Monero’s price increases if demand exceeds supply, and it decreases if supply exceeds demand.
a2:You can buy Monero from an exchange or from an individual. Alternatively, you can try mining Monero to get coins from the @block reward.
q3:Why is the Mnemonic Seed important?
a3:A @mnemonic-seed is a set of 25 words that can be used to restore your account anywhere. Keep these words safe and do not share them with someone else. You can use this seed to restore your account, even if your computer crashes.
a4:"Monero uses three different privacy technologies: @ring-signatures, ring confidential transactions (@RingCT), and @stealth-addresses. These hide the sender, amount, and receiver in the @transaction, respectively. All transactions on the network are private by mandate; there is no way to accidentally send a transparent transaction. This feature is exclusive to Monero. You do not need to trust anyone else with your privacy."
a5:If you are running a full @node locally, you need to copy the entire @blockchain to your computer. This can take a long time, especially on an old hard drive or slow internet connection. If you are using a @remote-node, your computer still needs to request a copy of all the outputs, which can take several hours. Be patient, and if you would like to sacrifice some privacy for faster sync times, consider using a remote node or lightweight @wallet instead.
q6:What is the difference between a lightweight and a normal wallet?
a6:For a lightweight wallet, you give your view key to a node, who scans the blockchain and looks for incoming transactions to your account on your behalf. This node will know when you receive money, but it will not know how much you receive, who you received it from, or who you are sending money to. Depending on your wallet software, you may be able to use a node you control to avoid privacy leaks. For more privacy, use a normal wallet, which can be used with your own node.
a7:Monero is not based on Bitcoin. It is based on the CryptoNote protocol. Bitcoin is a completely transparent system, where people can see exactly how much money is being sent from one user to another. Monero hides this information to protect user privacy in all transactions. It also has a dynamic @block size and dynamic fees, an ASIC-resistant proof of work (RandomX), and a @tail-emission, among several other changes.
a8:No,Monero does not have a hard @block size limit. Instead, the block size can increase or decrease over time based on demand. It is capped at a certain growth rate to prevent outrageous growth (@scalability).
a11:"@Fungibility is a simple property of money such that there are no differences between two amounts of the same value. If two people exchanged a 10 and two 5’s, then no one would lose out. However, let’s suppose that everyone knows the 10 was previously used in a ransomware attack. Is the other person still going to make the trade? Probably not, even if the person with the 10 has no connection with the ransomware. This is a problem, since the receiver of money needs to constantly check the money they are receiving to not end up with tainted coins. Monero is fungible, which means people do not need to go through this effort."
a12-1:In Monero, every @transaction output is uniquely associated with a key image that can only be generated by the holder of that output. Key images that are used more than once are rejected by the miners as double-spends and cannot be added to a valid @block. When a new transaction is received, miners verify that the key image does not already exist for a previous transaction to ensure it's not a double-spend.
a12-2:We can also know that transaction amounts are valid even though the value of the inputs that you are spending and the value of the outputs you are sending are encrypted (these are hidden to everyone except the recipient). Because the amounts are encrypted using @Pedersen-commitments what this means is that no observers can tell the amounts of the inputs and outputs, but they can do math on the Pedersen commitments to determine that no Monero was created out of thin air.
a12-3:As long as the encrypted output amounts you create is equal to the sum of the inputs that are being spent (which include an output for the recipient and a change output back to yourself and the unencrypted transaction fee), then you have a legitimate transaction and know no Monero is being created out of thin air. Pedersen commitments mean that the sums can be verified as being equal, but the Monero value of each of the sums and the Monero value of the inputs and outputs individually are undeterminable.
a13:Monero is not magic. If you use Monero but give your name and address to another party, the other party will not magically forget your name and address. If you give out your secret keys, others will know what you've done. If you get compromised, others will be able to keylog you. If you use a weak password, others will be able to brute force your keys file. If you backup your seed in the cloud, you'll be poorer soon.
a14:There is no such thing as 100% anonymous. If nothing else, your anonymity set is the set of people using Monero. Some people don't use Monero. Monero may also have bugs. Even if not, ways may exist to infer some information through Monero's privacy layers, either now or later. Attacks only get better. If you wear a seatbelt, you can still die in a car crash. Use common sense, prudence and defense in depth.
a15:No. Monero uses a completely non-interactive, non-custodial, and automatic process to create private transactions. By contrast for mixing services, users opt-in to participate.
awallet:There are multiple wallets available for a vast number of platforms. On this website you'll find the wallets released by the Core Team (GUI and CLI) and a list of widely trusted and open source third party wallets for desktop and mobile.
qnofunds:I can't see my funds. Did I just lose all my Monero?
anofunds:"You probably didn't. It's very hard to simply 'lose' your coins, since they are technically nowhere. Your coins 'live' on the blockchain and are linked to your account through a system of public and private keys secured by cryptography. That's why if you don't see your funds, it's probably because of a technical issue. Take a look at the 'Resources & Help' section at the top of this page for a list of useful resources that will help you identify and fix your problem."
qnodetor:How can I connect my node via Tor?
anodetor:Support for Tor is still in its infancies, but it's already possible to natively send transactions through the network and to run a Monero daemon on the Tor network. Better Tor and I2P integrations are in progress.
qfullpruned:How do I decide if I should run a full node or a pruned node?
afullpruned:"A full @node requires a considerable amount of storage and could take a long time to download and verify the entire blockchain, especially on older hardware. If you have limited storage, a pruned node is recommended. It only stores 1/8th of unnecessary blockchain data while keeping the full transaction history. If plenty of storages is available, a full node is recommended but a pruned node still greatly contributes to the network and improves your privacy."
qblockspace:Why does the blockchain need so much space?
ablockspace:"When you download the @blockchain, you are downloading the entire history of the @transactions that happened in the Monero network since it was created. The transactions and the related data are heavy and the entire history must be kept by every node to ensure it's the same for everybody. @pruning a blockchain allows to run a node which keeps only 1/8 of not strictly necessary blockchain data. This results in a blockchain 2/3 smaller than a full one. Convenient for people with limited disk space. Check out the Moneropedia entries @node and @remote-node for more details."
qavoidbc:Can I avoid downloading the entire blockchain?
aavoidbc:"Yes. You don't need to download the @blockchain to transact on the network. You can connect to a @remote-node, which stores the blockchain for you. All the most common @wallets (including GUI and CLI) allow to use remote nodes to transact on the network. There are multiple ways to take advantage of this functionality. For example GUI and CLI offer a 'bootstrap node' feature, which allow people to download their own blockchain while using a remote node to immediately use the network. Ways to improve the usability of the Monero network are constantly being explored."
qscanned:Why my wallet needs to be scanned everytime I open it?
ascanned:Because new @transactions have been recorded on the @blockchain from the last time you opened your wallet, which needs to scan all of them to make sure non of those transaction is yours. This process is not necessary in a mymonero-style (openmonero) wallet, a central server (which could be managed by you) does this work for you.
qdangernode:Is it dangerous to run a personal node?
adangernode:"Running a personal @node is the safest way to interact with the Monero network, because you are in full control and you don't need to rely on third parties. From a general point of view running a node is not dangerous, but keep in mind that your ISP can see you are running a Monero node."
qdangerrnode:Is it dangerous to use a remote node? What's the data a node operator can get from me?
adangerrnode:"It's always advisable, especially for privacy-conscious users, to use a personal node when transacting on the network to achieve the highest rate of privacy. Some people for convenience prefer to use @remote-node which are not under their control (public nodes). The convenience of not having to deal with a personal copy of the @blockchain comes at a cost: lessened privacy. A remote node operator is able to see from what IP address a transaction comes from (even if cannot see the recipient nor the amount) and in some extreme cases, can make attacks able to reduce your privacy. Some dangers can be mitigated by using remote nodes on the Tor or I2P networks or using a VPN."
intro1:Monero is a cryptocurrency that relies on proof-of-work mining to achieve distributed consensus. Below you'll find some information and resources on how to begin mining.
intro2:The Monero Project does not endorse any particular pool, software, or hardware, and the content below is provided for informational purposes only.
pools_para1:A listing of trusted Monero pools is found
pools_para2:here.
benchmarking:Hardware Benchmarking
benchmarking_para1:See here
benchmarking_para2:for a listing of GPUs/CPUs and their respective hashrates.
software:Mining Software
software_para:Note that some miners may have developer fees.
using:
intro:Transacting with Monero can be made easy. This page is designed to guide users in that process.
learn:1. Learn
learn_para1:Monero is a secure, private, and untraceable cryptocurrency. The developers and community are committed to protecting these values. Learn more by reading the
learn_para2:What is Monero
learn_para3:page. The
learn_para4:source code
learn_para5:is also available for review and discussion.
support:2. Request Support
support_para1:There is a large and supportive community that will assist if you experience any difficulty. See the
support_para2:Hangouts
support_para3:page for more information.
generate:3. Generate a Wallet
generate_para1:A Monero wallet is required to secure your own funds. See the
generate_para2:Downloads page
generate_para3:for a listing of available wallets.
generate_para4:The easiest way to run a Monero node, without affecting your home bandwidth, is to purchase a VPS (Virtual Private Server). We strongly recommend
generate_para5:using the
generate_para6:coupon code to get a discount over and above their already cheap $6/month VPS. Using this coupon code and/or
generate_para7:our affiliate link
generate_para8:will also assist in the ongoing funding of Monero development.
acquire:4. Acquire Monero
acquire_para1:Monero may be purchased on an
acquire_para2:exchange
acquire_para3:with fiat or other cryptocurrencies. An alternate way of acquiring Monero is via
acquire_para4:mining,
acquire_para5:the computationally-complex process whereby transactions are immutably recorded on the blockchain.
send-receive:5. Send and Receive Monero
send-receive_para1:Learn how to send and receive Monero by viewing the
send-receive_para2:guide.
transact:6. Transact with Monero
transact_para1:Monero may be used to purchase many goods and services. For a listing, see the
transact_para2:Merchants page.
what-is-monero:
need-to-know:What you need to know
leading:Monero is the leading cryptocurrency with a focus on private and censorship-resistant transactions.
leading_para1:Most existing cryptocurrencies, including Bitcoin and Ethereum, have transparent blockchains, meaning that transactions are openly verifiable and traceable by anyone in the world. Furthermore, sending and receiving addresses for these transactions may potentially be linkable to a person's real-world identity.
leading_para2:Monero uses cryptography to shield sending and receiving addresses, as well as transacted amounts.
confidential:Monero transactions are confidential and untraceable.
confidential_para1:Every Monero transaction, by default, obfuscates sending and receiving addresses as well as transacted amounts. This always-on privacy means that every Monero user's activity enhances the privacy of all other users, unlike selectively transparent cryptocurrencies (e.g. Zcash).
confidential_para2:Monero is fungible. By virtue of obfuscation, Monero cannot become tainted through participation in previous transactions. This means Monero will always be accepted without the risk of censorship.
confidential_para3:The Kovri Project,
confidential_para4:currently in development
confidential_para5:", will route and encrypt transactions via I2P Invisible Internet Project nodes. This will obfuscate a transactor's IP address and provide further protection against network monitoring."
grassroots:Monero is a grassroots community attracting the world's best cryptocurrency researchers and engineering talent.
grassroots_para1:Over
grassroots_para2:500developers
grassroots_para3:have contributed to the Monero project, including 30 core developers. Forums and chat channels are welcoming and active.
grassroots_para4:Monero's Research Lab, Core Development Team and Community Developers are constantly pushing the frontier of what is possible with cryptocurrency privacy and security.
grassroots_para5:Monero is not a corporation. It is developed by cryptography and distributed systems experts from all over the world that donate their time or are funded by community donations. This means that Monero can't be shut down by any one country and is not constrained by any particular legal jurisdiction.
electronic:Monero is electronic cash that allows fast, inexpensive payments to and from anywhere in the world.
electronic_para1:There are no multi-day holding periods and no risk of fraudulent chargebacks. It is safe from ‘capital controls’ - these are measures that restrict the flow of traditional currencies, sometimes to an extreme degree, in countries experiencing economic instability.
videos:Monero Videos (English)
about:
history:A Brief History
history_para1:Monero was launched in April 2014. It was a fair, pre-announced launch of the CryptoNote reference code. There was no premine or instamine, and no portion of the block reward goes to development. See the original Bitcointalk thread
history_para2:here.
history_para3:The founder, thankful_for_today, proposed some controversial changes that the community disagreed with. A fallout ensued, and the Monero Core Team forked the project with the community following this new Core Team. This Core Team has provided oversight since.
history_para4:Monero has made several large improvements since launch. The blockchain was migrated to a different database structure to provide greater efficiency and flexibility, minimum ring signature sizes were set so that all transactions were private by mandate, and RingCT was implemented to hide the transaction amounts. Nearly all improvements have provided improvements to security or privacy, or they have facilitated use. Monero continues to develop with goals of privacy and security first, ease of use and efficiency second.
values:Our Values
values_para:Monero is more than just a technology. It’s also what the technology stands for. Some of the important guiding philosophies are listed below.
security:Security
security_para:Users must be able to trust Monero with their transactions, without risk of error or attack. Monero gives the full block reward to the miners, who are the most critical members of the network who provide this security. Transactions are cryptographically secure using the latest and most resilient encryption tools available.
privacy:Privacy
privacy_para:Monero takes privacy seriously. Monero needs to be able to protect users in a court of law and, in extreme cases, from the death penalty. This level of privacy must be completely accessible to all users, whether they are technologically competent or have no idea how Monero works. A user needs to confidently trust Monero in a way that this person does not feel pressured into changing their spending habits for risk of others finding out.
decentralization:Decentralization
decentralization_para:Monero is committed to providing the maximum amount of decentralization. With Monero, you do not have to trust anyone else on the network, and it is not run by any large group. An accessible “Proof of Work” algorithm makes it easy to mine Monero on normal computers, which makes it more difficult for someone to purchase a large amount of mining power. Nodes connect to each other with I2P to lower the risks of revealing sensitive transaction information and censorship (tba). Development decisions are extremely clear and open to public discussion. Developer meeting logs are published online in their entirety and visible by all.
daemonrpc_descr:RPC calls for the daemon. Including input, outputs and examples.
walletrpc:Wallet RPC
walletrpc_descr:monero-wallet-rpc calls. Including input, outputs and examples.
external:External resources
external_head:Useful docs and resources maintained by community members.
monerodocs:Comprehensive resource which aims to organize the technical knowledge about Monero. Some sections might be outdated.
moneroexamples:Rich list of examples and docs related to Monero development.
moneroecosystem:Community of Monero developers. Contains libraries and resources and guides of some Monero Workgroups, like the Localization Workgroup and the Outreach Workgroup.
monerose:One of the most complete resources for both users and developers.
intro:Monero is not only committed to making a fungible currency, but also to continued research into the realm of financial privacy as it involves cryptocurrencies. Below you'll find the work of our very own Monero Research Lab, with more papers to come.
mrlhtp_summary:Monero uses a unique hash function that transforms scalars into elliptic curve points. It is useful for creating key images, in particular. This document, authored by Shen Noether, translates its code implementation (the ge_fromfe_frombytes_vartime() function) into mathematical expressions.
mrl1:A Note on Chain Reactions in Traceability in CryptoNote 2.0
mrl1_abstract:This research bulletin describes a plausible attack on a ring-signature based anonymity system. We use as motivation the cryptocurrency protocol CryptoNote 2.0 ostensibly published by Nicolas van Saberhagen in 2012. It has been previously demonstrated that the untraceability obscuring a one-time key pair can be dependent upon the untraceability of all of the keys used in composing that ring signature. This allows for the possibility of chain reactions in traceability between ring signatures, causing a critical loss in untraceability across the whole network if parameters are poorly chosen and if an attacker owns a sufficient percentage of the network. The signatures are still one-time, however, and any such attack will still not necessarily violate the anonymity of users. However, such an attack could plausibly weaken the resistance CryptoNote demonstrates against blockchain analysis. This research bulletin has not undergone peer review, and reflects only the results of internal investigation.
mrl2:Counterfeiting via Merkle Tree Exploits within Virtual Currencies Employing the CryptoNote Protocol
mrl2_abstract:On4September 2014, an unusual and novel attack was executed against the Monero cryptocurrency network. This attack partitioned the network into two distinct subsets which refused to accept the legitimacy of the other subset. This had myriad effects, not all of which are yet known. The attacker had a short window of time during which a sort of counterfeiting could occur, for example. This research bulletin describes deficiencies in the CryptoNote reference code allowing for this attack, describes the solution initially put forth by Rafal Freeman from Tigusoft.pl and subsequently by the CryptoNote team, describes the current fix in the Monero code base, and elaborates upon exactly what the offending block did to the network. This research bulletin has not undergone peer review, and reflects only the results of internal investigation.
mrl3:Monero is Not That Mysterious
mrl3_abstract:Recently, there have been some vague fears about the CryptoNote source code and protocol floating around the internet based on the fact that it is a more complicated protocol than, for instance, Bitcoin. The purpose of this note is to try and clear up some misconceptions, and hopefully remove some of the mystery surrounding Monero Ring Signatures. I will start by comparing the mathematics involved in CryptoNote ring signatures (as described in [CN]) to the mathematics in [FS], on which CryptoNote is based. After this, I will compare the mathematics of the ring signature to what is actually in the CryptoNote codebase.
mrl4:Improving Obfuscation in the CryptoNote Protocol
mrl4_abstract:We identify several blockchain analysis attacks available to degrade the untraceability of the CryptoNote 2.0 protocol. We analyze possible solutions, discuss the relative merits and drawbacks to those solutions, and recommend improvements to the Monero protocol that will hopefully provide long-term resistance of the cryptocurrency against blockchain analysis. Our recommended improvements to Monero include a protocol-level network-wide minimum mix-in policy of n = 2 foreign outputs per ring signature, a protocol-level increase of this value to n = 4 after two years, and a wallet-level default value of n = 4 in the interim. We also recommend a torrent-style method of sending Monero output. We also discuss a non-uniform, age-dependent mix-in selection method to mitigate the other forms of blockchain analysis identified herein, but we make no formal recommendations on implementation for a variety of reasons. The ramifications following these improvements are also discussed in some detail. This research bulletin has not undergone peer review, and reflects only the results of internal investigation.
mrl5:Ring Signature Confidential Transactions
mrl5_abstract:This article introduces a method of hiding transaction amounts in the strongly decentralized anonymous cryptocurrency Monero. Similar to Bitcoin, Monero is a cryptocurrency which is distributed through a proof of work “mining” process. The original Monero protocol was based on CryptoNote, which uses ring signatures and one-time keys to hide the destination and origin of transactions. Recently the technique of using a commitment scheme to hide the amount of a transaction has been discussed and implemented by Bitcoin Core Developer Gregory Maxwell. In this article, a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature is described which allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation. Some extensions of the protocol are provided, such as Aggregate Schnorr Range Proofs, and Ring Multisignature. The author would like to note that early drafts of this were publicized in the Monero Community and on the bitcoin research irc channel. Blockchain hashed drafts are available in [14] showing that this work was started in Summer 2015, and completed in early October 2015. An eprint is also available at http://eprint.iacr.org/2015/1098.
mrl6_abstract:Users of the Monero cryptocurrency who wish to reuse wallet addresses in an unlinkable way must maintain separate wallets, which necessitates scanning incoming transactions for each one. We document a new address scheme that allows a user to maintain a single master wallet address and generate an arbitary number of unlinkable subaddresses. Each transaction needs to be scanned only once to determine if it is destinated for any of the user’s subaddresses. The scheme additionally supports multiple outputs to other subaddresses, and is as efficient as traditional wallet transactions.
mrl7:Sets of Spent Outputs
mrl7_abstract:This technical note generalizes the concept of spend outputs using basic set theory. The definition captures a variety of earlier work on identifying such outputs. We quantify the effects of this analysis on the Monero blockchain and give a brief overview of mitigations.
mrl8:Dual Linkable Ring Signatures
mrl8_abstract:This bulletin describes a modification to Monero's linkable ring signature scheme that permits dual-key outputs as ring members. Key images are tied to both output one-time public keys in a dual, preventing both keys in that transaction from being spent separately. This method has applications to non-interactive refund transactions. We discuss the security implications of the scheme.
mrl9:Thring Signatures and their Applications to Spender-Ambiguous Digital Currencies
mrl9_abstract:We present threshold ring multi-signatures (thring signatures) for collaborative computation of ring signatures, present a game of existential forgery for thring signatures, and discuss uses of thring signatures in digital currencies that include spender-ambiguous cross-chain atomic swaps for confidential amounts without a trusted setup. We present an implementation of thring signatures that we call linkable spontaneous threshold anonymous group signatures, and prove the implementation existentially unforgeable.
mrl10:Discrete Logarithm Equality Across Groups
mrl10_abstract:This technical note describes an algorithm used to prove knowledge of the same discrete logarithm across different groups. The scheme expresses the common value as a scalar representation of bits, and uses a set of ring signatures to prove each bit is a valid value that is the same (up to an equivalence) across both scalar groups.
iacr2019654:Concise Linkable Ring Signatures and Forgery Against Adversarial Keys
iacr2019654_abstract:We demonstrate that a version of non-slanderability is a natural definition of unforgeability for linkable ring signatures. We present a linkable ring signature construction with concise signatures and multi-dimensional keys that is linkably anonymous if a variation of the decisional Diffie-Hellman problem with random oracles is hard, linkable if key aggregation is a one-way function, and non-slanderable if a one-more variation of the discrete logarithm problem is hard. We remark on some applications in signer-ambiguous confidential transaction models without trusted setup.
iacr2020018:"Triptych: logarithmic-sized linkable ring signatures with applications"
iacr2020018_abstract:Ring signatures are a common construction used to provide signer ambiguity among a non-interactive set of public keys specified at the time of signing. Unlike early approaches where signature size is linear in the size of the signer anonymity set, current optimal solutions either require centralized trusted setups or produce signatures logarithmic in size. However, few also provide linkability, a property used to determine whether the signer of a message has signed any previous message, possibly with restrictions on the anonymity set choice. Here we introduce Triptych, a family of linkable ring signatures without trusted setup that is based on generalizations of zero-knowledge proofs of knowledge of commitment openings to zero. We demonstrate applications of Triptych in signer-ambiguous transaction protocols by extending the construction to openings of parallel commitments in independent anonymity sets. Signatures are logarithmic in the anonymity set size and, while verification complexity is linear, collections of proofs can be efficiently verified in batches. We show that for anonymity set sizes practical for use in distributed protocols, Triptych offers competitive performance with a straightforward construction.
iacr2020312:"Triptych-2: efficient proofs for confidential transactions"
iacr2020312_abstract:Confidential transactions are used in distributed digital assets to demonstrate the balance of values hidden in commitments, while retaining signer ambiguity. Previous work describes a signer-ambiguous proof of knowledge of the opening of commitments to zero at the same index across multiple public commitment sets and the evaluation of a verifiable random function used as a linking tag, and uses this to build a linkable ring signature called Triptych that can be used as a building block for a confidential transaction model. In this work, we extend Triptych to build Triptych-2, a proving system that proves knowledge of openings of multiple commitments to zero within a single set, correct construction of a verifiable random function evaluated at each opening, and value balance across a separate list of commitments within a single proof. While soundness depends on a novel dual discrete-logarithm hardness assumption, we use data from the Monero blockchain to show that Triptych-2 can be used in a confidential transaction model to provide faster total batch verification time than other state-of-the-art constructions without a trusted setup.
cryptonote-whitepaper_para:This is the original cryptonote paper written by the cryptonote team. Reading it will give an understanding about how the cryptonote algorithm works in general.
annotated:Annotated Whitepaper
annotated_para:The Monero Research Lab released an annotated version of the cryptonote whitepaper. This is sort of like an informal review of the claims that are made line-by-line of the whitepaper. It also explains some of the harder concepts in relatively easy to understand terms.
brandon:Brandon Goodell's Whitepaper Review
brandon_para:This paper is a formal review of the original cryptonote paper by MRL researcher Brandon Goodell. He takes an in-depth look at the claims and mathematics presented in the cryptonote paper.
pow:Monero uses RandomX, an ASIC-resistant and CPU-friendly POW algorithm created by Monero community members, designed to make the use of mining-specific hardware unfeasible. Monero previously used CryptoNight and variations of this algorithm
block_emission_pre:"To make sure there will always be an incentive to mine Monero and keep it safe, the emission is infinite. There are two main emissions:"
block_emission_main:"first, main curve: ~18.132 million coins by the end of May 2022"
block_emission_tail:"then, tail curve: 0.6 XMR per 2-minute block, kicks in once main emission is done, translates to <1% inflation decreasing over time"
blocks:A new @block is created every ~2 minutes. There is no maximum block size, but instead a block reward penality and a dynamic block size, to ensure a dynamic @scalability
A comprehensive conceptual (and technical) explanation of Monero.<br>
We endeavor to teach anyone who knows basic algebra and simple computer science concepts like the ‘bit representation’ of a number not only how Monero works at a deep and comprehensive level, but also how useful and beautiful cryptography can be.