serai/crypto/dalek-ff-group/src/lib.rs
Luke Parker 93f7afec8b
3.5.2 Add more tests to ff-group-tests
The audit recommends checking failure cases for from_bytes,
from_bytes_unechecked, and from_repr. This isn't feasible.

from_bytes is allowed to have non-canonical values. [0xff; 32] may accordingly
be a valid point for non-SEC1-encoded curves.

from_bytes_unchecked doesn't have a defined failure mode, and by name,
unchecked, shouldn't necessarily fail. The audit acknowledges the tests should
test for whatever result is 'appropriate', yet any result which isn't a failure
on a valid element is appropriate.

from_repr must be canonical, yet for a binary field of 2^n where n % 8 == 0, a
[0xff; n / 8] repr would be valid.
2023-02-24 06:03:56 -05:00

457 lines
12 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![no_std]
use core::{
ops::{Deref, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign},
borrow::Borrow,
iter::{Iterator, Sum},
};
use zeroize::Zeroize;
use subtle::{ConstantTimeEq, ConditionallySelectable};
use rand_core::RngCore;
use digest::{consts::U64, Digest, HashMarker};
use subtle::{Choice, CtOption};
use crypto_bigint::{Encoding, U256};
pub use curve25519_dalek as dalek;
use dalek::{
constants,
traits::Identity,
scalar::Scalar as DScalar,
edwards::{
EdwardsPoint as DEdwardsPoint, EdwardsBasepointTable as DEdwardsBasepointTable,
CompressedEdwardsY as DCompressedEdwards,
},
ristretto::{
RistrettoPoint as DRistrettoPoint, RistrettoBasepointTable as DRistrettoBasepointTable,
CompressedRistretto as DCompressedRistretto,
},
};
use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
use group::{Group, GroupEncoding, prime::PrimeGroup};
pub mod field;
// Convert a boolean to a Choice in a *presumably* constant time manner
fn choice(value: bool) -> Choice {
Choice::from(u8::from(value))
}
macro_rules! deref_borrow {
($Source: ident, $Target: ident) => {
impl Deref for $Source {
type Target = $Target;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl Borrow<$Target> for $Source {
fn borrow(&self) -> &$Target {
&self.0
}
}
impl Borrow<$Target> for &$Source {
fn borrow(&self) -> &$Target {
&self.0
}
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! constant_time {
($Value: ident, $Inner: ident) => {
impl ConstantTimeEq for $Value {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl ConditionallySelectable for $Value {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
$Value($Inner::conditional_select(&a.0, &b.0, choice))
}
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! math_op {
(
$Value: ident,
$Other: ident,
$Op: ident,
$op_fn: ident,
$Assign: ident,
$assign_fn: ident,
$function: expr
) => {
impl $Op<$Other> for $Value {
type Output = $Value;
fn $op_fn(self, other: $Other) -> Self::Output {
Self($function(self.0, other.0))
}
}
impl $Assign<$Other> for $Value {
fn $assign_fn(&mut self, other: $Other) {
self.0 = $function(self.0, other.0);
}
}
impl<'a> $Op<&'a $Other> for $Value {
type Output = $Value;
fn $op_fn(self, other: &'a $Other) -> Self::Output {
Self($function(self.0, other.0))
}
}
impl<'a> $Assign<&'a $Other> for $Value {
fn $assign_fn(&mut self, other: &'a $Other) {
self.0 = $function(self.0, other.0);
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! math {
($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
math_op!($Value, $Value, Add, add, AddAssign, add_assign, $add);
math_op!($Value, $Value, Sub, sub, SubAssign, sub_assign, $sub);
math_op!($Value, $Factor, Mul, mul, MulAssign, mul_assign, $mul);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! math_neg {
($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
math!($Value, $Factor, $add, $sub, $mul);
impl Neg for $Value {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! from_wrapper {
($wrapper: ident, $inner: ident, $uint: ident) => {
impl From<$uint> for $wrapper {
fn from(a: $uint) -> $wrapper {
Self($inner::from(a))
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! from_uint {
($wrapper: ident, $inner: ident) => {
from_wrapper!($wrapper, $inner, u8);
from_wrapper!($wrapper, $inner, u16);
from_wrapper!($wrapper, $inner, u32);
from_wrapper!($wrapper, $inner, u64);
};
}
/// Wrapper around the dalek Scalar type.
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Zeroize)]
pub struct Scalar(pub DScalar);
deref_borrow!(Scalar, DScalar);
constant_time!(Scalar, DScalar);
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);
from_uint!(Scalar, DScalar);
// Ed25519 order/scalar modulus
const MODULUS: U256 =
U256::from_be_hex("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed");
impl Scalar {
pub fn pow(&self, other: Scalar) -> Scalar {
let mut table = [Scalar::one(); 16];
table[1] = *self;
for i in 2 .. 16 {
table[i] = table[i - 1] * self;
}
let mut res = Scalar::one();
let mut bits = 0;
for (i, bit) in other.to_le_bits().iter().rev().enumerate() {
bits <<= 1;
let bit = u8::from(*bit);
bits |= bit;
if ((i + 1) % 4) == 0 {
if i != 3 {
for _ in 0 .. 4 {
res *= res;
}
}
res *= table[usize::from(bits)];
bits = 0;
}
}
res
}
/// Perform wide reduction on a 64-byte array to create a Scalar without bias.
pub fn from_bytes_mod_order_wide(bytes: &[u8; 64]) -> Scalar {
Self(DScalar::from_bytes_mod_order_wide(bytes))
}
/// Derive a Scalar without bias from a digest via wide reduction.
pub fn from_hash<D: Digest<OutputSize = U64> + HashMarker>(hash: D) -> Scalar {
let mut output = [0u8; 64];
output.copy_from_slice(&hash.finalize());
let res = Scalar(DScalar::from_bytes_mod_order_wide(&output));
output.zeroize();
res
}
}
impl Field for Scalar {
fn random(mut rng: impl RngCore) -> Self {
let mut r = [0; 64];
rng.fill_bytes(&mut r);
Self(DScalar::from_bytes_mod_order_wide(&r))
}
fn zero() -> Self {
Self(DScalar::zero())
}
fn one() -> Self {
Self(DScalar::one())
}
fn square(&self) -> Self {
*self * self
}
fn double(&self) -> Self {
*self + self
}
fn invert(&self) -> CtOption<Self> {
CtOption::new(Self(self.0.invert()), !self.is_zero())
}
fn sqrt(&self) -> CtOption<Self> {
let mod_3_8 = MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8));
let mod_3_8 = Scalar::from_repr(mod_3_8.to_le_bytes()).unwrap();
let sqrt_m1 = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
let sqrt_m1 = Scalar::one().double().pow(Scalar::from_repr(sqrt_m1.to_le_bytes()).unwrap());
let tv1 = self.pow(mod_3_8);
let tv2 = tv1 * sqrt_m1;
let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
CtOption::new(candidate, candidate.square().ct_eq(self))
}
}
impl PrimeField for Scalar {
type Repr = [u8; 32];
const NUM_BITS: u32 = 253;
const CAPACITY: u32 = 252;
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
let scalar = DScalar::from_canonical_bytes(bytes);
// TODO: This unwrap_or isn't constant time, yet we don't exactly have an alternative...
CtOption::new(Scalar(scalar.unwrap_or_else(DScalar::zero)), choice(scalar.is_some()))
}
fn to_repr(&self) -> [u8; 32] {
self.0.to_bytes()
}
// This was set per the specification in the ff crate docs
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
const S: u32 = 2;
fn is_odd(&self) -> Choice {
choice(self.to_le_bits()[0])
}
fn multiplicative_generator() -> Self {
// This was calculated with the method from the ff crate docs
// SageMath GF(modulus).primitive_element()
2u64.into()
}
fn root_of_unity() -> Self {
// This was calculated via the formula from the ff crate docs
// Self::multiplicative_generator() ** ((modulus - 1) >> Self::S)
Scalar::from_repr([
212, 7, 190, 235, 223, 117, 135, 190, 254, 131, 206, 66, 83, 86, 240, 14, 122, 194, 193, 171,
96, 109, 61, 125, 231, 129, 121, 224, 16, 115, 74, 9,
])
.unwrap()
}
}
impl PrimeFieldBits for Scalar {
type ReprBits = [u8; 32];
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
self.to_repr().into()
}
fn char_le_bits() -> FieldBits<Self::ReprBits> {
let mut bytes = (Scalar::zero() - Scalar::one()).to_repr();
bytes[0] += 1;
debug_assert_eq!(DScalar::from_bytes_mod_order(bytes), DScalar::zero());
bytes.into()
}
}
impl Sum<Scalar> for Scalar {
fn sum<I: Iterator<Item = Scalar>>(iter: I) -> Scalar {
Self(DScalar::sum(iter))
}
}
macro_rules! dalek_group {
(
$Point: ident,
$DPoint: ident,
$torsion_free: expr,
$Table: ident,
$DTable: ident,
$DCompressed: ident,
$BASEPOINT_POINT: ident,
$BASEPOINT_TABLE: ident
) => {
/// Wrapper around the dalek Point type. For Ed25519, this is restricted to the prime subgroup.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Point(pub $DPoint);
deref_borrow!($Point, $DPoint);
constant_time!($Point, $DPoint);
math_neg!($Point, Scalar, $DPoint::add, $DPoint::sub, $DPoint::mul);
pub const $BASEPOINT_POINT: $Point = $Point(constants::$BASEPOINT_POINT);
impl Sum<$Point> for $Point {
fn sum<I: Iterator<Item = $Point>>(iter: I) -> $Point {
Self($DPoint::sum(iter))
}
}
impl<'a> Sum<&'a $Point> for $Point {
fn sum<I: Iterator<Item = &'a $Point>>(iter: I) -> $Point {
Self($DPoint::sum(iter))
}
}
impl Group for $Point {
type Scalar = Scalar;
fn random(mut rng: impl RngCore) -> Self {
loop {
let mut bytes = [0; 64];
rng.fill_bytes(&mut bytes);
let point = $Point($DPoint::hash_from_bytes::<sha2::Sha512>(&bytes));
// Ban identity, per the trait specification
if !bool::from(point.is_identity()) {
return point;
}
}
}
fn identity() -> Self {
Self($DPoint::identity())
}
fn generator() -> Self {
$BASEPOINT_POINT
}
fn is_identity(&self) -> Choice {
self.0.ct_eq(&$DPoint::identity())
}
fn double(&self) -> Self {
*self + self
}
}
impl GroupEncoding for $Point {
type Repr = [u8; 32];
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
let decompressed = $DCompressed(*bytes).decompress();
// TODO: Same note on unwrap_or as above
let point = decompressed.unwrap_or($DPoint::identity());
CtOption::new($Point(point), choice(decompressed.is_some()) & choice($torsion_free(point)))
}
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
$Point::from_bytes(bytes)
}
fn to_bytes(&self) -> Self::Repr {
self.0.compress().to_bytes()
}
}
impl PrimeGroup for $Point {}
/// Wrapper around the dalek Table type, offering efficient multiplication against the
/// basepoint.
pub struct $Table(pub $DTable);
deref_borrow!($Table, $DTable);
pub const $BASEPOINT_TABLE: $Table = $Table(constants::$BASEPOINT_TABLE);
impl Mul<Scalar> for &$Table {
type Output = $Point;
fn mul(self, b: Scalar) -> $Point {
$Point(&b.0 * &self.0)
}
}
};
}
dalek_group!(
EdwardsPoint,
DEdwardsPoint,
|point: DEdwardsPoint| point.is_torsion_free(),
EdwardsBasepointTable,
DEdwardsBasepointTable,
DCompressedEdwards,
ED25519_BASEPOINT_POINT,
ED25519_BASEPOINT_TABLE
);
impl EdwardsPoint {
pub fn mul_by_cofactor(&self) -> EdwardsPoint {
EdwardsPoint(self.0.mul_by_cofactor())
}
}
dalek_group!(
RistrettoPoint,
DRistrettoPoint,
|_| true,
RistrettoBasepointTable,
DRistrettoBasepointTable,
DCompressedRistretto,
RISTRETTO_BASEPOINT_POINT,
RISTRETTO_BASEPOINT_TABLE
);
#[test]
fn test_scalar_modulus() {
assert_eq!(MODULUS.to_le_bytes(), curve25519_dalek::constants::BASEPOINT_ORDER.to_bytes());
}
#[test]
fn test_ed25519_group() {
ff_group_tests::group::test_prime_group_bits::<_, EdwardsPoint>(&mut rand_core::OsRng);
}
#[test]
fn test_ristretto_group() {
ff_group_tests::group::test_prime_group_bits::<_, RistrettoPoint>(&mut rand_core::OsRng);
}