serai/processor/src/signer.rs
Luke Parker ba82dac18c
Processor (#259)
* Initial work on a message box

* Finish message-box (untested)

* Expand documentation

* Embed the recipient in the signature challenge

Prevents a message from A -> B from being read as from A -> C.

* Update documentation by bifurcating sender/receiver

* Panic on receiving an invalid signature

If we've received an invalid signature in an authenticated system, a 
service is malicious, critically faulty (equivalent to malicious), or 
the message layer has been compromised (or is otherwise critically 
faulty).

Please note a receiver who handles a message they shouldn't will trigger 
this. That falls under being critically faulty.

* Documentation and helper methods

SecureMessage::new and SecureMessage::serialize.

Secure Debug for MessageBox.

* Have SecureMessage not be serialized by default

Allows passing around in-memory, if desired, and moves the error from 
decrypt to new (which performs deserialization).

Decrypt no longer has an error since it panics if given an invalid 
signature, due to this being intranet code.

* Explain and improve nonce handling

Includes a missing zeroize call.

* Rebase to latest develop

Updates to transcript 0.2.0.

* Add a test for the MessageBox

* Export PrivateKey and PublicKey

* Also test serialization

* Add a key_gen binary to message_box

* Have SecureMessage support Serde

* Add encrypt_to_bytes and decrypt_from_bytes

* Support String ser via base64

* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes

* Directly operate with values supporting Borsh

* Use bincode instead of Borsh

By staying inside of serde, we'll support many more structs. While 
bincode isn't canonical, we don't need canonicity on an authenticated, 
internal system.

* Turn PrivateKey, PublicKey into structs

Uses Zeroizing for the PrivateKey per #150.

* from_string functions intended for loading from an env

* Use &str for PublicKey from_string (now from_str)

The PrivateKey takes the String to take ownership of its memory and 
zeroize it. That isn't needed with PublicKeys.

* Finish updating from develop

* Resolve warning

* Use ZeroizingAlloc on the key_gen binary

* Move message-box from crypto/ to common/

* Move key serialization functions to ser

* add/remove functions in MessageBox

* Implement Hash on dalek_ff_group Points

* Make MessageBox generic to its key

Exposes a &'static str variant for internal use and a RistrettoPoint 
variant for external use.

* Add Private to_string as deprecated

Stub before more competent tooling is deployed.

* Private to_public

* Test both Internal and External MessageBox, only use PublicKey in the pub API

* Remove panics on invalid signatures

Leftover from when this was solely internal which is now unsafe.

* Chicken scratch a Scanner task

* Add a write function to the DKG library

Enables writing directly to a file.

Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.

* Make dkg::encryption pub

* Remove encryption from MessageBox

* Use a 64-bit block number in Substrate

We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.

While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.

* Misc crypto lints

* Get the scanner scratch to compile

* Initial scanner test

* First few lines of scheduler

* Further work on scheduler, solidify API

* Define Scheduler TX format

* Branch creation algorithm

* Document when the branch algorithm isn't perfect

* Only scanned confirmed blocks

* Document Coin

* Remove Canonical/ChainNumber from processor

The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.

* Add README documenting processor flow

* Use Zeroize on substrate primitives

* Define messages from/to the processor

* Correct over-specified versioning

* Correct build re: in_instructions::primitives

* Debug/some serde in crypto/

* Use a struct for ValidatorSetInstance

* Add a processor key_gen task

Redos DB handling code.

* Replace trait + impl with wrapper struct

* Add a key confirmation flow to the key gen task

* Document concerns on key_gen

* Start on a signer task

* Add Send to FROST traits

* Move processor lib.rs to main.rs

Adds a dummy main to reduce clippy dead_code warnings.

* Further flesh out main.rs

* Move the DB trait to AsRef<[u8]>

* Signer task

* Remove a panic in bitcoin when there's insufficient funds

Unchecked underflow.

* Have Monero's mine_block mine one block, not 10

It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.

* Test signer

* Replace channel expects with log statements

The expects weren't problematic and had nicer code. They just clutter test
output.

* Remove the old wallet file

It predates the coordinator design and shouldn't be used.

* Rename tests/scan.rs to tests/scanner.rs

* Add a wallet test

Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.

* Work on a run function

Triggers a clippy ICE.

* Resolve clippy ICE

The issue was the non-fully specified lambda in signer.

* Add KeyGenEvent and KeyGenOrder

Needed so we get KeyConfirmed messages from the key gen task.

While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.

* Expand scanner test

* Clarify processor documentation

* Have the Scanner load keys on boot/save outputs to disk

* Use Vec<u8> for Block ID

Much more flexible.

* Panic if we see the same output multiple times

* Have the Scanner DB mark itself as corrupt when doing a multi-put

This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.

* Have DST'd DB keys accept AsRef<[u8]>

* Restore polling all signers

Writes a custom future to do so.

Also loads signers on boot using what the scanner claims are active keys.

* Schedule OutInstructions

Adds a data field to Payment.

Also cleans some dead code.

* Panic if we create an invalid transaction

Saves the TX once it's successfully signed so if we do panic, we have a copy.

* Route coordinator messages to their respective signer

Requires adding key to the SignId.

* Send SignTransaction orders for all plans

* Add a timer to retry sign_plans when prepare_send fails

* Minor fmt'ing

* Basic Fee API

* Move the change key into Plan

* Properly route activation_number

* Remove ScannerEvent::Block

It's not used under current designs

* Nicen logs

* Add utilities to get a block's number

* Have main issue AckBlock

Also has a few misc lints.

* Parse instructions out of outputs

* Tweak TODOs and remove an unwrap

* Update Bitcoin max input/output quantity

* Only read one piece of data from Monero

Due to output randomization, it's infeasible.

* Embed plan IDs into the TXs they create

We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.

The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.

For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).

* Don't use OP_RETURN to encode the plan ID on Bitcoin

We can use the inputs to distinguih identical-output plans without issue.

* Update OP_RETURN data access

It's not required to be the last output.

* Add Eventualities to Monero

An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.

In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).

Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.

The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.

While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.

If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.

This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.

While this could be locked to the multisig feature, there's no practical
benefit to doing so.

* Add support for encoding Monero address to instructions

* Move Serai's Monero address encoding into serai-client

serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.

Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.

* Reorganize file layout a bit, add feature flags to processor

* Tidy up ETH Dockerfile

* Add Bitcoin address encoding

* Move Bitcoin::Address to serai-client's

* Comment where tweaking needs to happen

* Add an API to check if a plan was completed in a specific TX

This allows any participating signer to submit the TX ID to prevent further
signing attempts.

Also performs some API cleanup.

* Minimize FROST dependencies

* Use a seeded RNG for key gen

* Tweak keys from Key gen

* Test proper usage of Branch/Change addresses

Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.

* Also test spending the change output

* Add queued_plans to the Scheduler

queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.

Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.

* Add missing tweak_keys call

* Correct decoy selection height handling

* Add a few log statements to the scheduler

* Simplify test's get_block_number

* Simplify, while making more robust, branch address handling in Scheduler

* Have fees deducted from payments

Corrects Monero's handling of fees when there's no change address.

Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.

* Add comment to Monero

* Consolidate BTC/XMR prepare_send code

These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.

* Ban integrated addresses

The reasoning why is accordingly documented.

* Tidy TODOs/dust handling

* Update README TODO

* Use a determinisitic protocol version in Monero

* Test rebuilt KeyGen machines function as expected

* Use a more robust KeyGen entropy system

* Add DB TXNs

Also load entropy from env

* Add a loop for processing messages from substrate

Allows detecting if we're behind, and if so, waiting to handle the message

* Set Monero MAX_INPUTS properly

The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.

* Distinguish TODOs into TODO and TODO2s

TODO2s are for after protonet

* Zeroize secret share repr in ThresholdCore write

* Work on Eventualities

Adds serialization and stops signing when an eventuality is proven.

* Use a more robust DB key schema

* Update to {k, p}256 0.12

* cargo +nightly clippy

* cargo update

* Slight message-box tweaks

* Update to recent Monero merge

* Add a Coordinator trait for communication with coordinator

* Remove KeyGenHandle for just KeyGen

While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.

Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.

* Add a handle function to Signer

Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.

* Save transactions used to complete eventualities

* Use a more intelligent sleep in the signer

* Emit SignedTransaction with the first ID *we can still get from our node*

* Move Substrate message handling into the new coordinator recv loop

* Add handle function to Scanner

* Remove the plans timer

Enables ensuring the ordring on the handling of plans.

* Remove the outputs function which panicked if a precondition wasn't met

The new API only returns outputs upon satisfaction of the precondition.

* Convert SignerOrder::SignTransaction to a function

* Remove the key_gen object from sign_plans

* Refactor out get_fee/prepare_send into dedicated functions

* Save plans being signed to the DB

* Reload transactions being signed on boot

* Stop reloading TXs being signed (and report it to peers)

* Remove message-box from the processor branch

We don't use it here yet.

* cargo +nightly fmt

* Move back common/zalloc

* Update subxt to 0.27

* Zeroize ^1.5, not 1

* Update GitHub workflow

* Remove usage of SignId in completed
2023-03-16 22:59:40 -04:00

512 lines
16 KiB
Rust

use core::{marker::PhantomData, fmt};
use std::{
sync::Arc,
time::{SystemTime, Duration},
collections::HashMap,
};
use rand_core::OsRng;
use group::GroupEncoding;
use frost::{
ThresholdKeys,
sign::{Writable, PreprocessMachine, SignMachine, SignatureMachine},
};
use log::{info, debug, warn, error};
use tokio::{
sync::{RwLock, mpsc},
time::sleep,
};
use messages::sign::*;
use crate::{
DbTxn, Db,
coins::{Transaction, Eventuality, Coin},
};
const CHANNEL_MSG: &str = "Signer handler was dropped. Shutting down?";
#[derive(Debug)]
pub enum SignerEvent<C: Coin> {
SignedTransaction { id: [u8; 32], tx: <C::Transaction as Transaction<C>>::Id },
ProcessorMessage(ProcessorMessage),
}
pub type SignerEventChannel<C> = mpsc::UnboundedReceiver<SignerEvent<C>>;
#[derive(Debug)]
struct SignerDb<C: Coin, D: Db>(D, PhantomData<C>);
impl<C: Coin, D: Db> SignerDb<C, D> {
fn sign_key(dst: &'static [u8], key: impl AsRef<[u8]>) -> Vec<u8> {
D::key(b"SIGNER", dst, key)
}
fn completed_key(id: [u8; 32]) -> Vec<u8> {
Self::sign_key(b"completed", id)
}
fn complete(
&mut self,
txn: &mut D::Transaction,
id: [u8; 32],
tx: <C::Transaction as Transaction<C>>::Id,
) {
// Transactions can be completed by multiple signatures
// Save every solution in order to be robust
let mut existing = txn.get(Self::completed_key(id)).unwrap_or(vec![]);
// TODO: Don't do this if this TX is already present
existing.extend(tx.as_ref());
txn.put(Self::completed_key(id), existing);
}
fn completed(&self, id: [u8; 32]) -> Option<Vec<u8>> {
self.0.get(Self::completed_key(id))
}
fn eventuality_key(id: [u8; 32]) -> Vec<u8> {
Self::sign_key(b"eventuality", id)
}
fn save_eventuality(
&mut self,
txn: &mut D::Transaction,
id: [u8; 32],
eventuality: C::Eventuality,
) {
txn.put(Self::eventuality_key(id), eventuality.serialize());
}
fn eventuality(&self, id: [u8; 32]) -> Option<C::Eventuality> {
Some(
C::Eventuality::read::<&[u8]>(&mut self.0.get(Self::eventuality_key(id))?.as_ref()).unwrap(),
)
}
fn attempt_key(id: &SignId) -> Vec<u8> {
Self::sign_key(b"attempt", bincode::serialize(id).unwrap())
}
fn attempt(&mut self, txn: &mut D::Transaction, id: &SignId) {
txn.put(Self::attempt_key(id), []);
}
fn has_attempt(&mut self, id: &SignId) -> bool {
self.0.get(Self::attempt_key(id)).is_some()
}
fn save_transaction(&mut self, txn: &mut D::Transaction, tx: &C::Transaction) {
txn.put(Self::sign_key(b"tx", tx.id()), tx.serialize());
}
}
/// Coded so if the processor spontaneously reboots, one of two paths occur:
/// 1) It either didn't send its response, so the attempt will be aborted
/// 2) It did send its response, and has locally saved enough data to continue
pub struct Signer<C: Coin, D: Db> {
coin: C,
db: SignerDb<C, D>,
keys: ThresholdKeys<C::Curve>,
signable: HashMap<[u8; 32], (SystemTime, C::SignableTransaction)>,
attempt: HashMap<[u8; 32], u32>,
preprocessing: HashMap<[u8; 32], <C::TransactionMachine as PreprocessMachine>::SignMachine>,
#[allow(clippy::type_complexity)]
signing: HashMap<
[u8; 32],
<
<C::TransactionMachine as PreprocessMachine>::SignMachine as SignMachine<C::Transaction>
>::SignatureMachine,
>,
events: mpsc::UnboundedSender<SignerEvent<C>>,
}
impl<C: Coin, D: Db> fmt::Debug for Signer<C, D> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("Signer")
.field("coin", &self.coin)
.field("signable", &self.signable)
.field("attempt", &self.attempt)
.finish_non_exhaustive()
}
}
#[derive(Debug)]
pub struct SignerHandle<C: Coin, D: Db> {
signer: Arc<RwLock<Signer<C, D>>>,
pub events: SignerEventChannel<C>,
}
impl<C: Coin, D: Db> Signer<C, D> {
#[allow(clippy::new_ret_no_self)]
pub fn new(db: D, coin: C, keys: ThresholdKeys<C::Curve>) -> SignerHandle<C, D> {
let (events_send, events_recv) = mpsc::unbounded_channel();
let signer = Arc::new(RwLock::new(Signer {
coin,
db: SignerDb(db, PhantomData),
keys,
signable: HashMap::new(),
attempt: HashMap::new(),
preprocessing: HashMap::new(),
signing: HashMap::new(),
events: events_send,
}));
tokio::spawn(Signer::run(signer.clone()));
SignerHandle { signer, events: events_recv }
}
fn verify_id(&self, id: &SignId) -> Result<(), ()> {
if !id.signing_set(&self.keys.params()).contains(&self.keys.params().i()) {
panic!("coordinator sent us preprocesses for a signing attempt we're not participating in");
}
// Check the attempt lines up
match self.attempt.get(&id.id) {
// If we don't have an attempt logged, it's because the coordinator is faulty OR
// because we rebooted
None => {
warn!("not attempting {:?}. this is an error if we didn't reboot", id);
// Don't panic on the assumption we rebooted
Err(())?;
}
Some(attempt) => {
// This could be an old attempt, or it may be a 'future' attempt if we rebooted and
// our SystemTime wasn't monotonic, as it may be
if attempt != &id.attempt {
debug!("sent signing data for a distinct attempt");
Err(())?;
}
}
}
Ok(())
}
fn emit(&mut self, event: SignerEvent<C>) -> bool {
if self.events.send(event).is_err() {
info!("{}", CHANNEL_MSG);
false
} else {
true
}
}
async fn handle(&mut self, msg: CoordinatorMessage) {
match msg {
CoordinatorMessage::Preprocesses { id, mut preprocesses } => {
if self.verify_id(&id).is_err() {
return;
}
let machine = match self.preprocessing.remove(&id.id) {
// Either rebooted or RPC error, or some invariant
None => {
warn!("not preprocessing for {:?}. this is an error if we didn't reboot", id);
return;
}
Some(machine) => machine,
};
let preprocesses = match preprocesses
.drain()
.map(|(l, preprocess)| {
machine
.read_preprocess::<&[u8]>(&mut preprocess.as_ref())
.map(|preprocess| (l, preprocess))
})
.collect::<Result<_, _>>()
{
Ok(preprocesses) => preprocesses,
Err(e) => todo!("malicious signer: {:?}", e),
};
// Use an empty message, as expected of TransactionMachines
let (machine, share) = match machine.sign(preprocesses, &[]) {
Ok(res) => res,
Err(e) => todo!("malicious signer: {:?}", e),
};
self.signing.insert(id.id, machine);
// Broadcast our share
self.emit(SignerEvent::ProcessorMessage(ProcessorMessage::Share {
id,
share: share.serialize(),
}));
}
CoordinatorMessage::Shares { id, mut shares } => {
if self.verify_id(&id).is_err() {
return;
}
let machine = match self.signing.remove(&id.id) {
// Rebooted, RPC error, or some invariant
None => {
// If preprocessing has this ID, it means we were never sent the preprocess by the
// coordinator
if self.preprocessing.contains_key(&id.id) {
panic!("never preprocessed yet signing?");
}
warn!("not preprocessing for {:?}. this is an error if we didn't reboot", id);
return;
}
Some(machine) => machine,
};
let shares = match shares
.drain()
.map(|(l, share)| {
machine.read_share::<&[u8]>(&mut share.as_ref()).map(|share| (l, share))
})
.collect::<Result<_, _>>()
{
Ok(shares) => shares,
Err(e) => todo!("malicious signer: {:?}", e),
};
let tx = match machine.complete(shares) {
Ok(res) => res,
Err(e) => todo!("malicious signer: {:?}", e),
};
// Save the transaction in case it's needed for recovery
let mut txn = self.db.0.txn();
self.db.save_transaction(&mut txn, &tx);
self.db.complete(&mut txn, id.id, tx.id());
txn.commit();
// Publish it
if let Err(e) = self.coin.publish_transaction(&tx).await {
error!("couldn't publish {:?}: {:?}", tx, e);
} else {
info!("published {:?}", hex::encode(tx.id()));
}
// Stop trying to sign for this TX
assert!(self.signable.remove(&id.id).is_some());
assert!(self.attempt.remove(&id.id).is_some());
assert!(self.preprocessing.remove(&id.id).is_none());
assert!(self.signing.remove(&id.id).is_none());
self.emit(SignerEvent::SignedTransaction { id: id.id, tx: tx.id() });
}
CoordinatorMessage::Completed { key: _, id, tx: tx_vec } => {
let mut tx = <C::Transaction as Transaction<C>>::Id::default();
if tx.as_ref().len() != tx_vec.len() {
warn!(
"a validator claimed {} completed {id:?} yet that's not a valid TX ID",
hex::encode(&tx)
);
return;
}
tx.as_mut().copy_from_slice(&tx_vec);
if let Some(eventuality) = self.db.eventuality(id) {
// Transaction hasn't hit our mempool/was dropped for a different signature
// The latter can happen given certain latency conditions/a single malicious signer
// In the case of a single malicious signer, they can drag multiple honest
// validators down with them, so we unfortunately can't slash on this case
let Ok(tx) = self.coin.get_transaction(&tx).await else {
todo!("queue checking eventualities"); // or give up here?
};
if self.coin.confirm_completion(&eventuality, &tx) {
// Stop trying to sign for this TX
let mut txn = self.db.0.txn();
self.db.save_transaction(&mut txn, &tx);
self.db.complete(&mut txn, id, tx.id());
txn.commit();
self.signable.remove(&id);
self.attempt.remove(&id);
self.preprocessing.remove(&id);
self.signing.remove(&id);
self.emit(SignerEvent::SignedTransaction { id, tx: tx.id() });
} else {
warn!("a validator claimed {} completed {id:?} when it did not", hex::encode(&tx.id()));
}
}
}
}
}
// An async function, to be spawned on a task, to handle signing
async fn run(signer_arc: Arc<RwLock<Self>>) {
const SIGN_TIMEOUT: u64 = 30;
loop {
// Sleep until a timeout expires (or five seconds expire)
// Since this code start new sessions, it will delay any ordered signing sessions from
// starting for up to 5 seconds, hence why this number can't be too high (such as 30 seconds,
// the full timeout)
// This won't delay re-attempting any signing session however, nor will it block the
// sign_transaction function (since this doesn't hold any locks)
sleep({
let now = SystemTime::now();
let mut lowest = Duration::from_secs(5);
let signer = signer_arc.read().await;
for (id, (start, _)) in &signer.signable {
let until = if let Some(attempt) = signer.attempt.get(id) {
// Get when this attempt times out
(*start + Duration::from_secs(u64::from(attempt + 1) * SIGN_TIMEOUT))
.duration_since(now)
.unwrap_or(Duration::ZERO)
} else {
Duration::ZERO
};
if until < lowest {
lowest = until;
}
}
lowest
})
.await;
// Because a signing attempt has timed out (or five seconds has passed), check all
// sessions' timeouts
{
let mut signer = signer_arc.write().await;
let keys = signer.signable.keys().cloned().collect::<Vec<_>>();
for id in keys {
let (start, tx) = &signer.signable[&id];
let start = *start;
let attempt = u32::try_from(
SystemTime::now().duration_since(start).unwrap_or(Duration::ZERO).as_secs() /
SIGN_TIMEOUT,
)
.unwrap();
// Check if we're already working on this attempt
if let Some(curr_attempt) = signer.attempt.get(&id) {
if curr_attempt >= &attempt {
continue;
}
}
// Start this attempt
// Clone the TX so we don't have an immutable borrow preventing the below mutable actions
// (also because we do need an owned tx anyways)
let tx = tx.clone();
// Delete any existing machines
signer.preprocessing.remove(&id);
signer.signing.remove(&id);
// Update the attempt number so we don't re-enter this conditional
signer.attempt.insert(id, attempt);
let id =
SignId { key: signer.keys.group_key().to_bytes().as_ref().to_vec(), id, attempt };
// Only preprocess if we're a signer
if !id.signing_set(&signer.keys.params()).contains(&signer.keys.params().i()) {
continue;
}
info!("selected to sign {:?}", id);
// If we reboot mid-sign, the current design has us abort all signs and wait for latter
// attempts/new signing protocols
// This is distinct from the DKG which will continue DKG sessions, even on reboot
// This is because signing is tolerant of failures of up to 1/3rd of the group
// The DKG requires 100% participation
// While we could apply similar tricks as the DKG (a seeded RNG) to achieve support for
// reboots, it's not worth the complexity when messing up here leaks our secret share
//
// Despite this, on reboot, we'll get told of active signing items, and may be in this
// branch again for something we've already attempted
//
// Only run if this hasn't already been attempted
if signer.db.has_attempt(&id) {
warn!("already attempted {:?}. this is an error if we didn't reboot", id);
continue;
}
let mut txn = signer.db.0.txn();
signer.db.attempt(&mut txn, &id);
txn.commit();
// Attempt to create the TX
let machine = match signer.coin.attempt_send(tx).await {
Err(e) => {
error!("failed to attempt {:?}: {:?}", id, e);
continue;
}
Ok(machine) => machine,
};
let (machine, preprocess) = machine.preprocess(&mut OsRng);
signer.preprocessing.insert(id.id, machine);
// Broadcast our preprocess
if !signer.emit(SignerEvent::ProcessorMessage(ProcessorMessage::Preprocess {
id,
preprocess: preprocess.serialize(),
})) {
return;
}
}
}
}
}
}
impl<C: Coin, D: Db> SignerHandle<C, D> {
pub async fn keys(&self) -> ThresholdKeys<C::Curve> {
self.signer.read().await.keys.clone()
}
pub async fn sign_transaction(
&self,
id: [u8; 32],
start: SystemTime,
tx: C::SignableTransaction,
eventuality: C::Eventuality,
) {
let mut signer = self.signer.write().await;
if let Some(txs) = signer.db.completed(id) {
debug!("SignTransaction order for ID we've already completed signing");
// Find the first instance we noted as having completed *and can still get from our node*
let mut tx = None;
let mut buf = <C::Transaction as Transaction<C>>::Id::default();
let tx_id_len = buf.as_ref().len();
assert_eq!(txs.len() % tx_id_len, 0);
for id in 0 .. (txs.len() / tx_id_len) {
let start = id * tx_id_len;
buf.as_mut().copy_from_slice(&txs[start .. (start + tx_id_len)]);
if signer.coin.get_transaction(&buf).await.is_ok() {
tx = Some(buf);
break;
}
}
// Fire the SignedTransaction event again
if let Some(tx) = tx {
if !signer.emit(SignerEvent::SignedTransaction { id, tx }) {
return;
}
} else {
warn!("completed signing {} yet couldn't get any of the completing TXs", hex::encode(id));
}
return;
}
let mut txn = signer.db.0.txn();
signer.db.save_eventuality(&mut txn, id, eventuality);
txn.commit();
signer.signable.insert(id, (start, tx));
}
pub async fn handle(&self, msg: CoordinatorMessage) {
self.signer.write().await.handle(msg).await;
}
}