Commit graph

60 commits

Author SHA1 Message Date
Luke Parker
f93214012d
Use ScriptBuf over Address where possible 2024-05-21 06:44:59 -04:00
Luke Parker
a0a7d63dad
bitcoin 0.32 2024-05-21 05:27:01 -04:00
Luke Parker
0f0db14f05
Ethereum Integration (#557)
* Clean up Ethereum

* Consistent contract address for deployed contracts

* Flesh out Router a bit

* Add a Deployer for DoS-less deployment

* Implement Router-finding

* Use CREATE2 helper present in ethers

* Move from CREATE2 to CREATE

Bit more streamlined for our use case.

* Document ethereum-serai

* Tidy tests a bit

* Test updateSeraiKey

* Use encodePacked for updateSeraiKey

* Take in the block hash to read state during

* Add a Sandbox contract to the Ethereum integration

* Add retrieval of transfers from Ethereum

* Add inInstruction function to the Router

* Augment our handling of InInstructions events with a check the transfer event also exists

* Have the Deployer error upon failed deployments

* Add --via-ir

* Make get_transaction test-only

We only used it to get transactions to confirm the resolution of Eventualities.
Eventualities need to be modularized. By introducing the dedicated
confirm_completion function, we remove the need for a non-test get_transaction
AND begin this modularization (by no longer explicitly grabbing a transaction
to check with).

* Modularize Eventuality

Almost fully-deprecates the Transaction trait for Completion. Replaces
Transaction ID with Claim.

* Modularize the Scheduler behind a trait

* Add an extremely basic account Scheduler

* Add nonce uses, key rotation to the account scheduler

* Only report the account Scheduler empty after transferring keys

Also ban payments to the branch/change/forward addresses.

* Make fns reliant on state test-only

* Start of an Ethereum integration for the processor

* Add a session to the Router to prevent updateSeraiKey replaying

This would only happen if an old key was rotated to again, which would require
n-of-n collusion (already ridiculous and a valid fault attributable event). It
just clarifies the formal arguments.

* Add a RouterCommand + SignMachine for producing it to coins/ethereum

* Ethereum which compiles

* Have branch/change/forward return an option

Also defines a UtxoNetwork extension trait for MAX_INPUTS.

* Make external_address exclusively a test fn

* Move the "account" scheduler to "smart contract"

* Remove ABI artifact

* Move refund/forward Plan creation into the Processor

We create forward Plans in the scan path, and need to know their exact fees in
the scan path. This requires adding a somewhat wonky shim_forward_plan method
so we can obtain a Plan equivalent to the actual forward Plan for fee reasons,
yet don't expect it to be the actual forward Plan (which may be distinct if
the Plan pulls from the global state, such as with a nonce).

Also properly types a Scheduler addendum such that the SC scheduler isn't
cramming the nonce to use into the N::Output type.

* Flesh out the Ethereum integration more

* Two commits ago, into the **Scheduler, not Processor

* Remove misc TODOs in SC Scheduler

* Add constructor to RouterCommandMachine

* RouterCommand read, pairing with the prior added write

* Further add serialization methods

* Have the Router's key included with the InInstruction

This does not use the key at the time of the event. This uses the key at the
end of the block for the event. Its much simpler than getting the full event
streams for each, checking when they interlace.

This does not read the state. Every block, this makes a request for every
single key update and simply chooses the last one. This allows pruning state,
only keeping the event tree. Ideally, we'd also introduce a cache to reduce the
cost of the filter (small in events yielded, long in blocks searched).

Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of
our Plans should solely have payments out, and there's no expectation of a Plan
being made under one key broken by it being received by another key.

* Add read/write to InInstruction

* Abstract the ABI for Call/OutInstruction in ethereum-serai

* Fill out signable_transaction for Ethereum

* Move ethereum-serai to alloy

Resolves #331.

* Use the opaque sol macro instead of generated files

* Move the processor over to the now-alloy-based ethereum-serai

* Use the ecrecover provided by alloy

* Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized)

* Always use the latest keys for SC scheduled plans

* get_eventuality_completions for Ethereum

* Finish fleshing out the processor Ethereum integration as needed for serai-processor tests

This doesn't not support any actual deployments, not even the ones simulated by
serai-processor-docker-tests.

* Add alloy-simple-request-transport to the GH workflows

* cargo update

* Clarify a few comments and make one check more robust

* Use a string for 27.0 in .github

* Remove optional from no-longer-optional dependencies in processor

* Add alloy to git deny exception

* Fix no longer optional specification in processor's binaries feature

* Use a version of foundry from 2024

* Correct fetching Bitcoin TXs in the processor docker tests

* Update rustls to resolve RUSTSEC warnings

* Use the monthly nightly foundry, not the deleted daily nightly
2024-04-21 06:02:12 -04:00
Luke Parker
337e54c672
Redo Dockerfile generation (#530)
Moves from concatted Dockerfiles to pseudo-templated Dockerfiles via a dedicated Rust program.

Removes the unmaintained kubernetes, not because we shouldn't have/use it, but because it's unmaintained and needs to be reworked before it's present again.

Replaces the compose with the work in the new orchestrator binary which spawns everything as expected. While this arguably re-invents the wheel, it correctly manages secrets and handles the variadic Dockerfiles.

Also adds an unrelated patch for zstd and simplifies running services a bit by greater utilizing the existing infrastructure.

---

* Delete all Dockerfile fragments, add new orchestator to generate Dockerfiles

Enables greater templating.

Also delete the unmaintained kubernetes folder *for now*. This should be
restored in the future.

* Use Dockerfiles from the orchestator

* Ignore Dockerfiles in the git repo

* Remove CI job to check Dockerfiles are as expected now that they're no longer committed

* Remove old Dockerfiles from repo

* Use Debian for monero-wallet-rpc

* Remove replace_cmds for proper usage of entry-dev

Consolidates ports a bit.

Updates serai-docker-tests from "compose" to "build".

* Only write a new dockerfile if it's distinct

Preserves the updated time metadata.

* Update serai-docker-tests

* Correct the path Dockerfiles are built from

* Correct inclusion of orchestration folder in Docker builds

* Correct debug/release flagging in the cargo command

Apparently, --debug isn't an effective NOP yet an error.

* Correct path used to run the Serai node within a Dockerfile

* Correct path in Monero Dockerfile

* Attempt storing monerod in /usr/bin

* Use sudo to move into /usr/bin in CI

* Correct 18.3.0 to 18.3.1

* Escape * with quotes

* Update deny.toml, ADD orchestration in runtime Dockerfile

* Add --detach to the Monero GH CI

* Diversify dockerfiles by network

* Fixes to network-diversified orchestration

* Bitcoin and Monero testnet scripts

* Permissions and tweaks

* Flatten scripts folders

* Add missing folder specification to Monero Dockerfile

* Have monero-wallet-rpc specify the monerod login

* Have the Docker CMD specify env variables inserted at time of Dockerfile generation

They're overrideable with the global enviornment as for tests. This enables
variable generation in orchestrator and output to productionized Docker files
without creating a life-long file within the Docker container.

* Don't add Dockerfiles into Docker containers now that they have secrets

Solely add the source code for them as needed to satisfy the workspace bounds.

* Download arm64 Monero on arm64

* Ensure constant host architecture when reproducibly building the wasm

Host architecture, for some reason, can effect the generated code despite the
target architecture always being foreign to the host architecture.

* Randomly generate infrastructure keys

* Have orchestrator generate a key, be able to create/start containers

* Ensure bash is used over sh

* Clean dated docs

* Change how quoting occurs

* Standardize to sh

* Have Docker test build the dev Dockerfiles

* Only key_gen once

* cargo update

Adds a patch for zstd and reconciles the breaking nightly change which just
occurred.

* Use a dedicated network for Serai

Also fixes SERAI_HOSTNAME passed to coordinator.

* Support providing a key over the env for the Serai node

* Enable and document running daemons for tests via serai-orchestrator

Has running containers under the dev network port forward the RPC ports.

* Use volumes for bitcoin/monero

* Use bitcoin's run.sh in GH CI

* Only use the volume for testnet (not dev)
2024-02-09 02:48:44 -05:00
Luke Parker
c2fffb9887
Correct a couple years of accumulated typos 2023-12-17 02:06:51 -05:00
Luke Parker
065d314e2a
Further expand clippy workspace lints
Achieves a notable amount of reduced async and clones.
2023-12-17 00:04:49 -05:00
Luke Parker
ea3af28139
Add workspace lints 2023-12-17 00:04:47 -05:00
Luke Parker
3cf46338ee
Have Bitcoin's send_raw_transaction considered succeeded if already sent 2023-12-12 01:05:44 -05:00
Luke Parker
11fdb6da1d
Coordinator Cleanup (#481)
* Move logic for evaluating if a cosign should occur to its own file

Cleans it up and makes it more robust.

* Have expected_next_batch return an error instead of retrying

While convenient to offer an error-free implementation, it potentially caused
very long lived lock acquisitions in handle_processor_message.

* Unify and clean DkgConfirmer and DkgRemoval

Does so via adding a new file for the common code, SigningProtocol.

Modifies from_cache to return the preprocess with the machine, as there's no
reason not to. Also removes an unused Result around the type.

Clarifies the security around deterministic nonces, removing them for
saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the
DB is not a proper secret store.

Moves arguments always present in the protocol from function arguments into the
struct itself.

Removes the horribly ugly code in DkgRemoval, fixing multiple issues present
with it which would cause it to fail on use.

* Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol

* Remove unnecessary Clone from lambdas in coordinator

* Remove the EventDb from Tributary scanner

We used per-Transaction DB TXNs so on error, we don't have to rescan the entire
block yet only the rest of it. We prevented scanning multiple transactions by
tracking which we already had.

This is over-engineered and not worth it.

* Implement borsh for HasEvents, removing the manual encoding

* Merge DkgConfirmer and DkgRemoval into signing_protocol.rs

Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes
if any validator had multiple key shares.

* Strictly type DataSpecification's Label

* Correct threshold_i_map_to_keys_and_musig_i_map

It didn't include the participant's own index and accordingly was offset.

* Create TributaryBlockHandler

This struct contains all variables prior passed to handle_block and stops them
from being passed around again and again.

This also ensures fatal_slash is only called while handling a block, as needed
as it expects to operate under perfect consensus.

* Inline accumulate, store confirmation nonces with shares

Inlining accumulate makes sense due to the amount of data accumulate needed to
be passed.

Storing confirmation nonces with shares ensures that both are available or
neither. Prior, one could be yet the other may not have been (requiring an
assert in runtime to ensure we didn't bungle it somehow).

* Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs

* Move Label into SignData

All of our transactions which use SignData end up with the same common usage
pattern for Label, justifying this.

Removes 3 transactions, explicitly de-duplicating their handlers.

* Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair

* Remove the manual read/write for TributarySpec for borsh

This struct doesn't have any optimizations booned by the manual impl. Using
borsh reduces our scope.

* Use temporary variables to further minimize LoC in tributary handler

* Remove usage of tuples for non-trivial Tributary transactions

* Remove serde from dkg

serde could be used to deserialize intenrally inconsistent objects which could
lead to panics or faults.

The BorshDeserialize derives have been replaced with a manual implementation
which won't produce inconsistent objects.

* Abstract Future generics using new trait definitions in coordinator

* Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs

* Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
Luke Parker
3a6c7ad796 Use TX IDs for Bitcoin Eventualities
They're a bit more binding, smaller, provided by the Rust bitcoin library,
sane, and we don't have to worry about malleability since all of our inputs are
SegWit.
2023-12-06 04:37:11 -05:00
Luke Parker
6efc313d76
Add/update msrv for common/*, crypto/*, coins/*, and substrate/*
This includes all published crates.
2023-11-21 01:19:40 -05:00
Luke Parker
797604ad73
Replace usage of io::Error::new(io::ErrorKind::Other, with io::Error::other
Newly possible with Rust 1.74.
2023-11-19 18:31:37 -05:00
Luke Parker
d25e3d86a2
Make TLS an optional feature of simple-request
Removes 14 crates from the tree when compiling the message-queue client.

Also performs a non-intrusive cargo update.
2023-11-15 17:24:11 -05:00
Luke Parker
c03fb6c71b
Add dedicated BatchSignId 2023-11-06 20:06:36 -05:00
Luke Parker
b680bb532b
Don't default to basic-auth if it's enabled, yet require it to be specified 2023-11-06 10:42:01 -05:00
Luke Parker
b9983bf133
Replace reqwest with simple-request
reqwest was replaced with hyper and hyper-rustls within monero-serai due to
reqwest *solely* offering a connection pool API. In the process, it was
demonstrated how quickly we can achieve equivalent functionality to reqwest for
our use cases with a fraction of the code.

This adds our own reqwest alternative to the tree, applying it to both
bitcoin-serai and message-queue. By doing so, bitcoin-serai decreases its tree
by 21 packages and the processor by 18. Cargo.lock decreases by 8 dependencies,
solely adding simple-request. Notably removed is openssl-sys and openssl.

One noted decrease functionality is the requirement on the system having
installed CA certificates. While we could fallback to the rustls certificates
if the system doesn't have any, that's blocked by
https://github.com/rustls/hyper-rustls/pulls/228.
2023-11-06 09:47:12 -05:00
Luke Parker
cddb44ae3f
Bitcoin tweaks + cargo update
Removes bitcoin-serai's usage of sha2 for bitcoin-hashes. While sha2 is still
in play due to modular-frost (more specifically, due to ciphersuite), this
offers a bit more performance (assuming equivalency between sha2 and
bitcoin-hashes' impl) due to removing a static for a const.

Makes secp256k1 a dev dependency for bitcoin-serai. While secp256k1 is still
pulled in via bitcoin, it's hopefully slightly better to compile now and makes
usage of secp256k1 an implementation detail of bitcoin (letting it change it
freely).

Also offers slightly more efficient signing as we don't decode to a signature
just to re-encode for the transaction.

Removes a 20s sleep for a check every second, up to 20 times, for reduced test
times in the processor.
2023-11-06 07:38:36 -05:00
Luke Parker
05dc474cb3
Correct std feature-flagging
If a crate has std set, it should enable std for all dependencies in order to
let them properly select which algorithms to use. Some crates fallback to
slower/worse algorithms on no-std.

Also more aggressively sets default-features = false leading to a *10%*
reduction in the amount of crates coordinator builds.
2023-10-31 07:44:02 -04:00
Luke Parker
34bcb9eb01 bitcoin 0.31 2023-10-31 03:47:45 -04:00
Luke Parker
f4fc539e14
Remove constants inlined into bitcoin-serai for bitcoin::policy-provided constants 2023-10-22 18:08:36 -04:00
Luke Parker
7b2dec63ce
Don't scan outputs which are dust, track dust change as operating costs
Fixes #299.
2023-10-19 08:02:10 -04:00
Luke Parker
9cdca1d3d6
Use the newly stabilized div_ceil
Sets a msrv of 1.73.0.
2023-10-05 14:28:03 -04:00
Luke Parker
ca69f97fef
Add support for multiple multisigs to the processor (#377)
* Design and document a multisig rotation flow

* Make Scanner::eventualities a HashMap so it's per-key

* Don't drop eventualities, always follow through on them

Technical improvements made along the way.

* Start creating an isolate object to manage multisigs, which doesn't require being a signer

Removes key from SubstrateBlock.

* Move Scanner/Scheduler under multisigs

* Move Batch construction into MultisigManager

* Clarify "should" in Multisig Rotation docs

* Add block_number to MultisigManager, as it controls the scanner

* Move sign_plans into MultisigManager

Removes ThresholdKeys from prepare_send.

* Make SubstrateMutable an alias for MultisigManager

* Rewrite Multisig Rotation

The prior scheme had an exploit possible where funds were sent to the old
multisig, then burnt on Serai to send from the new multisig, locking liquidity
for 6 hours. While a fee could be applied to stragglers, to make this attack
unprofitable, the newly described scheme avoids all this.

* Add mini

mini is a miniature version of Serai, emphasizing Serai's nature as a
collection of independent clocks. The intended use is to identify race
conditions and prove protocols are comprehensive regarding when certain clocks
tick.

This uses loom, a prior candidate for evaluating the processor/coordinator as
free of race conditions (#361).

* Use mini to prove a race condition in the current multisig rotation docs, and prove safety of alternatives

Technically, the prior commit had mini prove the race condition.

The docs currently say the activation block of the new multisig is the block
after the next Batch's. If the two next Batches had already entered the
mempool, prior to set_keys being called, the second next Batch would be
expected to contain the new key's data yet fail to as the key wasn't public
when the Batch was actually created.

The naive solution is to create a Batch, publish it, wait until it's included,
and only then scan the next block. This sets a bound of
`Batch publication time < block time`. Optimistically, we can publish a Batch
in 24s while our shortest block time is 2m. Accordingly, we should be fine with
the naive solution which doesn't take advantage of throughput. #333 may
significantly change latency however and require an algorithm whose throughput
exceeds the rate of blocks created.

In order to re-introduce parallelization, enabling throughput, we need to
define a safe range of blocks to scan without Serai ordering the first one.
mini demonstrates safety of scanning n blocks Serai hasn't acknowledged, so
long as the first is scanned before block n+1 is (shifting the n-block window).

The docs will be updated next, to reflect this.

* Fix Multisig Rotation

I believe this is finally good enough to be final.

1) Fixes the race condition present in the prior document, as demonstrated by
mini.

`Batch`s for block `n` and `n+1`, may have been in the mempool when a
multisig's activation block was set to `n`. This would cause a potentially
distinct `Batch` for `n+1`, despite `n+1` already having a signed `Batch`.

2) Tightens when UIs should use the new multisig to prevent eclipse attacks,
and protection against `Batch` publication delays.

3) Removes liquidity fragmentation by tightening flow/handling of latency.

4) Several clarifications and documentation of reasoning.

5) Correction of "prior multisig" to "all prior multisigs" regarding historical
verification, with explanation why.

* Clarify terminology in mini

Synchronizes it from my original thoughts on potential schema to the design
actually created.

* Remove most of processor's README for a reference to docs/processor

This does drop some misc commentary, though none too beneficial. The section on
scanning, deemed sufficiently beneficial, has been moved to a document and
expanded on.

* Update scanner TODOs in line with new docs

* Correct documentation on Bitcoin::Block::time, and Block::time

* Make the scanner in MultisigManager no longer public

* Always send ConfirmKeyPair, regardless of if in-set

* Cargo.lock changes from a prior commit

* Add a policy document on defining a Canonical Chain

I accidentally committed a version of this with a few headers earlier, and this
is a proper version.

* Competent MultisigManager::new

* Update processor's comments

* Add mini to copied files

* Re-organize Scanner per multisig rotation document

* Add RUST_LOG trace targets to e2e tests

* Have the scanner wait once it gets too far ahead

Also bug fixes.

* Add activation blocks to the scanner

* Split received outputs into existing/new in MultisigManager

* Select the proper scheduler

* Schedule multisig activation as detailed in documentation

* Have the Coordinator assert if multiple `Batch`s occur within a block

While the processor used to have ack_up_to_block, enabling skips in the block
acked, support for this was removed while reworking it for multiple multisigs.
It should happen extremely infrequently.

While it would still be beneficial to have, if multiple `Batch`s could occur
within a block (with the complexity here not being worth adding that ban as a
policy), multiple `Batch`s were blocked for DoS reasons.

* Schedule payments to the proper multisig

* Correct >= to <

* Use the new multisig's key for change on schedule

* Don't report External TXs to prior multisig once deprecated

* Forward from the old multisig to the new one at all opportunities

* Move unfulfilled payments in queue from prior to new multisig

* Create MultisigsDb, splitting it out of MainDb

Drops the call to finish_signing from the Signer. While this will cause endless
re-attempts, the Signer will still consider them completed and drop them,
making this an O(n) cost at boot even if we did nothing from here.

The MultisigManager should call finish_signing once the Scanner completes the
Eventuality.

* Don't check Scanner-emitted completions, trust they are completions

Prevents needing to use async code to mark the completion and creates a
fault-free model. The current model, on fault, would cause a lack of marked
completion in the signer.

* Fix a possible panic in the processor

A shorter-chain reorg could cause this assert to trip. It's fixed by
de-duplicating the data, as the assertion checked consistency. Without the
potential for inconsistency, it's unnecessary.

* Document why an existing TODO isn't valid

* Change when we drop payments for being to the change address

The earlier timing prevents creating Plans solely to the branch address,
causing the payments to be dropped, and the TX to become an effective
aggregation TX.

* Extensively document solutions to Eventualities being potentially created after having already scanned their resolutions

* When closing, drop External/Branch outputs which don't cause progress

* Properly decide if Change outputs should be forward or not when closing

This completes all code needed to make the old multisig have a finite lifetime.

* Commentary on forwarding schemes

* Provide a 1 block window, with liquidity fragmentation risks, due to latency

On Bitcoin, this will be 10 minutes for the relevant Batch to be confirmed. On
Monero, 2 minutes. On Ethereum, ~6 minutes.

Also updates the Multisig Rotation document with the new forwarding plan.

* Implement transaction forwarding from old multisig to new multisig

Identifies a fault where Branch outputs which shouldn't be dropped may be, if
another output fulfills their next step. Locking Branch fulfillment down to
only Branch outputs is not done in this commit, but will be in the next.

* Only let Branch outputs fulfill branches

* Update TODOs

* Move the location of handling signer events to avoid a race condition

* Avoid a deadlock by using a RwLock on a single txn instead of two txns

* Move Batch ID out of the Scanner

* Increase from one block of latency on new keys activation to two

For Monero, this offered just two minutes when our latency to publish a Batch
is around a minute already. This does increase the time our liquidity can be
fragmented by up to 20 minutes (Bitcoin), yet it's a stupid attack only
possible once a week (when we rotate). Prioritizing normal users' transactions
not being subject to forwarding is more important here.

Ideally, we'd not do +2 blocks yet plus `time`, such as +10 minutes, making
this agnostic of the underlying network's block scheduling. This is a
complexity not worth it.

* Split MultisigManager::substrate_block into multiple functions

* Further tweaks to substrate_block

* Acquire a lock on all Scanner operations after calling ack_block

Gives time to call register_eventuality and initiate signing.

* Merge sign_plans into substrate_block

Also ensure the Scanner's lock isn't prematurely released.

* Use a HashMap to pass to-be-forwarded instructions, not the DB

* Successfully determine in ClosingExisting

* Move from 2 blocks of latency when rotating to 10 minutes

Superior as noted in 6d07af92ce10cfd74c17eb3400368b0150eb36d7, now trivial to
implement thanks to prior commit.

* Add note justifying measuring time in blocks when rotating

* Implement delaying of outputs received early to the new multisig per specification

* Documentation on why Branch outputs don't have the race condition concerns Change do

Also ensures 6 hours is at least N::CONFIRMATIONS, for sanity purposes.

* Remove TODO re: sanity checking Eventualities

We sanity check the Plan the Eventuality is derived from, and the Eventuality
is handled moments later (in the same file, with a clear call path). There's no
reason to add such APIs to Eventualities for a sanity check given that.

* Add TODO(now) for TODOs which must be done in this branch

Also deprecates a pair of TODOs to TODO2, and accepts the flow of the Signer
having the Eventuality.

* Correct errors in potential/future flow descriptions

* Accept having a single Plan Vec

Per the following code consuming it, there's no benefit to bifurcating it by
key.

* Only issue sign_transaction on boot for the proper signer

* Only set keys when participating in their construction

* Misc progress

Only send SubstrateBlockAck when we have a signer, as it's only used to tell
the Tributary of what Plans are being signed in response to this block.

Only immediately sets substrate_signer if session is 0.

On boot, doesn't panic if we don't have an active key (as we wouldn't if only
joining the next multisig). Continues.

* Correctly detect and set retirement block

Modifies the retirement block from first block meeting requirements to block
CONFIRMATIONS after.

Adds an ack flow to the Scanner's Confirmed event and Block event to accomplish
this, which may deadlock at this time (will be fixed shortly).

Removes an invalid await (after a point declared unsafe to use await) from
MultisigsManager::next_event.

* Remove deadlock in multisig_completed and document alternative

The alternative is simpler, albeit less efficient. There's no reason to adopt
it now, yet perhaps if it benefits modeling?

* Handle the final step of retirement, dropping the old key and setting new to existing

* Remove TODO about emitting a Block on every step

If we emit on NewAsChange, we lose the purpose of the NewAsChange period.

The only concern is if we reach ClosingExisting, and nothing has happened, then
all coins will still be in the old multisig until something finally does. This
isn't a problem worth solving, as it's latency under exceptional dead time.

* Add TODO about potentially not emitting a Block event for the reitrement block

* Restore accidentally deleted CI file

* Pair of slight tweaks

* Add missing if statement

* Disable an assertion when testing

One of the test flows currently abuses the Scanner in a way triggering it.
2023-09-25 09:48:15 -04:00
Luke Parker
7ac0de3a8d
Correct binding properties of Bitcoin eventuality
Eventualities need to be binding not just to a plan, yet to the execution of
the plan (the outputs). Bitcoin's Eventuality definition short-cutted this
under a honest multisig assumption, causing the following issue:

If multisig n+1 is verifying multisig n's actions, as detailed in
multi-multisig's document on multisig rotation, it'll check no outstanding
eventualities exist. If we solely bind to the plan, a malicious multisig n
could steal outbound payments yet cause the plan to be marked as successfully
completed.

By modifying the eventuality to also include the expected outputs, this is no
longer possible. Binding to the expected input is preserved in order to remain
binding to the plan (allowing two plans with the same output-set to co-exist).
2023-09-08 05:21:18 -04:00
Luke Parker
1f45c2c6b5
cargo fmt 2023-08-21 10:40:10 -04:00
Luke Parker
76a30fd572
Support no-std builds of bitcoin-serai
Arguably not meaningful, as it adds the scanner yet not the RPC, and no signing
code since modular-frost doesn't support no-std yet. It's a step in the right
direction though.
2023-08-21 08:56:37 -04:00
Luke Parker
27cd2ee2bb
cargo fmt 2023-08-21 02:38:27 -04:00
Luke Parker
1e68cff6dc
Bump bitcoin-serai to 0.3.0 for publication 2023-08-21 01:26:54 -04:00
Luke Parker
906d3b9a7c
Merge pull request #348 from serai-dex/current-crypto-crates
Current crypto crates
2023-08-21 01:24:16 -04:00
Luke Parker
fa406c507f
Update crypto/ package versions
On a branch while bitcoin-serai wraps up its audit.
2023-08-08 18:19:01 -04:00
Luke Parker
5121ca7519
Handle the minimum relay fee 2023-07-20 01:20:28 -04:00
Luke Parker
1eb3b364f4
Correct dust constant 2023-07-20 00:29:31 -04:00
Luke Parker
f66fe3c1cb
3.10 Remove use of Network::Bitcoin
All uses were safe due to addresses being converted to script_pubkeys which
don't embed their network. The only risk of there being an issue is if a
future address spec did embed the net ID into the script_pubkey and that was
moved to.

This resolves the audit note and does offer that tightening.
2023-07-20 00:27:56 -04:00
Luke Parker
6f9d02fdf8
3.11 Better document API expectations 2023-07-19 23:51:21 -04:00
Luke Parker
df67b7d94c
3.13 Better document the offset mapping 2023-07-10 15:02:34 -04:00
Luke Parker
677b9b681f
3.9/3.10. 3.9: Remove cast which fails on a several GB malicious TX
3.10 has its impossibility documented. A malicious RPC cananot effect this code.
2023-07-10 14:44:18 -04:00
Luke Parker
fa1b569b78
3.8 Document termination of unbounded loop 2023-07-10 14:34:32 -04:00
Luke Parker
d75115ce13
3.7 Replace unwraps with expects
Doesn't replace unwraps on integer conversions.
2023-07-10 14:02:59 -04:00
Luke Parker
3480fc5e16
3.4 2023-07-10 13:33:08 -04:00
Luke Parker
7fa5d291b8
Implement a more robust validity check on connection creation 2023-07-09 15:49:35 -04:00
Luke Parker
c878d38c60
3.1 2023-07-08 21:48:18 -04:00
Luke Parker
92ad689c7e
cargo update
Since p256 now pulls in an extra crate with this update, the {k,p}256 imports
disable default-features to prevent growing the tree.
2023-04-15 23:21:18 -04:00
Luke Parker
f6206b60ec
Update to bitcoin 0.30
Also performs a general update with a variety of upgraded Substrate depends.
2023-04-09 02:31:13 -04:00
Luke Parker
79aff5d4c8
ff 0.13 (#269)
* Partial move to ff 0.13

It turns out the newly released k256 0.12 isn't on ff 0.13, preventing further
work at this time.

* Update all crates to work on ff 0.13

The provided curves still need to be expanded to fit the new API.

* Finish adding dalek-ff-group ff 0.13 constants

* Correct FieldElement::product definition

Also stops exporting macros.

* Test most new parts of ff 0.13

* Additionally test ff-group-tests with BLS12-381 and the pasta curves

We only tested curves from RustCrypto. Now we test a curve offered by zk-crypto,
the group behind ff/group, and the pasta curves, which is by Zcash (though
Zcash developers are also behind zk-crypto).

* Finish Ed448

Fully specifies all constants, passes all tests in ff-group-tests, and finishes moving to ff-0.13.

* Add RustCrypto/elliptic-curves to allowed git repos

Needed due to k256/p256 incorrectly defining product.

* Finish writing ff 0.13 tests

* Add additional comments to dalek

* Further comments

* Update ethereum-serai to ff 0.13
2023-03-28 04:38:01 -04:00
Luke Parker
11a0803ea5
Make the bitcoin Algorithm test a unit test 2023-03-21 18:50:23 -04:00
Luke Parker
d58a7b0ebf
cargo fmt 2023-03-20 20:43:52 -04:00
Luke Parker
952cf280c2
Bump crate versions 2023-03-20 20:34:41 -04:00
Luke Parker
515587406f
Finish testing bitcoin-serai 2023-03-20 05:47:07 -04:00
Luke Parker
7fc8630d39
Test bitcoin-serai
Also resolves a few rough edges.
2023-03-20 04:46:27 -04:00
Luke Parker
597122b2e0
Add a Scanner to bitcoin-serai
Moves the processor to it. This ends up as a net-neutral LoC change to the
processor, unfortunately, yet this makes bitcoin-serai safer/easier to use, and
increases the processor's usage of bitcoin-serai.

Also re-organizes bitcoin-serai a bit.
2023-03-20 01:03:39 -04:00