Add a Scanner to bitcoin-serai

Moves the processor to it. This ends up as a net-neutral LoC change to the
processor, unfortunately, yet this makes bitcoin-serai safer/easier to use, and
increases the processor's usage of bitcoin-serai.

Also re-organizes bitcoin-serai a bit.
This commit is contained in:
Luke Parker 2023-03-20 01:02:06 -04:00
parent 0aa6b561b7
commit 597122b2e0
No known key found for this signature in database
8 changed files with 363 additions and 286 deletions

View file

@ -1,131 +0,0 @@
use core::fmt::Debug;
use std::io;
use lazy_static::lazy_static;
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng};
use sha2::{Digest, Sha256};
use transcript::Transcript;
use secp256k1::schnorr::Signature;
use k256::{elliptic_curve::ops::Reduce, U256, Scalar, ProjectivePoint};
use frost::{
curve::{Ciphersuite, Secp256k1},
Participant, ThresholdKeys, ThresholdView, FrostError,
algorithm::{Hram as HramTrait, Algorithm, Schnorr as FrostSchnorr},
};
use crate::crypto::{x, make_even};
/// A BIP-340 compatible HRAm for use with the modular-frost Schnorr Algorithm.
///
/// If passed an odd nonce, it will have the generator added until it is even.
#[derive(Clone, Copy, Debug)]
pub struct Hram {}
lazy_static! {
static ref TAG_HASH: [u8; 32] = Sha256::digest(b"BIP0340/challenge").into();
}
#[allow(non_snake_case)]
impl HramTrait<Secp256k1> for Hram {
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
// Convert the nonce to be even
let (R, _) = make_even(*R);
let mut data = Sha256::new();
data.update(*TAG_HASH);
data.update(*TAG_HASH);
data.update(x(&R));
data.update(x(A));
data.update(m);
Scalar::from_uint_reduced(U256::from_be_slice(&data.finalize()))
}
}
/// BIP-340 Schnorr signature algorithm.
///
/// This must be used with a ThresholdKeys whose group key is even. If it is odd, this will panic.
#[derive(Clone)]
pub struct Schnorr<T: Sync + Clone + Debug + Transcript>(FrostSchnorr<Secp256k1, T, Hram>);
impl<T: Sync + Clone + Debug + Transcript> Schnorr<T> {
/// Construct a Schnorr algorithm continuing the specified transcript.
pub fn new(transcript: T) -> Schnorr<T> {
Schnorr(FrostSchnorr::new(transcript))
}
}
impl<T: Sync + Clone + Debug + Transcript> Algorithm<Secp256k1> for Schnorr<T> {
type Transcript = T;
type Addendum = ();
type Signature = Signature;
fn transcript(&mut self) -> &mut Self::Transcript {
self.0.transcript()
}
fn nonces(&self) -> Vec<Vec<ProjectivePoint>> {
self.0.nonces()
}
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
keys: &ThresholdKeys<Secp256k1>,
) {
self.0.preprocess_addendum(rng, keys)
}
fn read_addendum<R: io::Read>(&self, reader: &mut R) -> io::Result<Self::Addendum> {
self.0.read_addendum(reader)
}
fn process_addendum(
&mut self,
view: &ThresholdView<Secp256k1>,
i: Participant,
addendum: (),
) -> Result<(), FrostError> {
self.0.process_addendum(view, i, addendum)
}
fn sign_share(
&mut self,
params: &ThresholdView<Secp256k1>,
nonce_sums: &[Vec<<Secp256k1 as Ciphersuite>::G>],
nonces: Vec<Zeroizing<<Secp256k1 as Ciphersuite>::F>>,
msg: &[u8],
) -> <Secp256k1 as Ciphersuite>::F {
self.0.sign_share(params, nonce_sums, nonces, msg)
}
#[must_use]
fn verify(
&self,
group_key: ProjectivePoint,
nonces: &[Vec<ProjectivePoint>],
sum: Scalar,
) -> Option<Self::Signature> {
self.0.verify(group_key, nonces, sum).map(|mut sig| {
// Make the R of the final signature even
let offset;
(sig.R, offset) = make_even(sig.R);
// s = r + cx. Since we added to the r, add to s
sig.s += Scalar::from(offset);
// Convert to a secp256k1 signature
Signature::from_slice(&sig.serialize()[1 ..]).unwrap()
})
}
fn verify_share(
&self,
verification_share: ProjectivePoint,
nonces: &[Vec<ProjectivePoint>],
share: Scalar,
) -> Result<Vec<(Scalar, ProjectivePoint)>, ()> {
self.0.verify_share(verification_share, nonces, share)
}
}

View file

@ -1,9 +1,27 @@
use k256::{
elliptic_curve::sec1::{Tag, ToEncodedPoint},
Scalar, ProjectivePoint,
};
use core::fmt::Debug;
use std::io;
use frost::{curve::Secp256k1, ThresholdKeys};
use lazy_static::lazy_static;
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng};
use sha2::{Digest, Sha256};
use transcript::Transcript;
use secp256k1::schnorr::Signature;
use k256::{
elliptic_curve::{
ops::Reduce,
sec1::{Tag, ToEncodedPoint},
},
U256, Scalar, ProjectivePoint,
};
use frost::{
curve::{Ciphersuite, Secp256k1},
Participant, ThresholdKeys, ThresholdView, FrostError,
algorithm::{Hram as HramTrait, Algorithm, Schnorr as FrostSchnorr},
};
use bitcoin::XOnlyPublicKey;
@ -30,8 +48,113 @@ pub fn make_even(mut key: ProjectivePoint) -> (ProjectivePoint, u64) {
(key, c)
}
/// Tweak keys to ensure they're usable with Bitcoin.
pub fn tweak_keys(keys: &ThresholdKeys<Secp256k1>) -> ThresholdKeys<Secp256k1> {
let (_, offset) = make_even(keys.group_key());
keys.offset(Scalar::from(offset))
/// A BIP-340 compatible HRAm for use with the modular-frost Schnorr Algorithm.
///
/// If passed an odd nonce, it will have the generator added until it is even.
#[derive(Clone, Copy, Debug)]
pub struct Hram {}
lazy_static! {
static ref TAG_HASH: [u8; 32] = Sha256::digest(b"BIP0340/challenge").into();
}
#[allow(non_snake_case)]
impl HramTrait<Secp256k1> for Hram {
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
// Convert the nonce to be even
let (R, _) = make_even(*R);
let mut data = Sha256::new();
data.update(*TAG_HASH);
data.update(*TAG_HASH);
data.update(x(&R));
data.update(x(A));
data.update(m);
Scalar::from_uint_reduced(U256::from_be_slice(&data.finalize()))
}
}
/// BIP-340 Schnorr signature algorithm.
///
/// This must be used with a ThresholdKeys whose group key is even. If it is odd, this will panic.
#[derive(Clone)]
pub struct Schnorr<T: Sync + Clone + Debug + Transcript>(FrostSchnorr<Secp256k1, T, Hram>);
impl<T: Sync + Clone + Debug + Transcript> Schnorr<T> {
/// Construct a Schnorr algorithm continuing the specified transcript.
pub fn new(transcript: T) -> Schnorr<T> {
Schnorr(FrostSchnorr::new(transcript))
}
}
impl<T: Sync + Clone + Debug + Transcript> Algorithm<Secp256k1> for Schnorr<T> {
type Transcript = T;
type Addendum = ();
type Signature = Signature;
fn transcript(&mut self) -> &mut Self::Transcript {
self.0.transcript()
}
fn nonces(&self) -> Vec<Vec<ProjectivePoint>> {
self.0.nonces()
}
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
keys: &ThresholdKeys<Secp256k1>,
) {
self.0.preprocess_addendum(rng, keys)
}
fn read_addendum<R: io::Read>(&self, reader: &mut R) -> io::Result<Self::Addendum> {
self.0.read_addendum(reader)
}
fn process_addendum(
&mut self,
view: &ThresholdView<Secp256k1>,
i: Participant,
addendum: (),
) -> Result<(), FrostError> {
self.0.process_addendum(view, i, addendum)
}
fn sign_share(
&mut self,
params: &ThresholdView<Secp256k1>,
nonce_sums: &[Vec<<Secp256k1 as Ciphersuite>::G>],
nonces: Vec<Zeroizing<<Secp256k1 as Ciphersuite>::F>>,
msg: &[u8],
) -> <Secp256k1 as Ciphersuite>::F {
self.0.sign_share(params, nonce_sums, nonces, msg)
}
#[must_use]
fn verify(
&self,
group_key: ProjectivePoint,
nonces: &[Vec<ProjectivePoint>],
sum: Scalar,
) -> Option<Self::Signature> {
self.0.verify(group_key, nonces, sum).map(|mut sig| {
// Make the R of the final signature even
let offset;
(sig.R, offset) = make_even(sig.R);
// s = r + cx. Since we added to the r, add to s
sig.s += Scalar::from(offset);
// Convert to a secp256k1 signature
Signature::from_slice(&sig.serialize()[1 ..]).unwrap()
})
}
fn verify_share(
&self,
verification_share: ProjectivePoint,
nonces: &[Vec<ProjectivePoint>],
share: Scalar,
) -> Result<Vec<(Scalar, ProjectivePoint)>, ()> {
self.0.verify_share(verification_share, nonces, share)
}
}

View file

@ -3,8 +3,6 @@ pub use bitcoin;
/// Cryptographic helpers.
pub mod crypto;
/// BIP-340 Schnorr signature algorithm.
pub mod algorithm;
/// Wallet functionality to create transactions.
pub mod wallet;
/// A minimal asynchronous Bitcoin RPC client.

View file

@ -14,8 +14,7 @@ use frost::{
};
use crate::{
crypto::{x_only, make_even},
algorithm::Schnorr,
crypto::{x_only, make_even, Schnorr},
rpc::Rpc,
};

View file

@ -0,0 +1,158 @@
use std::{
io::{self, Read, Write},
collections::HashMap,
};
use k256::{
elliptic_curve::sec1::{Tag, ToEncodedPoint},
Scalar, ProjectivePoint,
};
use frost::{
curve::{Ciphersuite, Secp256k1},
ThresholdKeys,
};
use bitcoin::{
consensus::encode::{Decodable, serialize},
schnorr::TweakedPublicKey,
OutPoint, Script, TxOut, Transaction, Block, Network, Address,
};
use crate::crypto::{x_only, make_even};
mod send;
pub use send::*;
/// Tweak keys to ensure they're usable with Bitcoin.
pub fn tweak_keys(keys: &ThresholdKeys<Secp256k1>) -> ThresholdKeys<Secp256k1> {
let (_, offset) = make_even(keys.group_key());
keys.offset(Scalar::from(offset))
}
/// Return the Taproot address for a public key.
pub fn address(network: Network, key: ProjectivePoint) -> Option<Address> {
if key.to_encoded_point(true).tag() != Tag::CompressedEvenY {
return None;
}
Some(Address::p2tr_tweaked(TweakedPublicKey::dangerous_assume_tweaked(x_only(&key)), network))
}
/// A spendable output.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct ReceivedOutput {
// The scalar offset to obtain the key usable to spend this output.
//
// This field exists in order to support HDKD schemes.
offset: Scalar,
// The output to spend.
output: TxOut,
// The TX ID and vout of the output to spend.
outpoint: OutPoint,
}
impl ReceivedOutput {
/// The offset for this output.
pub fn offset(&self) -> Scalar {
self.offset
}
/// The outpoint for this output.
pub fn outpoint(&self) -> &OutPoint {
&self.outpoint
}
/// The value of this output.
pub fn value(&self) -> u64 {
self.output.value
}
/// Read a ReceivedOutput from a generic satisfying Read.
pub fn read<R: Read>(r: &mut R) -> io::Result<ReceivedOutput> {
Ok(ReceivedOutput {
offset: Secp256k1::read_F(r)?,
output: TxOut::consensus_decode(r)
.map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid TxOut"))?,
outpoint: OutPoint::consensus_decode(r)
.map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid OutPoint"))?,
})
}
/// Write a ReceivedOutput to a generic satisfying Write.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
w.write_all(&self.offset.to_bytes())?;
w.write_all(&serialize(&self.output))?;
w.write_all(&serialize(&self.outpoint))
}
/// Serialize a ReceivedOutput to a Vec<u8>.
pub fn serialize(&self) -> Vec<u8> {
let mut res = vec![];
self.write(&mut res).unwrap();
res
}
}
/// A transaction scanner capable of being used with HDKD schemes.
#[derive(Clone, Debug)]
pub struct Scanner {
key: ProjectivePoint,
scripts: HashMap<Script, Scalar>,
}
impl Scanner {
/// Construct a Scanner for a key.
///
/// Returns None if this key can't be scanned for.
pub fn new(key: ProjectivePoint) -> Option<Scanner> {
let mut scripts = HashMap::new();
// Uses Network::Bitcoin since network is irrelevant here
scripts.insert(address(Network::Bitcoin, key)?.script_pubkey(), Scalar::ZERO);
Some(Scanner { key, scripts })
}
/// Register an offset to scan for.
///
/// Due to Bitcoin's requirement that points are even, not every offset may be used.
/// If an offset isn't usable, it will be incremented until it is. If this offset is already
/// present, None is returned. Else, Some(offset) will be, with the used offset.
pub fn register_offset(&mut self, mut offset: Scalar) -> Option<Scalar> {
loop {
match address(Network::Bitcoin, self.key + (ProjectivePoint::GENERATOR * offset)) {
Some(address) => {
let script = address.script_pubkey();
if self.scripts.contains_key(&script) {
None?;
}
self.scripts.insert(script, offset);
return Some(offset);
}
None => offset += Scalar::ONE,
}
}
}
/// Scan a transaction.
pub fn scan_transaction(&self, tx: &Transaction) -> Vec<ReceivedOutput> {
let mut res = vec![];
for (vout, output) in tx.output.iter().enumerate() {
if let Some(offset) = self.scripts.get(&output.script_pubkey) {
res.push(ReceivedOutput {
offset: *offset,
output: output.clone(),
outpoint: OutPoint::new(tx.txid(), u32::try_from(vout).unwrap()),
});
}
}
res
}
/// Scan a block.
pub fn scan_block(&self, block: &Block) -> Vec<ReceivedOutput> {
let mut res = vec![];
for tx in &block.txdata {
res.extend(self.scan_transaction(tx));
}
res
}
}

View file

@ -1,5 +1,5 @@
use std::{
io::{self, Read, Write},
io::{self, Read},
collections::HashMap,
};
@ -9,22 +9,16 @@ use rand_core::{RngCore, CryptoRng};
use transcript::{Transcript, RecommendedTranscript};
use k256::{elliptic_curve::sec1::{Tag, ToEncodedPoint}, Scalar, ProjectivePoint};
use frost::{
curve::{Ciphersuite, Secp256k1},
Participant, ThresholdKeys, FrostError,
sign::*,
};
use k256::{elliptic_curve::sec1::ToEncodedPoint, Scalar};
use frost::{curve::Secp256k1, Participant, ThresholdKeys, FrostError, sign::*};
use bitcoin::{
hashes::Hash,
consensus::encode::{Decodable, serialize},
schnorr::TweakedPublicKey,
util::sighash::{SchnorrSighashType, SighashCache, Prevouts},
OutPoint, Script, Sequence, Witness, TxIn, TxOut, PackedLockTime, Transaction, Network, Address,
OutPoint, Script, Sequence, Witness, TxIn, TxOut, PackedLockTime, Transaction, Address,
};
use crate::{crypto::x_only, algorithm::Schnorr};
use crate::{crypto::Schnorr, wallet::ReceivedOutput};
#[rustfmt::skip]
// https://github.com/bitcoin/bitcoin/blob/306ccd4927a2efe325c8d84be1bdb79edeb29b04/src/policy/policy.h#L27
@ -34,84 +28,6 @@ const MAX_STANDARD_TX_WEIGHT: u64 = 400_000;
//https://github.com/bitcoin/bitcoin/blob/a245429d680eb95cf4c0c78e58e63e3f0f5d979a/src/test/transaction_tests.cpp#L815-L816
const DUST: u64 = 674;
/// Return the Taproot address for a public key.
pub fn address(network: Network, key: ProjectivePoint) -> Option<Address> {
if key.to_encoded_point(true).tag() != Tag::CompressedEvenY {
return None;
}
Some(Address::p2tr_tweaked(TweakedPublicKey::dangerous_assume_tweaked(x_only(&key)), network))
}
/// A spendable output.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct SpendableOutput {
// The scalar offset to obtain the key usable to spend this output.
//
// This field exists in order to support HDKD schemes.
offset: Scalar,
// The output to spend.
output: TxOut,
// The TX ID and vout of the output to spend.
outpoint: OutPoint,
}
impl SpendableOutput {
/// Construct a SpendableOutput from an output.
pub fn new(key: ProjectivePoint, offset: Option<Scalar>, tx: &Transaction, o: usize) -> Option<SpendableOutput> {
let offset = offset.unwrap_or(Scalar::ZERO);
// Uses Network::Bitcoin since network is irrelevant here
let address = address(Network::Bitcoin, key + (ProjectivePoint::GENERATOR * offset))?;
let output = tx.output.get(o)?;
if output.script_pubkey == address.script_pubkey() {
return Some(SpendableOutput {
offset,
output: output.clone(),
outpoint: OutPoint { txid: tx.txid(), vout: u32::try_from(o).unwrap() },
});
}
None
}
/// The outpoint for this output.
pub fn outpoint(&self) -> &OutPoint {
&self.outpoint
}
/// The value of this output.
pub fn value(&self) -> u64 {
self.output.value
}
/// Read a SpendableOutput from a generic satisfying Read.
pub fn read<R: Read>(r: &mut R) -> io::Result<SpendableOutput> {
Ok(SpendableOutput {
offset: Secp256k1::read_F(r)?,
output: TxOut::consensus_decode(r)
.map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid TxOut"))?,
outpoint: OutPoint::consensus_decode(r)
.map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid OutPoint"))?,
})
}
/// Write a SpendableOutput to a generic satisfying Write.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
w.write_all(&self.offset.to_bytes())?;
w.write_all(&serialize(&self.output))?;
w.write_all(&serialize(&self.outpoint))
}
/// Serialize a SpendableOutput to a Vec<u8>.
pub fn serialize(&self) -> Vec<u8> {
let mut res = vec![];
self.write(&mut res).unwrap();
res
}
}
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum TransactionError {
#[error("no inputs were specified")]
@ -188,7 +104,7 @@ impl SignableTransaction {
///
/// If data is specified, an OP_RETURN output will be added with it.
pub fn new(
mut inputs: Vec<SpendableOutput>,
mut inputs: Vec<ReceivedOutput>,
payments: &[(Address, u64)],
change: Option<Address>,
data: Option<Vec<u8>>,

View file

@ -3,8 +3,12 @@ use std::{io, collections::HashMap};
use async_trait::async_trait;
use transcript::RecommendedTranscript;
use group::ff::PrimeField;
use k256::{ProjectivePoint, Scalar};
use frost::{curve::Secp256k1, ThresholdKeys};
use frost::{
curve::{Curve, Secp256k1},
ThresholdKeys,
};
use bitcoin_serai::{
bitcoin::{
@ -15,9 +19,9 @@ use bitcoin_serai::{
blockdata::script::Instruction,
Transaction, Block, Network,
},
crypto::{make_even, tweak_keys},
wallet::{
address, SpendableOutput, TransactionError, SignableTransaction as BSignableTransaction, TransactionMachine,
tweak_keys, address, ReceivedOutput, Scanner, TransactionError,
SignableTransaction as BSignableTransaction, TransactionMachine,
},
rpc::{RpcError, Rpc},
};
@ -61,7 +65,7 @@ impl AsMut<[u8]> for OutputId {
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Output {
kind: OutputType,
output: SpendableOutput,
output: ReceivedOutput,
data: Vec<u8>,
}
@ -96,7 +100,7 @@ impl OutputTrait for Output {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
Ok(Output {
kind: OutputType::read(reader)?,
output: SpendableOutput::read(reader)?,
output: ReceivedOutput::read(reader)?,
data: {
let mut data_len = [0; 2];
reader.read_exact(&mut data_len)?;
@ -179,25 +183,35 @@ impl BlockTrait<Bitcoin> for Block {
}
}
fn next_key(mut key: ProjectivePoint, i: usize) -> (ProjectivePoint, Scalar) {
let mut offset = Scalar::ZERO;
for _ in 0 .. i {
key += ProjectivePoint::GENERATOR;
offset += Scalar::ONE;
let even_offset;
(key, even_offset) = make_even(key);
offset += Scalar::from(even_offset);
}
(key, offset)
const KEY_DST: &[u8] = b"Bitcoin Key";
lazy_static::lazy_static! {
static ref BRANCH_OFFSET: Scalar = Secp256k1::hash_to_F(KEY_DST, b"branch");
static ref CHANGE_OFFSET: Scalar = Secp256k1::hash_to_F(KEY_DST, b"change");
}
fn branch(key: ProjectivePoint) -> (ProjectivePoint, Scalar) {
next_key(key, 1)
}
fn scanner(
key: ProjectivePoint,
) -> (Scanner, HashMap<OutputType, Scalar>, HashMap<Vec<u8>, OutputType>) {
let mut scanner = Scanner::new(key).unwrap();
let mut offsets = HashMap::from([(OutputType::External, Scalar::ZERO)]);
fn change(key: ProjectivePoint) -> (ProjectivePoint, Scalar) {
next_key(key, 2)
let zero = Scalar::ZERO.to_repr();
let zero_ref: &[u8] = zero.as_ref();
let mut kinds = HashMap::from([(zero_ref.to_vec(), OutputType::External)]);
let mut register = |kind, offset| {
let offset = scanner.register_offset(offset).expect("offset collision");
offsets.insert(kind, offset);
let offset = offset.to_repr();
let offset_ref: &[u8] = offset.as_ref();
kinds.insert(offset_ref.to_vec(), kind);
};
register(OutputType::Branch, *BRANCH_OFFSET);
register(OutputType::Change, *CHANGE_OFFSET);
(scanner, offsets, kinds)
}
#[derive(Clone, Debug)]
@ -281,7 +295,8 @@ impl Coin for Bitcoin {
}
fn branch_address(key: ProjectivePoint) -> Self::Address {
Self::address(branch(key).0)
let (_, offsets, _) = scanner(key);
Self::address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Branch]))
}
async fn get_latest_block_number(&self) -> Result<usize, CoinError> {
@ -299,39 +314,33 @@ impl Coin for Bitcoin {
block: &Self::Block,
key: ProjectivePoint,
) -> Result<Vec<Self::Output>, CoinError> {
let external = (key, Scalar::ZERO);
let branch = branch(key);
let change = change(key);
let (scanner, _, kinds) = scanner(key);
let entry =
|pair: (_, _), kind| (Self::address(pair.0).0.script_pubkey().to_bytes(), (pair.1, kind));
let scripts = HashMap::from([
entry(external, OutputType::External),
entry(branch, OutputType::Branch),
entry(change, OutputType::Change),
]);
let mut outputs = Vec::new();
let mut outputs = vec![];
// Skip the coinbase transaction which is burdened by maturity
for tx in &block.txdata[1 ..] {
for (vout, output) in tx.output.iter().enumerate() {
if let Some(info) = scripts.get(&output.script_pubkey.to_bytes()) {
outputs.push(Output {
kind: info.1,
output: SpendableOutput::new(key, Some(info.0), tx, vout).unwrap(),
data: (|| {
for output in &tx.output {
if output.script_pubkey.is_op_return() {
match output.script_pubkey.instructions_minimal().last() {
Some(Ok(Instruction::PushBytes(data))) => return data.to_vec(),
_ => continue,
}
for output in scanner.scan_transaction(tx) {
let offset_repr = output.offset().to_repr();
let offset_repr_ref: &[u8] = offset_repr.as_ref();
let kind = kinds[offset_repr_ref];
let data = if kind == OutputType::External {
(|| {
for output in &tx.output {
if output.script_pubkey.is_op_return() {
match output.script_pubkey.instructions_minimal().last() {
Some(Ok(Instruction::PushBytes(data))) => return data.to_vec(),
_ => continue,
}
}
vec![]
})(),
});
}
}
vec![]
})()
} else {
vec![]
};
outputs.push(Output { kind, output, data })
}
}
@ -360,7 +369,12 @@ impl Coin for Bitcoin {
match BSignableTransaction::new(
plan.inputs.iter().map(|input| input.output.clone()).collect(),
&payments,
plan.change.map(|key| Self::address(change(key).0).0),
plan
.change
.map(|key| {
let (_, offsets, _) = scanner(key);
Self::address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Change])).0
}),
None,
fee.0,
) {

View file

@ -34,7 +34,7 @@ pub trait Id:
}
impl<I: Send + Sync + Clone + Default + PartialEq + AsRef<[u8]> + AsMut<[u8]> + Debug> Id for I {}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum OutputType {
// Needs to be processed/sent up to Substrate
External,