* fix typos
* remove tributary sleeping
* handle not locally provided txs
* use topic number instead of waiting list
* Clean-up, fixes
1) Uses a single TXN in provided
2) Doesn't continue on non-local provided inside verify_block, skipping further
execution of checks
3) Upon local provision of already on-chain TX, compares
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
* Revert "Correct the prior documented TOCTOU"
This reverts commit d50fe87801.
* Correct the prior documented TOCTOU
d50fe87801 edited the challenge for the Batch to
fix it. This won't produce Batch n+1 until Batch n is successfully published
and verified. It's an alternative strategy able to be reviewed, with a much
smaller impact to scope.
Now, if a malicious validator set publishes a malicious `Batch` at the last
moment, it'll cause all future `Batch`s signed by the next validator set to
require a bool being set (yet they never will set it).
This will prevent the handover.
The only overhead is having two distinct `batch_message` calls on-chain.
The new set publishing a `Batch` completes the handover protocol. The new set
should only publish a `Batch` once it believes the old set has completed all of
its on-external-chain activity, marking it honest and finite.
With the handover comes the acceptance of liability, hence the requirement for
all of the on-Serai-chain activity also needing verification. While most
activity would be verified in-real-time (upon ::Batch messages), the new set
will now explicitly verify the complete set of `Batch`s before beginning its
preprocess for its own `Batch` (the one accepting the handover).
* initial staking pallet
* add staking pallet to runtime
* support session rotation for serai
* optimizations & cleaning
* fix deny
* add serai network to initial networks
* a few tweaks & comments
* fix some pr comments
* Rewrite validator-sets with logarithmic algorithms
Uses the fact the underlying DB is sorted to achieve sorting of potential
validators by stake.
Removes release of deallocated stake for now.
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
Renames Update to SignedBatch.
Checks Batch equality via a hash of the InInstructions. That prevents needing
to keep the Batch in node state or TX introspect.
Prior, we only supported a single Tributary per network, and spawned a task to
handled Processor messages per Tributary. Now, we handle Processor messages per
network, yet we still only supported a single Tributary in that handling
function.
Now, when we handle a message, we load the Tributary which is relevant. Once we
know it, we ensure we have it (preventing race conditions), and then proceed.
We do need work to check if we should have a Tributary, or if we're not
participating. We also need to check if a Tributary has been retired, meaning
we shouldn't handle any transactions related to them, and to clean up retired
Tributaries.
This is a possibility under the new deterministic nonce scheme.
While there is a concern of us never creating a transaction with a nonce,
blocking everything, we should always create transactions. We'll always publish
preprocesses, and while we'll only publish shares if everyone else does, we
only allocate for shares once everyone else does.
It was a piece of duplicated data used to achieve context-less
de)serialization. This new Vec code is a bit tricker to first read, yet overall
clean and removes a potential fault.
Saves 2 bytes from DkgShares messages.
See prior commit message for more info.
With the plan for the batch sign ID to be just 5 bytes (potentially 4), this
does incur a +5 bytes cost compared to the ExternalBlock system *even in the
standard case*. The simplicity remains preferred at this time.
The initial TODO was simply to use one ExternalBlock per all batches in the
block. This would require publishing ExternalBlock after the last batch,
requiring knowing the last batch. While we could add such a pipeline, it'd
require:
1) Initial preprocesses using a distinct message from BatchPreprocess
2) An additional message sent after all BatchPreprocess are sent
Unfortunately, both would require tweaks to the SubstrateSigner which aren't
worth the complexity compared to the solution here, at least, not at this time.
While this will cause, if a Tributary is signing a block whose total batch data
exceeds 25 kB, to use multiple transactions which could be optimized out by
'better' local data pipelining, that's an extreme edge case. Given the temporal
nature of each Tributary, it's also an acceptable edge.
This does no longer achieve synchrony over external blocks accordingly. While
signed batches have synchrony, as they embed their block hash, batches being
signed don't have cryptographic synchrony on their contents. This means
validators who are eclipsed may produce invalid shares, as they sign a
different batch. This will be introduced in a follow-up commit.