Commit graph

149 commits

Author SHA1 Message Date
Luke Parker
4143fe9f47
Move scan_tributaries, shrinking coordinator's main.rs 2023-10-13 22:30:13 -04:00
Luke Parker
a73b19e2b8
Tweak coordinator test timing 2023-10-13 21:46:26 -04:00
Luke Parker
97c328e5fb
Check tributaries are active before declaring them relevant 2023-10-13 21:46:17 -04:00
Luke Parker
96c397caa0
Add content-based deduplication to the tests' shimmed P2P
The tests have recently had their timing stilted, causing failures. The tests
are... fine. They're fragile, as obvious, yet they're logical. The simplest fix
is to unstilt their timing rather to make them non-fragile.

The recent change, which presumably caused said stilting, was the the
rebroadcasting added. This de-duplication prevents most of the impact of
rebroadcasting. While there's still the async task, and the lock acquisition on
attempt to rebroadcast, this hopefully is enough.
2023-10-13 19:47:58 -04:00
akildemir
d5c6ed1a03
Improve provided handling ()
* fix typos

* remove tributary sleeping

* handle not locally provided txs

* use topic number instead of waiting list

* Clean-up, fixes

1) Uses a single TXN in provided
2) Doesn't continue on non-local provided inside verify_block, skipping further
   execution of checks
3) Upon local provision of already on-chain TX, compares

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-10-13 19:45:47 -04:00
Luke Parker
f6e8bc3352
Alternate handover batch TOCTOU fix ()
* Revert "Correct the prior documented TOCTOU"

This reverts commit d50fe87801.

* Correct the prior documented TOCTOU

d50fe87801 edited the challenge for the Batch to
fix it. This won't produce Batch n+1 until Batch n is successfully published
and verified. It's an alternative strategy able to be reviewed, with a much
smaller impact to scope.
2023-10-13 12:14:59 -04:00
Luke Parker
d50fe87801
Correct the prior documented TOCTOU
Now, if a malicious validator set publishes a malicious `Batch` at the last
moment, it'll cause all future `Batch`s signed by the next validator set to
require a bool being set (yet they never will set it).

This will prevent the handover.

The only overhead is having two distinct `batch_message` calls on-chain.
2023-10-13 04:41:01 -04:00
Luke Parker
e6aa9df428
Document TOCTOU allowing malicious validator set to trigger a handover to an honest set 2023-10-13 04:14:36 -04:00
Luke Parker
02edfd2935
Verify all Batchs published by the prior set
The new set publishing a `Batch` completes the handover protocol. The new set
should only publish a `Batch` once it believes the old set has completed all of
its on-external-chain activity, marking it honest and finite.

With the handover comes the acceptance of liability, hence the requirement for
all of the on-Serai-chain activity also needing verification. While most
activity would be verified in-real-time (upon ::Batch messages), the new set
will now explicitly verify the complete set of `Batch`s before beginning its
preprocess for its own `Batch` (the one accepting the handover).
2023-10-13 04:12:21 -04:00
Luke Parker
9aeece5bf6
Give one weight per key share to validators in Tributary 2023-10-13 02:29:22 -04:00
Luke Parker
6a4c57e86f
Define an array of all NetworkIds in serai_primitives 2023-10-12 23:59:21 -04:00
Luke Parker
15edea1389
Use an inner task to spawn Tributarys to minimize latency 2023-10-12 21:55:25 -04:00
Luke Parker
f25f5cd368
Add a sleep statement to Batch publication errors to prevent log flooding/node hammering 2023-10-12 18:39:46 -04:00
Luke Parker
13cbc99149
Properly define the on-chain handover protocol
The new key publishing `Batch`s is more than sufficient.

Also uses the correct key to verify the published `Batch`s authenticity.
2023-10-10 23:55:59 -04:00
Luke Parker
1a0b4198ba
Correct the check for if we still need to set keys
The prior check had an edge case where once keys were pruned, it'd believe the
keys needed to be set ad infinitum.
2023-10-10 22:53:15 -04:00
akildemir
98190b7b83
Staking pallet ()
* initial staking pallet

* add staking pallet to runtime

* support session rotation for serai

* optimizations & cleaning

* fix deny

* add serai network to initial networks

* a few tweaks & comments

* fix some pr comments

* Rewrite validator-sets with logarithmic algorithms

Uses the fact the underlying DB is sorted to achieve sorting of potential
validators by stake.

Removes release of deallocated stake for now.

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-10-10 06:53:24 -04:00
Luke Parker
30d0bad175
Add extra assert to coordinator 2023-10-09 23:38:39 -04:00
Luke Parker
bd5491dfd5
Simply Coordinator/Processors::send by accepting impl Into *Message 2023-09-29 04:19:59 -04:00
Luke Parker
0eff3d9453
Add Batch messages from processor, verify Batchs published on-chain
Renames Update to SignedBatch.

Checks Batch equality via a hash of the InInstructions. That prevents needing
to keep the Batch in node state or TX introspect.
2023-09-29 03:51:01 -04:00
Luke Parker
83b3a5c31c
Document how receiving a Processor message does indeed make its Tributary relevant 2023-09-28 20:09:17 -04:00
Luke Parker
7d738a3677
Start moving Coordinator to a multi-Tributary model
Prior, we only supported a single Tributary per network, and spawned a task to
handled Processor messages per Tributary. Now, we handle Processor messages per
network, yet we still only supported a single Tributary in that handling
function.

Now, when we handle a message, we load the Tributary which is relevant. Once we
know it, we ensure we have it (preventing race conditions), and then proceed.

We do need work to check if we should have a Tributary, or if we're not
participating. We also need to check if a Tributary has been retired, meaning
we shouldn't handle any transactions related to them, and to clean up retired
Tributaries.
2023-09-27 20:49:02 -04:00
Luke Parker
4a32f22418
Use a proper transcript for Tributary scanner topics 2023-09-27 13:33:25 -04:00
Luke Parker
01a4b9e694
Remove unused_variables 2023-09-27 13:00:04 -04:00
Luke Parker
3b01d3039b
Remove unused clippy lints from coordinator 2023-09-27 12:42:25 -04:00
Luke Parker
40b7bc59d0
Use dedicated Queues for each from-to pair
Prevents one Processor's message from halting the entire pipeline.
2023-09-27 12:20:57 -04:00
Luke Parker
269db1c4be
Remove the "expected" next ID
It's an unnecessary extra layer better handled locally.
2023-09-27 11:13:55 -04:00
Luke Parker
90318d7214
Remove unnecessary TODO 2023-09-27 00:50:57 -04:00
Luke Parker
64d370ac11
Make publish_signed_transaction safe for out of order publications
This is a possibility under the new deterministic nonce scheme.

While there is a concern of us never creating a transaction with a nonce,
blocking everything, we should always create transactions. We'll always publish
preprocesses, and while we'll only publish shares if everyone else does, we
only allocate for shares once everyone else does.
2023-09-27 00:44:31 -04:00
Luke Parker
db8dc1e864
Spawn a task for Heartbeat responses, preventing it from holding up P2P handling 2023-09-27 00:10:37 -04:00
Luke Parker
086458d041
Txn for handling a processor message
handle_processor_messages function added to remove a very large block of nested
code.

MainDb cleaned to never be instantiated.
2023-09-27 00:00:31 -04:00
Luke Parker
2e0f8138e2
Update the coordinator to not handle a processor message multiple times 2023-09-26 23:28:05 -04:00
Luke Parker
32a9a33226
Adjust sync test timeout to resolve infreuqent failure
This isn't an unacceptable timeout. It matches a prior timeout. I'm unsure why
it's now needed to be extended though. My best guess is the test runtime is
single threaded and there's now new overhead in the task management (or perhaps
higher latency now that messages per-tributary is serialized).
2023-09-26 17:28:41 -04:00
Luke Parker
2508633de9
Add a next block notification system to Tributary
Also adds a loop missing from the prior commit.
2023-09-25 23:20:51 -04:00
Luke Parker
7312428a44
P2P task per Tributary, not per message 2023-09-25 22:58:40 -04:00
Luke Parker
e1801b57c9
Dedicated tasks per-Processor in coordinator
This isn't meaningful yet, as we still have serialized reading messages from
Processors, yet is a step closer.
2023-09-25 22:38:29 -04:00
Luke Parker
60491a091f
Improve handling of tasks in coordinator, one per Tributary scanner 2023-09-25 20:33:14 -04:00
Luke Parker
9f3840d1cf
Localize Tributary HashMaps, offering flexibility and removing contention 2023-09-25 19:28:53 -04:00
Luke Parker
7120bddc6f
Move where we trigger DKGs for safety reasons 2023-09-25 18:27:16 -04:00
Luke Parker
77f7794452
Remove lazy_static for proper use of channels 2023-09-25 18:23:52 -04:00
Luke Parker
62a1a45135
Move where we create the readers to prevent only creating readers for present-at-boot tributaries
Also renames publish_transaction to publish_signed_transaction.
2023-09-25 18:07:29 -04:00
Luke Parker
0440e60645
Move heartbeat_tributaries from Tributary to TributaryReader
Reduces contention.
2023-09-25 17:15:38 -04:00
Luke Parker
4babf898d7
Implement deterministic nonces for Tributary transactions 2023-09-25 15:42:39 -04:00
Luke Parker
ca69f97fef
Add support for multiple multisigs to the processor ()
* Design and document a multisig rotation flow

* Make Scanner::eventualities a HashMap so it's per-key

* Don't drop eventualities, always follow through on them

Technical improvements made along the way.

* Start creating an isolate object to manage multisigs, which doesn't require being a signer

Removes key from SubstrateBlock.

* Move Scanner/Scheduler under multisigs

* Move Batch construction into MultisigManager

* Clarify "should" in Multisig Rotation docs

* Add block_number to MultisigManager, as it controls the scanner

* Move sign_plans into MultisigManager

Removes ThresholdKeys from prepare_send.

* Make SubstrateMutable an alias for MultisigManager

* Rewrite Multisig Rotation

The prior scheme had an exploit possible where funds were sent to the old
multisig, then burnt on Serai to send from the new multisig, locking liquidity
for 6 hours. While a fee could be applied to stragglers, to make this attack
unprofitable, the newly described scheme avoids all this.

* Add mini

mini is a miniature version of Serai, emphasizing Serai's nature as a
collection of independent clocks. The intended use is to identify race
conditions and prove protocols are comprehensive regarding when certain clocks
tick.

This uses loom, a prior candidate for evaluating the processor/coordinator as
free of race conditions ().

* Use mini to prove a race condition in the current multisig rotation docs, and prove safety of alternatives

Technically, the prior commit had mini prove the race condition.

The docs currently say the activation block of the new multisig is the block
after the next Batch's. If the two next Batches had already entered the
mempool, prior to set_keys being called, the second next Batch would be
expected to contain the new key's data yet fail to as the key wasn't public
when the Batch was actually created.

The naive solution is to create a Batch, publish it, wait until it's included,
and only then scan the next block. This sets a bound of
`Batch publication time < block time`. Optimistically, we can publish a Batch
in 24s while our shortest block time is 2m. Accordingly, we should be fine with
the naive solution which doesn't take advantage of throughput.  may
significantly change latency however and require an algorithm whose throughput
exceeds the rate of blocks created.

In order to re-introduce parallelization, enabling throughput, we need to
define a safe range of blocks to scan without Serai ordering the first one.
mini demonstrates safety of scanning n blocks Serai hasn't acknowledged, so
long as the first is scanned before block n+1 is (shifting the n-block window).

The docs will be updated next, to reflect this.

* Fix Multisig Rotation

I believe this is finally good enough to be final.

1) Fixes the race condition present in the prior document, as demonstrated by
mini.

`Batch`s for block `n` and `n+1`, may have been in the mempool when a
multisig's activation block was set to `n`. This would cause a potentially
distinct `Batch` for `n+1`, despite `n+1` already having a signed `Batch`.

2) Tightens when UIs should use the new multisig to prevent eclipse attacks,
and protection against `Batch` publication delays.

3) Removes liquidity fragmentation by tightening flow/handling of latency.

4) Several clarifications and documentation of reasoning.

5) Correction of "prior multisig" to "all prior multisigs" regarding historical
verification, with explanation why.

* Clarify terminology in mini

Synchronizes it from my original thoughts on potential schema to the design
actually created.

* Remove most of processor's README for a reference to docs/processor

This does drop some misc commentary, though none too beneficial. The section on
scanning, deemed sufficiently beneficial, has been moved to a document and
expanded on.

* Update scanner TODOs in line with new docs

* Correct documentation on Bitcoin::Block::time, and Block::time

* Make the scanner in MultisigManager no longer public

* Always send ConfirmKeyPair, regardless of if in-set

* Cargo.lock changes from a prior commit

* Add a policy document on defining a Canonical Chain

I accidentally committed a version of this with a few headers earlier, and this
is a proper version.

* Competent MultisigManager::new

* Update processor's comments

* Add mini to copied files

* Re-organize Scanner per multisig rotation document

* Add RUST_LOG trace targets to e2e tests

* Have the scanner wait once it gets too far ahead

Also bug fixes.

* Add activation blocks to the scanner

* Split received outputs into existing/new in MultisigManager

* Select the proper scheduler

* Schedule multisig activation as detailed in documentation

* Have the Coordinator assert if multiple `Batch`s occur within a block

While the processor used to have ack_up_to_block, enabling skips in the block
acked, support for this was removed while reworking it for multiple multisigs.
It should happen extremely infrequently.

While it would still be beneficial to have, if multiple `Batch`s could occur
within a block (with the complexity here not being worth adding that ban as a
policy), multiple `Batch`s were blocked for DoS reasons.

* Schedule payments to the proper multisig

* Correct >= to <

* Use the new multisig's key for change on schedule

* Don't report External TXs to prior multisig once deprecated

* Forward from the old multisig to the new one at all opportunities

* Move unfulfilled payments in queue from prior to new multisig

* Create MultisigsDb, splitting it out of MainDb

Drops the call to finish_signing from the Signer. While this will cause endless
re-attempts, the Signer will still consider them completed and drop them,
making this an O(n) cost at boot even if we did nothing from here.

The MultisigManager should call finish_signing once the Scanner completes the
Eventuality.

* Don't check Scanner-emitted completions, trust they are completions

Prevents needing to use async code to mark the completion and creates a
fault-free model. The current model, on fault, would cause a lack of marked
completion in the signer.

* Fix a possible panic in the processor

A shorter-chain reorg could cause this assert to trip. It's fixed by
de-duplicating the data, as the assertion checked consistency. Without the
potential for inconsistency, it's unnecessary.

* Document why an existing TODO isn't valid

* Change when we drop payments for being to the change address

The earlier timing prevents creating Plans solely to the branch address,
causing the payments to be dropped, and the TX to become an effective
aggregation TX.

* Extensively document solutions to Eventualities being potentially created after having already scanned their resolutions

* When closing, drop External/Branch outputs which don't cause progress

* Properly decide if Change outputs should be forward or not when closing

This completes all code needed to make the old multisig have a finite lifetime.

* Commentary on forwarding schemes

* Provide a 1 block window, with liquidity fragmentation risks, due to latency

On Bitcoin, this will be 10 minutes for the relevant Batch to be confirmed. On
Monero, 2 minutes. On Ethereum, ~6 minutes.

Also updates the Multisig Rotation document with the new forwarding plan.

* Implement transaction forwarding from old multisig to new multisig

Identifies a fault where Branch outputs which shouldn't be dropped may be, if
another output fulfills their next step. Locking Branch fulfillment down to
only Branch outputs is not done in this commit, but will be in the next.

* Only let Branch outputs fulfill branches

* Update TODOs

* Move the location of handling signer events to avoid a race condition

* Avoid a deadlock by using a RwLock on a single txn instead of two txns

* Move Batch ID out of the Scanner

* Increase from one block of latency on new keys activation to two

For Monero, this offered just two minutes when our latency to publish a Batch
is around a minute already. This does increase the time our liquidity can be
fragmented by up to 20 minutes (Bitcoin), yet it's a stupid attack only
possible once a week (when we rotate). Prioritizing normal users' transactions
not being subject to forwarding is more important here.

Ideally, we'd not do +2 blocks yet plus `time`, such as +10 minutes, making
this agnostic of the underlying network's block scheduling. This is a
complexity not worth it.

* Split MultisigManager::substrate_block into multiple functions

* Further tweaks to substrate_block

* Acquire a lock on all Scanner operations after calling ack_block

Gives time to call register_eventuality and initiate signing.

* Merge sign_plans into substrate_block

Also ensure the Scanner's lock isn't prematurely released.

* Use a HashMap to pass to-be-forwarded instructions, not the DB

* Successfully determine in ClosingExisting

* Move from 2 blocks of latency when rotating to 10 minutes

Superior as noted in 6d07af92ce10cfd74c17eb3400368b0150eb36d7, now trivial to
implement thanks to prior commit.

* Add note justifying measuring time in blocks when rotating

* Implement delaying of outputs received early to the new multisig per specification

* Documentation on why Branch outputs don't have the race condition concerns Change do

Also ensures 6 hours is at least N::CONFIRMATIONS, for sanity purposes.

* Remove TODO re: sanity checking Eventualities

We sanity check the Plan the Eventuality is derived from, and the Eventuality
is handled moments later (in the same file, with a clear call path). There's no
reason to add such APIs to Eventualities for a sanity check given that.

* Add TODO(now) for TODOs which must be done in this branch

Also deprecates a pair of TODOs to TODO2, and accepts the flow of the Signer
having the Eventuality.

* Correct errors in potential/future flow descriptions

* Accept having a single Plan Vec

Per the following code consuming it, there's no benefit to bifurcating it by
key.

* Only issue sign_transaction on boot for the proper signer

* Only set keys when participating in their construction

* Misc progress

Only send SubstrateBlockAck when we have a signer, as it's only used to tell
the Tributary of what Plans are being signed in response to this block.

Only immediately sets substrate_signer if session is 0.

On boot, doesn't panic if we don't have an active key (as we wouldn't if only
joining the next multisig). Continues.

* Correctly detect and set retirement block

Modifies the retirement block from first block meeting requirements to block
CONFIRMATIONS after.

Adds an ack flow to the Scanner's Confirmed event and Block event to accomplish
this, which may deadlock at this time (will be fixed shortly).

Removes an invalid await (after a point declared unsafe to use await) from
MultisigsManager::next_event.

* Remove deadlock in multisig_completed and document alternative

The alternative is simpler, albeit less efficient. There's no reason to adopt
it now, yet perhaps if it benefits modeling?

* Handle the final step of retirement, dropping the old key and setting new to existing

* Remove TODO about emitting a Block on every step

If we emit on NewAsChange, we lose the purpose of the NewAsChange period.

The only concern is if we reach ClosingExisting, and nothing has happened, then
all coins will still be in the old multisig until something finally does. This
isn't a problem worth solving, as it's latency under exceptional dead time.

* Add TODO about potentially not emitting a Block event for the reitrement block

* Restore accidentally deleted CI file

* Pair of slight tweaks

* Add missing if statement

* Disable an assertion when testing

One of the test flows currently abuses the Scanner in a way triggering it.
2023-09-25 09:48:15 -04:00
Luke Parker
9ab43407e1
Ignore NewSet events for Serai in the coordinator
The coordinator has nothing to do in this case.
2023-09-08 09:55:19 -04:00
Luke Parker
06a6cd29b0
Set nodelay on coordinator's P2P sockets 2023-09-06 22:57:33 -04:00
Luke Parker
cd4c3a6c88
Correct publication of Completed Tributary TXs 2023-09-02 00:50:54 -04:00
Luke Parker
fddc605c65
Define a proper Topic (Zone + ID)
Removes the inefficiency of recognized_topic for attempt returning None if the
topic isn't recognized.
2023-09-01 01:21:15 -04:00
Luke Parker
2ad6b38be9
Prefix root keys in coordinator with "coordinator" to prevent conflicts with tributary 2023-09-01 01:00:24 -04:00
Luke Parker
fda90e23c9
Reduce and clarify data flow in Tributary scanner 2023-09-01 00:59:10 -04:00
Luke Parker
3f3f6b2d0c
Properly route attempt around DkgConfirmer 2023-09-01 00:16:43 -04:00