With a DKG removal comes a reduction in the amount of participants which was
ignored by re-attempts.
Now, we determine n/i based on the parties removed, and deterministically
obtain the context of who was removd.
* Schedule re-attempts and add a (not filled out) match statement to actually execute them
A comment explains the methodology. To copy it here:
"""
This is because we *always* re-attempt any protocol which had participation. That doesn't
mean we *should* re-attempt this protocol.
The alternatives were:
1) Note on-chain we completed a protocol, halting re-attempts upon 34%.
2) Vote on-chain to re-attempt a protocol.
This schema doesn't have any additional messages upon the success case (whereas
alternative #1 does) and doesn't have overhead (as alternative #2 does, sending votes and
then preprocesses. This only sends preprocesses).
"""
Any signing protocol which reaches sufficient participation will be
re-attempted until it no longer does.
* Have the Substrate scanner track DKG removals/completions for the Tributary code
* Don't keep trying to publish a participant removal if we've already set keys
* Pad out the re-attempt match a bit more
* Have CosignEvaluator reload from the DB
* Correctly schedule cosign re-attempts
* Actuall spawn new DKG removal attempts
* Use u32 for Batch ID in SubstrateSignableId, finish Batch re-attempt routing
The batch ID was an opaque [u8; 5] which also included the network, yet that's
redundant and unhelpful.
* Clarify a pair of TODOs in the coordinator
* Remove old TODO
* Final comment cleanup
* Correct usage of TARGET_BLOCK_TIME in reattempt scheduler
It's in ms and I assumed it was in s.
* Have coordinator tests drop BatchReattempts which aren't relevant yet may exist
* Bug fix and pointless oddity removal
We scheduled a re-attempt upon receiving 2/3rds of preprocesses and upon
receiving 2/3rds of shares, so any signing protocol could cause two re-attempts
(not one more).
The coordinator tests randomly generated the Batch ID since it was prior an
opaque byte array. While that didn't break the test, it was pointless and did
make the already-succeeded check before re-attempting impossible to hit.
* Add log statements, correct dead-lock in coordinator tests
* Increase pessimistic timeout on recv_message to compensate for tighter best-case timeouts
* Further bump timeout by a minute
AFAICT, GH failed by just a few seconds.
This also is worst-case in a single instance, making it fine to be decently long.
* Further further bump timeout due to lack of distinct error
* Move logic for evaluating if a cosign should occur to its own file
Cleans it up and makes it more robust.
* Have expected_next_batch return an error instead of retrying
While convenient to offer an error-free implementation, it potentially caused
very long lived lock acquisitions in handle_processor_message.
* Unify and clean DkgConfirmer and DkgRemoval
Does so via adding a new file for the common code, SigningProtocol.
Modifies from_cache to return the preprocess with the machine, as there's no
reason not to. Also removes an unused Result around the type.
Clarifies the security around deterministic nonces, removing them for
saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the
DB is not a proper secret store.
Moves arguments always present in the protocol from function arguments into the
struct itself.
Removes the horribly ugly code in DkgRemoval, fixing multiple issues present
with it which would cause it to fail on use.
* Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol
* Remove unnecessary Clone from lambdas in coordinator
* Remove the EventDb from Tributary scanner
We used per-Transaction DB TXNs so on error, we don't have to rescan the entire
block yet only the rest of it. We prevented scanning multiple transactions by
tracking which we already had.
This is over-engineered and not worth it.
* Implement borsh for HasEvents, removing the manual encoding
* Merge DkgConfirmer and DkgRemoval into signing_protocol.rs
Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes
if any validator had multiple key shares.
* Strictly type DataSpecification's Label
* Correct threshold_i_map_to_keys_and_musig_i_map
It didn't include the participant's own index and accordingly was offset.
* Create TributaryBlockHandler
This struct contains all variables prior passed to handle_block and stops them
from being passed around again and again.
This also ensures fatal_slash is only called while handling a block, as needed
as it expects to operate under perfect consensus.
* Inline accumulate, store confirmation nonces with shares
Inlining accumulate makes sense due to the amount of data accumulate needed to
be passed.
Storing confirmation nonces with shares ensures that both are available or
neither. Prior, one could be yet the other may not have been (requiring an
assert in runtime to ensure we didn't bungle it somehow).
* Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs
* Move Label into SignData
All of our transactions which use SignData end up with the same common usage
pattern for Label, justifying this.
Removes 3 transactions, explicitly de-duplicating their handlers.
* Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair
* Remove the manual read/write for TributarySpec for borsh
This struct doesn't have any optimizations booned by the manual impl. Using
borsh reduces our scope.
* Use temporary variables to further minimize LoC in tributary handler
* Remove usage of tuples for non-trivial Tributary transactions
* Remove serde from dkg
serde could be used to deserialize intenrally inconsistent objects which could
lead to panics or faults.
The BorshDeserialize derives have been replaced with a manual implementation
which won't produce inconsistent objects.
* Abstract Future generics using new trait definitions in coordinator
* Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs
* Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
Event retrieval was prior:
- Retrieve all events in the block, which may be hundreds of KB
- Filter to just a few
Since it's frequent to want multiple sets of events, each filtered in their own
way, this caused the retrieval to happen multiple times. Now, it only will
happen once.
Also has the scoped clients take a reference, not an owned TemporalSerai.
* chore: implement create_db for substrate (fix broken branch)
* Correct rebase artifacts
* chore: remove todo statement
* chore: rename BlockDb to NextBlock
* chore: return empty tuple instead of empty array for event storage
* Finish rebasing
* .Minor tweaks to remove leftover variables
These may be rebase artifacts.
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
* coordinator/src/db.rs db macro implimentation
* fixed fmt errors
* converted txn functions to get/set counterparts
* use take_signed_transaction function
* fix for two fo the tests
* Misc tweaks
* Minor tweaks
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
Uses a full-fledged serai-abi to do so.
Removes use of UncheckedExtrinsic as a pointlessly (for us) length-prefixed
block with a more complicated signing algorithm than advantageous.
In the future, we should considering consolidating the various primitives
crates. I'm not convinced we benefit from one primitives crate per pallet.
* Update ValidatorSets with a remove_participant call
* Add DkgRemoval, a sign machine for producing the relevant MuSig signatures
* Don't use position-dependent u8s yet Public when removing validators from the DKG
* Add DkgRemovalPreprocess, DkgRemovalShares
Implementation is via a new publish_tributary_tx lambda.
This is code is a copy-pasted mess which will need to be cleaned up.
* Only allow non-removed validators to vote for removals
Otherwise, it's risked that the remaining validators fall below 67% of the
original set.
* Correct publish_serai_tx, which was prior publish_set_keys in practice
This mirrors how Provided TXs handle topics.
Now, instead of managing a global nonce stream, we can use items such as plan
IDs as topics.
This massively benefits re-attempts, as else we'd need a NOP TX to clear unused
nonces.
* Use redb and in Dockerfiles
The motivation for redb was to remove the multiple rocksdb compile times from
CI.
* Correct feature flagging of coordinator and message-queue in Dockerfiles
* Correct message-queue DB type alias
* Use consistent table typing in redb
* Correct rebase artifacts
* Correct removal of binaries feature from message-queue
* Correct processor feature flagging
* Replace redb with parity-db
It still has much better compile times yet doesn't block when creating multiple
transactions. It also is actively maintained and doesn't grow our tree. The MPT
aspects are irrelevant.
* Correct stray Redb
* clippy warning
* Correct txn get
* Use debug builds in our Dockerfiles to reduce CI times
Also enables only spawning the mdns service when debug in the coordinator.
* Correct underflow in processor
Prior undetected due to relase builds not having bounds checks enabled.
* Restore Serai release due to CI/RPC failures caused by compiling it in debug mode
This is *probably* worth an issue filed upstream, if it can be tracked down.
* Correct failing debug asserts in Monero
These debug asserts assumed there was a change address to take the remainder.
If there's no change address, the remainder is shunted to the fee, causing the
fee to be distinct from the estimate.
We presumably need to modify monero-serai such that change: None isn't valid,
and users must use Change::Fingerprintable(None).
* Remove subxt
Removes ~20 crates from our Cargo.lock.
Removes downloading the metadata and enables removing the getMetadata RPC route
(relevant to #379).
Moves forward #337.
Done now due to distinctions in the subxt 0.32 API surface which make it
justifiable to not update.
* fmt, update due to deny triggering on a yanked crate
* Correct the handling of substrate_block_notifier now that it's ephemeral, not long-lived
* Correct URL in tests/coordinator from ws to http
* Remove NetworkId from processor-messages
Because intent binds to the sender/receiver, it's not needed for intent.
The processor knows what the network is.
The coordinator knows which to use because it's sending this message to the
processor for that network.
Also removes the unused zeroize.
* ProcessorMessage::Completed use Session instead of key
* Move SubstrateSignId to Session
* Finish replacing key with session
* Move message-queue to a fully binary representation
Additionally adds a timeout to the message queue test.
* coordinator clippy
* Remove contention for the message-queue socket by using per-request sockets
* clippy
* Add SignalsConfig to chain_spec
* Correct multiexp feature flagging for rand_core std
* Remove bincode for borsh
Replaces a non-canonical encoding with a canonical encoding which additionally
should be faster.
Also fixes an issue where we used bincode in transcripts where it cannot be
trusted.
This ended up fixing a myriad of other bugs observed, unfortunately.
Accordingly, it either has to be merged or the bug fixes from it must be ported
to a new PR.
* Make serde optional, minimize usage
* Make borsh an optional dependency of substrate/ crates
* Remove unused dependencies
* Use [u8; 64] where possible in the processor messages
* Correct borsh feature flagging
The coordinator already had one of these, albeit implemented much worse than
the one now properly introduced. It had to either be sending or receiving,
whereas the new one can do both at the same time.
This replaces said instance and enables pleasant patterns when implementing the
processor/coordinator.
* Add a function to deterministically decide which Serai blocks should be co-signed
Has a 5 minute latency between co-signs, also used as the maximal latency
before a co-sign is started.
* Get all active tributaries we're in at a specific block
* Add and route CosignSubstrateBlock, a new provided TX
* Split queued cosigns per network
* Rename BatchSignId to SubstrateSignId
* Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it
* Handle the CosignSubstrateBlock provided TX
* Revert substrate_signer.rs to develop (and patch to still work)
Due to SubstrateSigner moving when the prior multisig closes, yet cosigning
occurring with the most recent key, a single SubstrateSigner can be reused.
We could manage multiple SubstrateSigners, yet considering the much lower
specifications for cosigning, I'd rather treat it distinctly.
* Route cosigning through the processor
* Add note to rename SubstrateSigner post-PR
I don't want to do so now in order to preserve the diff's clarity.
* Implement cosign evaluation into the coordinator
* Get tests to compile
* Bug fixes, mark blocks without cosigners available as cosigned
* Correct the ID Batch preprocesses are saved under, add log statements
* Create a dedicated function to handle cosigns
* Correct the flow around Batch verification/queueing
Verifying `Batch`s could stall when a `Batch` was signed before its
predecessors/before the block it's contained in was cosigned (the latter being
inevitable as we can't sign a block containing a signed batch before signing
the batch).
Now, Batch verification happens on a distinct async task in order to not block
the handling of processor messages. This task is the sole caller of verify in
order to ensure last_verified_batch isn't unexpectedly mutated.
When the processor message handler needs to access it, or needs to queue a
Batch, it associates the DB TXN with a lock preventing the other task from
doing so.
This lock, as currently implemented, is a poor and inefficient design. It
should be modified to the pattern used for cosign management. Additionally, a
new primitive of a DB-backed channel may be immensely valuable.
Fixes a standing potential deadlock and a deadlock introduced with the
cosigning protocol.
* Working full-stack tests
After the last commit, this only required extending a timeout.
* Replace "co-sign" with "cosign" to make finding text easier
* Update the coordinator tests to support cosigning
* Inline prior_batch calculation to prevent panic on rotation
Noticed when doing a final review of the branch.
* chore: convert nonce_deicer to use create_db macro
* Restore pub NonceDecider
* Remove extraneous comma
I forgot to run git commit --amend on the prior commit :/
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
* Have processor report errors during the DKG to the coordinator
* Add RemoveParticipant, InvalidDkgShare to coordinator
* Route DKG blame around coordinator
* Allow public construction of AdditionalBlameMachine
Necessary for upcoming work on handling DKG blame in the processor and
coordinator.
Additionally fixes a publicly reachable panic when commitments parsed with one
ThresholdParams are used in a machine using another set of ThresholdParams.
Renames InvalidProofOfKnowledge to InvalidCommitments.
* Remove unused error from dleq
* Implement support for VerifyBlame in the processor
* Have coordinator send the processor share message relevant to Blame
* Remove desync between processors reporting InvalidShare and ones reporting GeneratedKeyPair
* Route blame on sign between processor and coordinator
Doesn't yet act on it in coordinator.
* Move txn usage as needed for stable Rust to build
* Correct InvalidDkgShare serialization
* add reasons to slash evidence
* fix CI failing
* Remove unnecessary clones
.encode() takes &self
* InvalidVr to InvalidValidRound
* Unrelated to this PR: Clarify reasoning/potentials behind dropping evidence
* Clarify prevotes in SlashEvidence test
* Replace use of read_to_end
* Restore decode_signed_message
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
* Update the coordinator to give key shares based on weight, not based on existence
Participants are now identified by their starting index. While this compiles,
the following is unimplemented:
1) A conversion for DKG `i` values. It assumes the threshold `i` values used
will be identical for the MuSig signature used to confirm the DKG.
2) Expansion from compressed values to full values before forwarding to the
processor.
* Add a fn to the DkgConfirmer to convert `i` values as needed
Also removes TODOs regarding Serai ensuring validator key uniqueness +
validity. The current infra achieves both.
* Have the Tributary DB track participation by shares, not by count
* Prevent a node from obtaining 34% of the maximum amount of key shares
This is actually mainly intended to set a bound on message sizes in the
coordinator. Message sizes are amplified by the amount of key shares held, so
setting an upper bound on said amount lets it determine constants. While that
upper bound could be 150, that'd be unreasonable and increase the potential for
DoS attacks.
* Correct the mechanism to detect if sufficient accumulation has occured
It used to check if the latest accumulation hit the required threshold. Now,
accumulations may jump past the required threshold. The required mechanism is
to check the threshold wasn't prior met and is now met.
* Finish updating the coordinator to handle a multiple key share per validator environment
* Adjust stategy re: preventing noce reuse in DKG Confirmer
* Add TODOs regarding dropped transactions, add possible TODO fix
* Update tests/coordinator
This doesn't add new multi-key-share tests, it solely updates the existing
single key-share tests to compile and run, with the necessary fixes to the
coordinator.
* Update processor key_gen to handle generating multiple key shares at once
* Update SubstrateSigner
* Update signer, clippy
* Update processor tests
* Update processor docker tests
* initial implementation
* add function to get a balance of an account
* add support for multiple coins
* rename pallet to "coins-pallet"
* replace balances, assets and tokens pallet with coins pallet in runtime
* add total supply info
* update client side for new Coins pallet
* handle fees
* bug fixes
* Update FeeAccount test
* Fmt
* fix pr comments
* remove extraneous Imbalance type
* Minor tweaks
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
Replaces plan IDs with key + ID, letting the coordinator determine the sessions
for the plans.
Properly scopes which plan IDs are set on which tributaries, and ensures we
have the necessary tributaries at time of handling.
Adds Event::SetRetired to validator-sets.
Emit TributaryRetired.
Replaces is_active_set, which made multiple network requests, with
is_retired_tributary, a DB read.
Performs most of the removals necessary upon TributaryRetired.
Still needs to clean up the actual Tributary/Tendermint tasks.
The tests have recently had their timing stilted, causing failures. The tests
are... fine. They're fragile, as obvious, yet they're logical. The simplest fix
is to unstilt their timing rather to make them non-fragile.
The recent change, which presumably caused said stilting, was the the
rebroadcasting added. This de-duplication prevents most of the impact of
rebroadcasting. While there's still the async task, and the lock acquisition on
attempt to rebroadcast, this hopefully is enough.
* fix typos
* remove tributary sleeping
* handle not locally provided txs
* use topic number instead of waiting list
* Clean-up, fixes
1) Uses a single TXN in provided
2) Doesn't continue on non-local provided inside verify_block, skipping further
execution of checks
3) Upon local provision of already on-chain TX, compares
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
* Revert "Correct the prior documented TOCTOU"
This reverts commit d50fe87801.
* Correct the prior documented TOCTOU
d50fe87801 edited the challenge for the Batch to
fix it. This won't produce Batch n+1 until Batch n is successfully published
and verified. It's an alternative strategy able to be reviewed, with a much
smaller impact to scope.
Now, if a malicious validator set publishes a malicious `Batch` at the last
moment, it'll cause all future `Batch`s signed by the next validator set to
require a bool being set (yet they never will set it).
This will prevent the handover.
The only overhead is having two distinct `batch_message` calls on-chain.
The new set publishing a `Batch` completes the handover protocol. The new set
should only publish a `Batch` once it believes the old set has completed all of
its on-external-chain activity, marking it honest and finite.
With the handover comes the acceptance of liability, hence the requirement for
all of the on-Serai-chain activity also needing verification. While most
activity would be verified in-real-time (upon ::Batch messages), the new set
will now explicitly verify the complete set of `Batch`s before beginning its
preprocess for its own `Batch` (the one accepting the handover).
* initial staking pallet
* add staking pallet to runtime
* support session rotation for serai
* optimizations & cleaning
* fix deny
* add serai network to initial networks
* a few tweaks & comments
* fix some pr comments
* Rewrite validator-sets with logarithmic algorithms
Uses the fact the underlying DB is sorted to achieve sorting of potential
validators by stake.
Removes release of deallocated stake for now.
---------
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
Renames Update to SignedBatch.
Checks Batch equality via a hash of the InInstructions. That prevents needing
to keep the Batch in node state or TX introspect.
Prior, we only supported a single Tributary per network, and spawned a task to
handled Processor messages per Tributary. Now, we handle Processor messages per
network, yet we still only supported a single Tributary in that handling
function.
Now, when we handle a message, we load the Tributary which is relevant. Once we
know it, we ensure we have it (preventing race conditions), and then proceed.
We do need work to check if we should have a Tributary, or if we're not
participating. We also need to check if a Tributary has been retired, meaning
we shouldn't handle any transactions related to them, and to clean up retired
Tributaries.
This is a possibility under the new deterministic nonce scheme.
While there is a concern of us never creating a transaction with a nonce,
blocking everything, we should always create transactions. We'll always publish
preprocesses, and while we'll only publish shares if everyone else does, we
only allocate for shares once everyone else does.