Working multisig TXs

This commit is contained in:
Luke Parker 2022-04-30 04:32:19 -04:00
parent d6649fffb1
commit 9ccf683e9d
No known key found for this signature in database
GPG key ID: F9F1386DB1E119B6
12 changed files with 577 additions and 325 deletions

View file

@ -24,7 +24,7 @@ use crate::{
#[cfg(feature = "multisig")]
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::{TransactionData, Multisig};
pub use multisig::Multisig;
#[derive(Error, Debug)]
pub enum Error {

View file

@ -1,4 +1,5 @@
use core::fmt::Debug;
use std::{rc::Rc, cell::RefCell};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng;
@ -14,7 +15,7 @@ use curve25519_dalek::{
use group::Group;
use dalek_ff_group as dfg;
use frost::{Curve, FrostError, algorithm::Algorithm, sign::ParamsView};
use frost::{Curve, FrostError, algorithm::Algorithm, MultisigView};
use monero::util::ringct::{Key, Clsag};
@ -25,11 +26,6 @@ use crate::{
clsag::{Input, sign_core, verify}
};
pub trait TransactionData: Clone + Debug {
fn msg(&self) -> [u8; 32];
fn mask_sum(&self) -> Scalar;
}
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
struct ClsagSignInterim {
@ -42,23 +38,26 @@ struct ClsagSignInterim {
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
pub struct Multisig<D: TransactionData> {
pub struct Multisig {
entropy: Vec<u8>,
AH: (dfg::EdwardsPoint, dfg::EdwardsPoint),
input: Input,
image: EdwardsPoint,
data: D,
msg: Rc<RefCell<[u8; 32]>>,
mask_sum: Rc<RefCell<Scalar>>,
interim: Option<ClsagSignInterim>
}
impl<D: TransactionData> Multisig<D> {
impl Multisig {
pub fn new(
input: Input,
data: D
) -> Result<Multisig<D>, MultisigError> {
msg: Rc<RefCell<[u8; 32]>>,
mask_sum: Rc<RefCell<Scalar>>,
) -> Result<Multisig, MultisigError> {
Ok(
Multisig {
entropy: vec![],
@ -67,38 +66,45 @@ impl<D: TransactionData> Multisig<D> {
input,
image: EdwardsPoint::identity(),
data,
msg,
mask_sum,
interim: None
}
)
}
pub fn serialized_len() -> usize {
3 * (32 + 64)
}
}
impl<D: TransactionData> Algorithm<Ed25519> for Multisig<D> {
impl Algorithm<Ed25519> for Multisig {
type Signature = (Clsag, EdwardsPoint);
// We arguably don't have to commit to the nonces at all thanks to xG and yG being committed to,
// both of those being proven to have the same scalar as xH and yH, yet it doesn't hurt
// As for the image, that should be committed to by the msg from TransactionData, yet putting it
// here as well ensures the security bounds of this
// As for the image, that should be committed to by the msg, yet putting it here as well ensures
// the security bounds of this
fn addendum_commit_len() -> usize {
3 * 32
}
fn preprocess_addendum<R: RngCore + CryptoRng>(
rng: &mut R,
view: &ParamsView<Ed25519>,
view: &MultisigView<Ed25519>,
nonces: &[dfg::Scalar; 2]
) -> Vec<u8> {
let (mut serialized, proof) = key_image::generate_share(rng, view);
let (share, proof) = key_image::generate_share(rng, view);
#[allow(non_snake_case)]
let H = hash_to_point(&view.group_key().0);
#[allow(non_snake_case)]
let nH = (nonces[0].0 * H, nonces[1].0 * H);
serialized.reserve_exact(3 * (32 + 64));
let mut serialized = Vec::with_capacity(Multisig::serialized_len());
serialized.extend(share.compress().to_bytes());
serialized.extend(nH.0.compress().to_bytes());
serialized.extend(nH.1.compress().to_bytes());
serialized.extend(&DLEqProof::prove(rng, &nonces[0].0, &H, &nH.0).serialize());
@ -109,12 +115,12 @@ impl<D: TransactionData> Algorithm<Ed25519> for Multisig<D> {
fn process_addendum(
&mut self,
view: &ParamsView<Ed25519>,
view: &MultisigView<Ed25519>,
l: usize,
commitments: &[dfg::EdwardsPoint; 2],
serialized: &[u8]
) -> Result<(), FrostError> {
if serialized.len() != (3 * (32 + 64)) {
if serialized.len() != Multisig::serialized_len() {
// Not an optimal error but...
Err(FrostError::InvalidCommitmentQuantity(l, 9, serialized.len() / 32))?;
}
@ -122,7 +128,7 @@ impl<D: TransactionData> Algorithm<Ed25519> for Multisig<D> {
// Use everyone's commitments to derive a random source all signers can agree upon
// Cannot be manipulated to effect and all signers must, and will, know this
self.entropy.extend(&l.to_le_bytes());
self.entropy.extend(&serialized[0 .. (3 * 32)]);
self.entropy.extend(&serialized[0 .. Multisig::addendum_commit_len()]);
let (share, serialized) = key_image::verify_share(view, l, serialized).map_err(|_| FrostError::InvalidShare(l))?;
self.image += share;
@ -154,19 +160,16 @@ impl<D: TransactionData> Algorithm<Ed25519> for Multisig<D> {
}
fn context(&self) -> Vec<u8> {
let mut context = vec![];
// This should be redundant as the image should be in the addendum if using Multisig and in msg
// if signing a Transaction, yet this ensures CLSAG takes responsibility for its own security
// boundaries
context.extend(&self.image.compress().to_bytes());
context.extend(&self.data.msg());
let mut context = Vec::with_capacity(32 + 32 + 1 + (2 * 11 * 32));
context.extend(&*self.msg.borrow());
context.extend(&self.mask_sum.borrow().to_bytes());
context.extend(&self.input.context());
context
}
fn sign_share(
&mut self,
view: &ParamsView<Ed25519>,
view: &MultisigView<Ed25519>,
nonce_sum: dfg::EdwardsPoint,
b: dfg::Scalar,
nonce: dfg::Scalar,
@ -186,10 +189,10 @@ impl<D: TransactionData> Algorithm<Ed25519> for Multisig<D> {
#[allow(non_snake_case)]
let (clsag, c, mu_C, z, mu_P, C_out) = sign_core(
&mut rng,
&self.data.msg(),
&self.msg.borrow(),
&self.input,
&self.image,
self.data.mask_sum(),
*self.mask_sum.borrow(),
nonce_sum.0,
self.AH.0.0
);
@ -210,7 +213,7 @@ impl<D: TransactionData> Algorithm<Ed25519> for Multisig<D> {
let mut clsag = interim.clsag.clone();
clsag.s[self.input.i] = Key { key: (sum.0 - interim.s).to_bytes() };
if verify(&clsag, &self.data.msg(), self.image, &self.input.ring, interim.C_out) {
if verify(&clsag, &self.msg.borrow(), self.image, &self.input.ring, interim.C_out) {
return Some((clsag, interim.C_out));
}
return None;

View file

@ -1,15 +1,15 @@
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::edwards::{EdwardsPoint, CompressedEdwardsY};
use frost::sign::ParamsView;
use frost::MultisigView;
use crate::{hash_to_point, frost::{MultisigError, Ed25519, DLEqProof}};
#[allow(non_snake_case)]
pub fn generate_share<R: RngCore + CryptoRng>(
rng: &mut R,
view: &ParamsView<Ed25519>
) -> (Vec<u8>, Vec<u8>) {
view: &MultisigView<Ed25519>
) -> (EdwardsPoint, Vec<u8>) {
let H = hash_to_point(&view.group_key().0);
let image = view.secret_share().0 * H;
// Includes a proof. Since:
@ -20,14 +20,11 @@ pub fn generate_share<R: RngCore + CryptoRng>(
// lagranged_secret * G is known. lagranged_secret * H is being sent
// Any discrete log equality proof confirms the same secret was used,
// forming a valid key_image share
(
image.compress().to_bytes().to_vec(),
DLEqProof::prove(rng, &view.secret_share().0, &H, &image).serialize()
)
(image, DLEqProof::prove(rng, &view.secret_share().0, &H, &image).serialize())
}
pub fn verify_share(
view: &ParamsView<Ed25519>,
view: &MultisigView<Ed25519>,
l: usize,
share: &[u8]
) -> Result<(EdwardsPoint, Vec<u8>), MultisigError> {

View file

@ -26,6 +26,9 @@ use monero::{
}
};
#[cfg(feature = "multisig")]
use frost::FrostError;
use crate::{
Commitment,
random_scalar,
@ -33,13 +36,12 @@ use crate::{
key_image, bulletproofs, clsag,
rpc::{Rpc, RpcError}
};
#[cfg(feature = "multisig")]
use crate::frost::MultisigError;
mod mixins;
#[cfg(feature = "multisig")]
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::Multisig;
#[derive(Error, Debug)]
pub enum TransactionError {
@ -60,10 +62,16 @@ pub enum TransactionError {
#[error("clsag error ({0})")]
ClsagError(clsag::Error),
#[error("invalid transaction ({0})")]
InvalidTransaction(RpcError)
InvalidTransaction(RpcError),
#[cfg(feature = "multisig")]
#[error("frost error {0}")]
FrostError(FrostError),
#[cfg(feature = "multisig")]
#[error("multisig error {0}")]
MultisigError(MultisigError)
}
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct SpendableOutput {
pub tx: Hash,
pub o: usize,
@ -192,157 +200,23 @@ enum Preparation<'a, R: RngCore + CryptoRng> {
Follower([u8; 32], Bulletproof)
}
fn prepare_outputs<'a, R: RngCore + CryptoRng>(
prep: &mut Preparation<'a, R>,
inputs: &[SpendableOutput],
payments: &[(Address, u64)],
change: Address,
fee_per_byte: u64
) -> Result<(Vec<u8>, Scalar, Transaction), TransactionError> {
let fee = fee_per_byte * 2000; // TODO
// TODO TX MAX SIZE
// Make sure we have enough funds
let in_amount = inputs.iter().map(|input| input.commitment.amount).sum();
let out_amount = fee + payments.iter().map(|payment| payment.1).sum::<u64>();
if in_amount < out_amount {
Err(TransactionError::NotEnoughFunds(in_amount, out_amount))?;
}
// Add the change output
let mut payments = payments.to_vec();
payments.push((change, in_amount - out_amount));
// Grab the prep
let mut entropy = [0; 32];
let mut bp = None;
match prep {
Preparation::Leader(ref mut rng) => {
// The Leader generates the entropy for the one time keys and the bulletproof
rng.fill_bytes(&mut entropy);
},
Preparation::Follower(e, b) => {
entropy = e.clone();
bp = Some(b.clone());
}
}
let mut seed = b"StealthAddress_randomness".to_vec();
// Leader selected entropy to prevent de-anonymization via recalculation of randomness
seed.extend(&entropy);
// This output can only be spent once. Therefore, it forces all one time keys used here to be
// unique, even if the leader reuses entropy. While another transaction could use a different
// input ordering to swap which 0 is, that input set can't contain this input without being a
// double spend
seed.extend(&inputs[0].tx.0);
seed.extend(&inputs[0].o.to_le_bytes());
let mut rng = ChaCha12Rng::from_seed(Blake2b512::digest(seed)[0 .. 32].try_into().unwrap());
let mut outputs = Vec::with_capacity(payments.len());
let mut commitments = Vec::with_capacity(payments.len());
for o in 0 .. payments.len() {
outputs.push(Output::new(&mut rng, payments[o], o)?);
commitments.push(Commitment::new(outputs[o].mask, payments[o].1));
}
if bp.is_none() {
// Generate the bulletproof if leader
bp = Some(bulletproofs::generate(&commitments)?);
} else {
// Verify the bulletproof if follower
if !bulletproofs::verify(
bp.as_ref().unwrap(),
&commitments.iter().map(|c| c.calculate()).collect::<Vec<EdwardsPoint>>()
) {
Err(TransactionError::InvalidPreparation("invalid bulletproof".to_string()))?;
}
}
// Create the TX extra
let mut extra = ExtraField(vec![
SubField::TxPublicKey(PublicKey { point: outputs[0].R.compress() })
]);
extra.0.push(SubField::AdditionalPublickKey(
outputs[1 .. outputs.len()].iter().map(|output| PublicKey { point: output.R.compress() }).collect()
));
// Format it for monero-rs
let mut mrs_outputs = Vec::with_capacity(outputs.len());
let mut out_pk = Vec::with_capacity(outputs.len());
let mut ecdh_info = Vec::with_capacity(outputs.len());
for o in 0 .. outputs.len() {
mrs_outputs.push(TxOut {
amount: VarInt(0),
target: TxOutTarget::ToKey { key: PublicKey { point: outputs[o].dest.compress() } }
});
out_pk.push(CtKey {
mask: Key { key: commitments[o].calculate().compress().to_bytes() }
});
ecdh_info.push(EcdhInfo::Bulletproof { amount: outputs[o].amount });
}
Ok((
match prep {
// Encode the prep
Preparation::Leader(..) => {
let mut prep = entropy.to_vec();
bp.as_ref().unwrap().consensus_encode(&mut prep).expect("Couldn't encode bulletproof");
prep
},
Preparation::Follower(..) => {
vec![]
}
},
outputs.iter().map(|output| output.mask).sum(),
Transaction {
prefix: TransactionPrefix {
version: VarInt(2),
unlock_time: VarInt(0),
inputs: vec![],
outputs: mrs_outputs,
extra
},
signatures: vec![],
rct_signatures: RctSig {
sig: Some(RctSigBase {
rct_type: RctType::Clsag,
txn_fee: VarInt(fee),
pseudo_outs: vec![],
ecdh_info,
out_pk
}),
p: Some(RctSigPrunable {
range_sigs: vec![],
bulletproofs: vec![bp.unwrap()],
MGs: vec![],
Clsags: vec![],
pseudo_outs: vec![]
})
}
}
))
}
async fn prepare_inputs(
rpc: &Rpc,
spend: &Scalar,
inputs: &[SpendableOutput],
tx: &mut Transaction
) -> Result<Vec<(Scalar, clsag::Input, EdwardsPoint)>, TransactionError> {
let mut mixins = Vec::with_capacity(inputs.len());
let mut signable = Vec::with_capacity(inputs.len());
for (i, input) in inputs.iter().enumerate() {
// Select mixins
let (m, mix) = mixins::select(
let (m, mixins) = mixins::select(
rpc.get_o_indexes(input.tx).await.map_err(|e| TransactionError::RpcError(e))?[input.o]
);
mixins.push(mix);
signable.push((
spend + input.key_offset,
clsag::Input::new(
rpc.get_ring(&mixins[i]).await.map_err(|e| TransactionError::RpcError(e))?,
rpc.get_ring(&mixins).await.map_err(|e| TransactionError::RpcError(e))?,
m,
input.commitment
).map_err(|e| TransactionError::ClsagError(e))?,
@ -351,7 +225,7 @@ async fn prepare_inputs(
tx.prefix.inputs.push(TxIn::ToKey {
amount: VarInt(0),
key_offsets: mixins::offset(&mixins[i]).iter().map(|x| VarInt(*x)).collect(),
key_offsets: mixins::offset(&mixins).iter().map(|x| VarInt(*x)).collect(),
k_image: KeyImage { image: Hash(signable[i].2.compress().to_bytes()) }
});
}
@ -390,19 +264,142 @@ impl SignableTransaction {
)
}
fn prepare_outputs<'a, R: RngCore + CryptoRng>(
&self,
prep: &mut Preparation<'a, R>
) -> Result<(Vec<u8>, Scalar, Transaction), TransactionError> {
let fee = self.fee_per_byte * 2000; // TODO
// TODO TX MAX SIZE
// Make sure we have enough funds
let in_amount = self.inputs.iter().map(|input| input.commitment.amount).sum();
let out_amount = fee + self.payments.iter().map(|payment| payment.1).sum::<u64>();
if in_amount < out_amount {
Err(TransactionError::NotEnoughFunds(in_amount, out_amount))?;
}
// Add the change output
let mut payments = self.payments.clone();
payments.push((self.change, in_amount - out_amount));
// Grab the prep
let mut entropy = [0; 32];
let mut bp = None;
match prep {
Preparation::Leader(ref mut rng) => {
// The Leader generates the entropy for the one time keys and the bulletproof
rng.fill_bytes(&mut entropy);
},
Preparation::Follower(e, b) => {
entropy = e.clone();
bp = Some(b.clone());
}
}
let mut seed = b"StealthAddress_randomness".to_vec();
// Leader selected entropy to prevent de-anonymization via recalculation of randomness
seed.extend(&entropy);
// This output can only be spent once. Therefore, it forces all one time keys used here to be
// unique, even if the leader reuses entropy. While another transaction could use a different
// input ordering to swap which 0 is, that input set can't contain this input without being a
// double spend
seed.extend(&self.inputs[0].tx.0);
seed.extend(&self.inputs[0].o.to_le_bytes());
let mut rng = ChaCha12Rng::from_seed(Blake2b512::digest(seed)[0 .. 32].try_into().unwrap());
let mut outputs = Vec::with_capacity(payments.len());
let mut commitments = Vec::with_capacity(payments.len());
for o in 0 .. payments.len() {
outputs.push(Output::new(&mut rng, payments[o], o)?);
commitments.push(Commitment::new(outputs[o].mask, payments[o].1));
}
if bp.is_none() {
// Generate the bulletproof if leader
bp = Some(bulletproofs::generate(&commitments)?);
} else {
// Verify the bulletproof if follower
if !bulletproofs::verify(
bp.as_ref().unwrap(),
&commitments.iter().map(|c| c.calculate()).collect::<Vec<EdwardsPoint>>()
) {
Err(TransactionError::InvalidPreparation("invalid bulletproof".to_string()))?;
}
}
// Create the TX extra
let mut extra = ExtraField(vec![
SubField::TxPublicKey(PublicKey { point: outputs[0].R.compress() })
]);
extra.0.push(SubField::AdditionalPublickKey(
outputs[1 .. outputs.len()].iter().map(|output| PublicKey { point: output.R.compress() }).collect()
));
// Format it for monero-rs
let mut mrs_outputs = Vec::with_capacity(outputs.len());
let mut out_pk = Vec::with_capacity(outputs.len());
let mut ecdh_info = Vec::with_capacity(outputs.len());
for o in 0 .. outputs.len() {
mrs_outputs.push(TxOut {
amount: VarInt(0),
target: TxOutTarget::ToKey { key: PublicKey { point: outputs[o].dest.compress() } }
});
out_pk.push(CtKey {
mask: Key { key: commitments[o].calculate().compress().to_bytes() }
});
ecdh_info.push(EcdhInfo::Bulletproof { amount: outputs[o].amount });
}
Ok((
match prep {
// Encode the prep
Preparation::Leader(..) => {
let mut prep = entropy.to_vec();
bp.as_ref().unwrap().consensus_encode(&mut prep).expect("Couldn't encode bulletproof");
prep
},
Preparation::Follower(..) => {
vec![]
}
},
outputs.iter().map(|output| output.mask).sum(),
Transaction {
prefix: TransactionPrefix {
version: VarInt(2),
unlock_time: VarInt(0),
inputs: vec![],
outputs: mrs_outputs,
extra
},
signatures: vec![],
rct_signatures: RctSig {
sig: Some(RctSigBase {
rct_type: RctType::Clsag,
txn_fee: VarInt(fee),
pseudo_outs: vec![],
ecdh_info,
out_pk
}),
p: Some(RctSigPrunable {
range_sigs: vec![],
bulletproofs: vec![bp.unwrap()],
MGs: vec![],
Clsags: vec![],
pseudo_outs: vec![]
})
}
}
))
}
pub async fn sign<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
rpc: &Rpc,
spend: &Scalar
) -> Result<Transaction, TransactionError> {
let (_, mask_sum, mut tx) = prepare_outputs(
&mut Preparation::Leader(rng),
&self.inputs,
&self.payments,
self.change,
self.fee_per_byte
)?;
let (_, mask_sum, mut tx) = self.prepare_outputs(&mut Preparation::Leader(rng))?;
let signable = prepare_inputs(rpc, spend, &self.inputs, &mut tx).await?;

View file

@ -0,0 +1,237 @@
use std::{rc::Rc, cell::RefCell};
use rand_core::{RngCore, CryptoRng};
use rand_chacha::ChaCha12Rng;
use curve25519_dalek::{scalar::Scalar, edwards::{EdwardsPoint, CompressedEdwardsY}};
use frost::{FrostError, MultisigKeys, MultisigParams, sign::{State, StateMachine, AlgorithmMachine}};
use monero::{
Hash, VarInt,
consensus::deserialize,
util::ringct::Key,
blockdata::transaction::{KeyImage, TxIn, Transaction}
};
use crate::{
frost::Ed25519,
key_image,
clsag,
rpc::Rpc,
transaction::{TransactionError, Preparation, SignableTransaction, mixins}
};
pub struct TransactionMachine {
leader: bool,
signable: SignableTransaction,
our_images: Vec<EdwardsPoint>,
inputs: Vec<TxIn>,
tx: Option<Transaction>,
mask_sum: Rc<RefCell<Scalar>>,
msg: Rc<RefCell<[u8; 32]>>,
clsags: Vec<AlgorithmMachine<Ed25519, clsag::Multisig>>
}
impl SignableTransaction {
pub async fn multisig<R: RngCore + CryptoRng>(
self,
rng: &mut R,
rpc: &Rpc,
keys: Rc<MultisigKeys<Ed25519>>,
included: &[usize]
) -> Result<TransactionMachine, TransactionError> {
let mut our_images = vec![];
let mut inputs = vec![];
let mask_sum = Rc::new(RefCell::new(Scalar::zero()));
let msg = Rc::new(RefCell::new([0; 32]));
let mut clsags = vec![];
for input in &self.inputs {
// Select mixins
let (m, mixins) = mixins::select(
rpc.get_o_indexes(input.tx).await.map_err(|e| TransactionError::RpcError(e))?[input.o]
);
let keys = keys.offset(dalek_ff_group::Scalar(input.key_offset));
let (image, _) = key_image::generate_share(
rng,
&keys.view(included).map_err(|e| TransactionError::FrostError(e))?
);
our_images.push(image);
clsags.push(
AlgorithmMachine::new(
clsag::Multisig::new(
clsag::Input::new(
rpc.get_ring(&mixins).await.map_err(|e| TransactionError::RpcError(e))?,
m,
input.commitment
).map_err(|e| TransactionError::ClsagError(e))?,
msg.clone(),
mask_sum.clone()
).map_err(|e| TransactionError::MultisigError(e))?,
Rc::new(keys),
included
).map_err(|e| TransactionError::FrostError(e))?
);
inputs.push(TxIn::ToKey {
amount: VarInt(0),
key_offsets: mixins::offset(&mixins).iter().map(|x| VarInt(*x)).collect(),
k_image: KeyImage { image: Hash([0; 32]) }
});
}
// Verify these outputs by a dummy prep
self.prepare_outputs(&mut Preparation::Leader(rng))?;
Ok(TransactionMachine {
leader: keys.params().i() == included[0],
signable: self,
our_images,
inputs,
tx: None,
mask_sum,
msg,
clsags
})
}
}
impl StateMachine for TransactionMachine {
type Signature = Transaction;
fn preprocess<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R
) -> Result<Vec<u8>, FrostError> {
if self.state() != State::Fresh {
Err(FrostError::InvalidSignTransition(State::Fresh, self.state()))?;
}
// Iterate over each CLSAG calling preprocess
let mut serialized = vec![];
for clsag in self.clsags.iter_mut() {
serialized.extend(&clsag.preprocess(rng)?);
}
if self.leader {
let (prep, mask_sum, tx) = self.signable.prepare_outputs(&mut Preparation::Leader(rng)).unwrap();
self.mask_sum.replace(mask_sum);
self.tx = Some(tx);
serialized.extend(&prep);
}
Ok(serialized)
}
fn sign(
&mut self,
commitments: &[Option<Vec<u8>>],
_: &[u8]
) -> Result<Vec<u8>, FrostError> {
if self.state() != State::Preprocessed {
Err(FrostError::InvalidSignTransition(State::Preprocessed, self.state()))?;
}
// FROST commitments, image, commitments, and their proofs
let clsag_len = 64 + clsag::Multisig::serialized_len();
let clsag_lens = clsag_len * self.clsags.len();
// Split out the prep and update the TX
let mut tx = None;
if self.leader {
tx = self.tx.take();
} else {
for (l, prep) in commitments.iter().enumerate() {
if prep.is_none() {
continue;
}
let prep = prep.as_ref().unwrap();
// Handle the prep with a seeded RNG type to make rustc happy
let (_, mask_sum, tx_inner) = self.signable.prepare_outputs::<ChaCha12Rng>(
&mut Preparation::Follower(
prep[clsag_lens .. (clsag_lens + 32)].try_into().map_err(|_| FrostError::InvalidCommitment(l))?,
deserialize(&prep[(clsag_lens + 32) .. prep.len()]).map_err(|_| FrostError::InvalidCommitment(l))?
)
).map_err(|_| FrostError::InvalidShare(l))?; // Not invalid outputs due to doing a dummy prep as leader
self.mask_sum.replace(mask_sum);
tx = Some(tx_inner);
break;
}
}
// Calculate the key images and update the TX
// Multisig will parse/calculate/validate this as needed, yet doing so here as well provides
// the easiest API overall
for c in 0 .. self.clsags.len() {
let mut image = self.our_images[c];
for (l, serialized) in commitments.iter().enumerate() {
if serialized.is_none() {
continue;
}
image += CompressedEdwardsY(
serialized.as_ref().unwrap()[((c * clsag_len) + 64) .. ((c * clsag_len) + 96)]
.try_into().map_err(|_| FrostError::InvalidCommitment(l))?
).decompress().ok_or(FrostError::InvalidCommitment(l))?;
}
self.inputs[c] = match self.inputs[c].clone() {
TxIn::ToKey { amount, key_offsets, k_image: _ } => TxIn::ToKey {
amount, key_offsets,
k_image: KeyImage { image: Hash(image.compress().to_bytes()) }
},
_ => panic!("Signing for an input which isn't ToKey")
};
}
let mut tx = tx.unwrap();
tx.prefix.inputs = self.inputs.clone();
self.msg.replace(tx.signature_hash().unwrap().0);
self.tx = Some(tx);
// Iterate over each CLSAG calling sign
let mut serialized = Vec::with_capacity(self.clsags.len() * 32);
for (c, clsag) in self.clsags.iter_mut().enumerate() {
serialized.extend(&clsag.sign(
&commitments.iter().map(
|commitments| commitments.clone().map(
|commitments| commitments[(c * clsag_len) .. ((c * clsag_len) + clsag_len)].to_vec()
)
).collect::<Vec<_>>(),
&vec![]
)?);
}
Ok(serialized)
}
fn complete(&mut self, shares: &[Option<Vec<u8>>]) -> Result<Transaction, FrostError> {
if self.state() != State::Signed {
Err(FrostError::InvalidSignTransition(State::Signed, self.state()))?;
}
let mut tx = self.tx.take().unwrap();
let mut prunable = tx.rct_signatures.p.unwrap();
for (c, clsag) in self.clsags.iter_mut().enumerate() {
let (clsag, pseudo_out) = clsag.complete(&shares.iter().map(
|share| share.clone().map(|share| share[(c * 32) .. ((c * 32) + 32)].to_vec())
).collect::<Vec<_>>())?;
prunable.Clsags.push(clsag);
prunable.pseudo_outs.push(Key { key: pseudo_out.compress().to_bytes() });
}
tx.rct_signatures.p = Some(prunable);
Ok(tx)
}
fn multisig_params(&self) -> MultisigParams {
self.clsags[0].multisig_params()
}
fn state(&self) -> State {
self.clsags[0].state()
}
}

View file

@ -1,3 +1,5 @@
use std::{rc::Rc, cell::RefCell};
use rand::{RngCore, rngs::OsRng};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
@ -50,20 +52,6 @@ fn test_single() {
assert!(clsag::verify(&clsag, &msg, image, &ring, pseudo_out));
}
#[cfg(feature = "multisig")]
#[derive(Clone, Debug)]
struct TransactionData;
#[cfg(feature = "multisig")]
impl clsag::TransactionData for TransactionData {
fn msg(&self) -> [u8; 32] {
[1; 32]
}
fn mask_sum(&self) -> Scalar {
Scalar::from(21u64)
}
}
#[cfg(feature = "multisig")]
#[test]
fn test_multisig() -> Result<(), MultisigError> {
@ -94,7 +82,8 @@ fn test_multisig() -> Result<(), MultisigError> {
sign::AlgorithmMachine::new(
clsag::Multisig::new(
clsag::Input::new(ring.clone(), RING_INDEX, Commitment::new(randomness, AMOUNT)).unwrap(),
TransactionData
Rc::new(RefCell::new([1; 32])),
Rc::new(RefCell::new(Scalar::from(42u64)))
).unwrap(),
keys[i - 1].clone(),
&(1 ..= THRESHOLD).collect::<Vec<usize>>()

View file

@ -2,11 +2,10 @@
use std::rc::Rc;
use rand_core::{RngCore, CryptoRng};
use rand::rngs::OsRng;
use ff::Field;
use dalek_ff_group::{ED25519_BASEPOINT_TABLE, Scalar, EdwardsPoint};
use dalek_ff_group::{ED25519_BASEPOINT_TABLE, Scalar};
pub use frost::{
FrostError, MultisigParams, MultisigKeys,
@ -15,50 +14,8 @@ pub use frost::{
use monero_serai::frost::Ed25519;
pub const THRESHOLD: usize = 5;
pub const PARTICIPANTS: usize = 8;
#[derive(Clone)]
pub struct DummyAlgorithm;
impl Algorithm<Ed25519> for DummyAlgorithm {
type Signature = ();
fn addendum_commit_len() -> usize { unimplemented!() }
fn preprocess_addendum<R: RngCore + CryptoRng>(
_: &mut R,
_: &sign::ParamsView<Ed25519>,
_: &[Scalar; 2],
) -> Vec<u8> { unimplemented!() }
fn process_addendum(
&mut self,
_: &sign::ParamsView<Ed25519>,
_: usize,
_: &[EdwardsPoint; 2],
_: &[u8],
) -> Result<(), FrostError> { unimplemented!() }
fn context(&self) -> Vec<u8> { unimplemented!() }
fn sign_share(
&mut self,
_: &sign::ParamsView<Ed25519>,
_: EdwardsPoint,
_: Scalar,
_: Scalar,
_: &[u8],
) -> Scalar { unimplemented!() }
fn verify(&self, _: EdwardsPoint, _: EdwardsPoint, _: Scalar) -> Option<Self::Signature> { unimplemented!() }
fn verify_share(
&self,
_: EdwardsPoint,
_: EdwardsPoint,
_: Scalar,
) -> bool { unimplemented!() }
}
pub const THRESHOLD: usize = 3;
pub const PARTICIPANTS: usize = 5;
pub fn generate_keys() -> (Vec<Rc<MultisigKeys<Ed25519>>>, Scalar) {
let mut params = vec![];

View file

@ -4,15 +4,13 @@ use rand::{RngCore, rngs::OsRng};
use curve25519_dalek::{traits::Identity, edwards::EdwardsPoint};
use monero_serai::{frost::MultisigError, key_image};
use ::frost::sign;
use monero_serai::key_image;
mod frost;
use crate::frost::{THRESHOLD, PARTICIPANTS, DummyAlgorithm, generate_keys};
use crate::frost::{THRESHOLD, PARTICIPANTS, generate_keys};
#[test]
fn test() -> Result<(), MultisigError> {
fn test() {
let (keys, group_private) = generate_keys();
let image = key_image::generate(&group_private);
@ -27,16 +25,16 @@ fn test() -> Result<(), MultisigError> {
for i in 1 ..= PARTICIPANTS {
if included.contains(&i) {
// If they were included, include their view
views.push(sign::Params::new(DummyAlgorithm, keys[i - 1].clone(), &included).unwrap().view());
views.push(keys[i - 1].view(&included).unwrap());
let share = key_image::generate_share(&mut OsRng, &views[i - 1]);
let mut serialized = share.0;
let mut serialized = share.0.compress().to_bytes().to_vec();
serialized.extend(b"abc");
serialized.extend(&share.1);
shares.push(serialized);
} else {
// If they weren't included, include dummy data
// If they weren't included, include dummy data to fill the Vec
// Uses the view of someone actually included as Params::new verifies inclusion
views.push(sign::Params::new(DummyAlgorithm, keys[included[0] - 1].clone(), &included).unwrap().view());
views.push(keys[included[0] - 1].view(&included).unwrap());
shares.push(vec![]);
}
}
@ -50,6 +48,4 @@ fn test() -> Result<(), MultisigError> {
}
assert_eq!(image, multi_image);
}
Ok(())
}

View file

@ -0,0 +1,73 @@
#![cfg(feature = "multisig")]
use rand::rngs::OsRng;
use blake2::{digest::Update, Digest, Blake2b512};
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
use dalek_ff_group::Scalar;
use monero::{
cryptonote::hash::Hashable,
network::Network,
util::{key::PublicKey, address::Address}
};
use monero_serai::{transaction::{self, SignableTransaction}, rpc::Rpc};
mod rpc;
use crate::rpc::mine_block;
mod frost;
use crate::frost::{THRESHOLD, generate_keys, sign};
#[tokio::test]
pub async fn send_multisig() {
let rpc = Rpc::new("http://127.0.0.1:18081".to_string());
let fee_per_byte = 50000000;
let fee = fee_per_byte * 2000;
let (keys, _) = generate_keys();
let t = keys[0].params().t();
// Generate an address
let view = Scalar::from_hash(Blake2b512::new().chain("Serai DEX")).0;
let spend = keys[0].group_key().0;
let addr = Address::standard(
Network::Mainnet,
PublicKey { point: spend.compress() },
PublicKey { point: (&view * &ED25519_BASEPOINT_TABLE).compress() }
);
// Mine blocks to that address
let start = rpc.get_height().await.unwrap();
for _ in 0 .. 7 {
mine_block(&rpc, addr.to_string()).await.unwrap();
}
// Get the input TX
let tx = rpc.get_block_transactions(start).await.unwrap().swap_remove(0);
let output = transaction::scan(&tx, view, spend).swap_remove(0);
let amount = output.commitment.amount - fee;
let mut machines = Vec::with_capacity(t);
for i in 1 ..= t {
machines.push(
SignableTransaction::new(
vec![output.clone()], vec![(addr, amount)], addr, fee_per_byte
).unwrap().multisig(
&mut OsRng,
&rpc,
keys[i - 1].clone(),
&(1 ..= THRESHOLD).collect::<Vec<usize>>()
).await.unwrap()
);
}
let txs = sign(&mut machines, keys);
for s in 0 .. (t - 1) {
assert_eq!(txs[s].hash(), txs[0].hash());
}
rpc.publish_transaction(&txs[0]).await.unwrap();
}

View file

@ -4,7 +4,7 @@ use rand_core::{RngCore, CryptoRng};
use group::Group;
use crate::{Curve, FrostError, sign};
use crate::{Curve, FrostError, MultisigView};
/// Algorithm to use FROST with
pub trait Algorithm<C: Curve>: Clone {
@ -17,14 +17,14 @@ pub trait Algorithm<C: Curve>: Clone {
/// Generate an addendum to FROST"s preprocessing stage
fn preprocess_addendum<R: RngCore + CryptoRng>(
rng: &mut R,
params: &sign::ParamsView<C>,
params: &MultisigView<C>,
nonces: &[C::F; 2],
) -> Vec<u8>;
/// Proccess the addendum for the specified participant. Guaranteed to be ordered
fn process_addendum(
&mut self,
params: &sign::ParamsView<C>,
params: &MultisigView<C>,
l: usize,
commitments: &[C::G; 2],
serialized: &[u8],
@ -39,7 +39,7 @@ pub trait Algorithm<C: Curve>: Clone {
/// The nonce will already have been processed into the combined form d + (e * p)
fn sign_share(
&mut self,
params: &sign::ParamsView<C>,
params: &MultisigView<C>,
nonce_sum: C::G,
b: C::F,
nonce: C::F,
@ -98,7 +98,7 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
fn preprocess_addendum<R: RngCore + CryptoRng>(
_: &mut R,
_: &sign::ParamsView<C>,
_: &MultisigView<C>,
_: &[C::F; 2],
) -> Vec<u8> {
vec![]
@ -106,7 +106,7 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
fn process_addendum(
&mut self,
_: &sign::ParamsView<C>,
_: &MultisigView<C>,
_: usize,
_: &[C::G; 2],
_: &[u8],
@ -120,7 +120,7 @@ impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
fn sign_share(
&mut self,
params: &sign::ParamsView<C>,
params: &MultisigView<C>,
nonce_sum: C::G,
_: C::F,
nonce: C::F,

View file

@ -1,6 +1,6 @@
use core::{ops::Mul, fmt::Debug};
use ff::PrimeField;
use ff::{Field, PrimeField};
use group::{Group, GroupOps, ScalarMul};
use thiserror::Error;
@ -8,6 +8,7 @@ use thiserror::Error;
pub mod key_gen;
pub mod algorithm;
pub mod sign;
use sign::lagrange;
/// Set of errors for curve-related operations, namely encoding and decoding
#[derive(Error, Debug)]
@ -190,6 +191,33 @@ pub enum FrostError {
InternalError(String),
}
// View of keys passable to algorithm implementations
#[derive(Clone)]
pub struct MultisigView<C: Curve> {
group_key: C::G,
included: Vec<usize>,
secret_share: C::F,
verification_shares: Vec<C::G>,
}
impl<C: Curve> MultisigView<C> {
pub fn group_key(&self) -> C::G {
self.group_key
}
pub fn included(&self) -> Vec<usize> {
self.included.clone()
}
pub fn secret_share(&self) -> C::F {
self.secret_share
}
pub fn verification_share(&self, l: usize) -> C::G {
self.verification_shares[l]
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct MultisigKeys<C: Curve> {
/// Multisig Parameters
@ -229,6 +257,30 @@ impl<C: Curve> MultisigKeys<C> {
self.verification_shares.clone()
}
pub fn view(&self, included: &[usize]) -> Result<MultisigView<C>, FrostError> {
if (included.len() < self.params.t) || (self.params.n < included.len()) {
Err(FrostError::InvalidSigningSet("invalid amount of participants included".to_string()))?;
}
let secret_share = self.secret_share * lagrange::<C::F>(self.params.i, &included);
let (offset, offset_share) = if self.offset.is_some() {
let offset = self.offset.unwrap();
(offset, offset * C::F::from(included.len().try_into().unwrap()).invert().unwrap())
} else {
(C::F::zero(), C::F::zero())
};
Ok(MultisigView {
group_key: self.group_key + (C::generator_table() * offset),
secret_share: secret_share + offset_share,
verification_shares: self.verification_shares.clone().iter().enumerate().map(
|(l, share)| (*share * lagrange::<C::F>(l, &included)) +
(C::generator_table() * offset_share)
).collect(),
included: included.to_vec(),
})
}
pub fn serialized_len(n: usize) -> usize {
1 + usize::from(C::id_len()) + (3 * 8) + C::F_len() + C::G_len() + (n * C::G_len())
}

View file

@ -1,4 +1,4 @@
use core::{convert::{TryFrom, TryInto}, cmp::min, fmt};
use core::{convert::TryFrom, cmp::min, fmt};
use std::rc::Rc;
use rand_core::{RngCore, CryptoRng};
@ -6,7 +6,7 @@ use rand_core::{RngCore, CryptoRng};
use ff::{Field, PrimeField};
use group::Group;
use crate::{Curve, MultisigParams, MultisigKeys, FrostError, algorithm::Algorithm};
use crate::{Curve, FrostError, MultisigParams, MultisigKeys, MultisigView, algorithm::Algorithm};
/// Calculate the lagrange coefficient
pub fn lagrange<F: PrimeField>(
@ -30,39 +30,12 @@ pub fn lagrange<F: PrimeField>(
num * denom.invert().unwrap()
}
// View of params passable to algorithm implementations
#[derive(Clone)]
pub struct ParamsView<C: Curve> {
group_key: C::G,
included: Vec<usize>,
secret_share: C::F,
verification_shares: Vec<C::G>,
}
impl<C: Curve> ParamsView<C> {
pub fn group_key(&self) -> C::G {
self.group_key
}
pub fn included(&self) -> Vec<usize> {
self.included.clone()
}
pub fn secret_share(&self) -> C::F {
self.secret_share
}
pub fn verification_share(&self, l: usize) -> C::G {
self.verification_shares[l]
}
}
/// Pairing of an Algorithm with a MultisigKeys instance and this specific signing set
#[derive(Clone)]
pub struct Params<C: Curve, A: Algorithm<C>> {
algorithm: A,
keys: Rc<MultisigKeys<C>>,
view: ParamsView<C>,
view: MultisigView<C>,
}
// Currently public to enable more complex operations as desired, yet solely used in testing
@ -75,7 +48,7 @@ impl<C: Curve, A: Algorithm<C>> Params<C, A> {
let mut included = included.to_vec();
(&mut included).sort_unstable();
// included < threshold
// Included < threshold
if included.len() < keys.params.t {
Err(FrostError::InvalidSigningSet("not enough signers".to_string()))?;
}
@ -98,37 +71,15 @@ impl<C: Curve, A: Algorithm<C>> Params<C, A> {
Err(FrostError::InvalidSigningSet("signing despite not being included".to_string()))?;
}
let secret_share = keys.secret_share * lagrange::<C::F>(keys.params.i, &included);
let (offset, offset_share) = if keys.offset.is_some() {
let offset = keys.offset.unwrap();
(offset, offset * C::F::from(included.len().try_into().unwrap()).invert().unwrap())
} else {
(C::F::zero(), C::F::zero())
};
Ok(
Params {
algorithm,
// Out of order arguments to prevent additional cloning
view: ParamsView {
group_key: keys.group_key + (C::generator_table() * offset),
secret_share: secret_share + offset_share,
verification_shares: keys.verification_shares.clone().iter().enumerate().map(
|(l, share)| (*share * lagrange::<C::F>(l, &included)) +
(C::generator_table() * offset_share)
).collect(),
included: included,
},
keys
}
)
// Out of order arguments to prevent additional cloning
Ok(Params { algorithm, view: keys.view(&included).unwrap(), keys })
}
pub fn multisig_params(&self) -> MultisigParams {
self.keys.params
}
pub fn view(&self) -> ParamsView<C> {
pub fn view(&self) -> MultisigView<C> {
self.view.clone()
}
}