Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
use std::{
|
|
|
|
env,
|
2023-04-16 03:01:07 +00:00
|
|
|
time::Duration,
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
collections::{VecDeque, HashMap},
|
|
|
|
};
|
|
|
|
|
|
|
|
use zeroize::{Zeroize, Zeroizing};
|
|
|
|
|
|
|
|
use transcript::{Transcript, RecommendedTranscript};
|
|
|
|
use group::GroupEncoding;
|
2023-04-18 03:20:48 +00:00
|
|
|
use frost::{curve::Ciphersuite, ThresholdKeys};
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
use log::{info, warn, error};
|
|
|
|
use tokio::time::sleep;
|
|
|
|
|
|
|
|
use scale::Decode;
|
|
|
|
|
|
|
|
use serai_client::{
|
2023-04-10 06:51:15 +00:00
|
|
|
primitives::{MAX_DATA_LEN, BlockHash},
|
2023-03-25 08:06:25 +00:00
|
|
|
tokens::primitives::{OutInstruction, OutInstructionWithBalance},
|
2023-04-10 06:51:15 +00:00
|
|
|
in_instructions::primitives::{
|
2023-04-10 15:11:46 +00:00
|
|
|
Shorthand, RefundableInInstruction, InInstructionWithBalance, Batch,
|
2023-04-10 06:51:15 +00:00
|
|
|
},
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
};
|
|
|
|
|
2023-04-10 06:51:15 +00:00
|
|
|
use messages::{SubstrateContext, CoordinatorMessage, ProcessorMessage};
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
mod plan;
|
|
|
|
pub use plan::*;
|
|
|
|
|
|
|
|
mod db;
|
|
|
|
pub use db::*;
|
|
|
|
|
|
|
|
mod coordinator;
|
|
|
|
pub use coordinator::*;
|
|
|
|
|
|
|
|
mod coins;
|
|
|
|
use coins::{OutputType, Output, PostFeeBranch, Block, Coin};
|
|
|
|
#[cfg(feature = "bitcoin")]
|
|
|
|
use coins::Bitcoin;
|
|
|
|
#[cfg(feature = "monero")]
|
|
|
|
use coins::Monero;
|
|
|
|
|
|
|
|
mod key_gen;
|
2023-04-17 23:39:36 +00:00
|
|
|
use key_gen::{KeyConfirmed, KeyGen};
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
mod signer;
|
2023-04-16 03:01:07 +00:00
|
|
|
use signer::{SignerEvent, Signer};
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
2023-04-10 15:11:46 +00:00
|
|
|
mod substrate_signer;
|
2023-04-16 03:01:07 +00:00
|
|
|
use substrate_signer::{SubstrateSignerEvent, SubstrateSigner};
|
2023-04-10 15:11:46 +00:00
|
|
|
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
mod scanner;
|
|
|
|
use scanner::{ScannerEvent, Scanner, ScannerHandle};
|
|
|
|
|
|
|
|
mod scheduler;
|
|
|
|
use scheduler::Scheduler;
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests;
|
|
|
|
|
|
|
|
// Generate a static additional key for a given chain in a globally consistent manner
|
|
|
|
// Doesn't consider the current group key to increase the simplicity of verifying Serai's status
|
|
|
|
// Takes an index, k, to support protocols which use multiple secondary keys
|
|
|
|
// Presumably a view key
|
|
|
|
pub(crate) fn additional_key<C: Coin>(k: u64) -> <C::Curve as Ciphersuite>::F {
|
|
|
|
<C::Curve as Ciphersuite>::hash_to_F(
|
|
|
|
b"Serai DEX Additional Key",
|
|
|
|
&[C::ID.as_bytes(), &k.to_le_bytes()].concat(),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
async fn get_fee<C: Coin>(coin: &C, block_number: usize) -> C::Fee {
|
|
|
|
loop {
|
|
|
|
// TODO2: Use an fee representative of several blocks
|
|
|
|
match coin.get_block(block_number).await {
|
|
|
|
Ok(block) => {
|
|
|
|
return block.median_fee();
|
|
|
|
}
|
|
|
|
Err(e) => {
|
2023-04-11 09:49:27 +00:00
|
|
|
error!(
|
|
|
|
"couldn't get block {block_number} in get_fee. {} {}",
|
|
|
|
"this should only happen if the node is offline. error: ", e
|
|
|
|
);
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
// Since this block is considered finalized, we shouldn't be unable to get it unless the
|
|
|
|
// node is offline, hence the long sleep
|
|
|
|
sleep(Duration::from_secs(60)).await;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
async fn prepare_send<C: Coin>(
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
coin: &C,
|
2023-04-18 03:20:48 +00:00
|
|
|
keys: ThresholdKeys<C::Curve>,
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
block_number: usize,
|
|
|
|
fee: C::Fee,
|
|
|
|
plan: Plan<C>,
|
|
|
|
) -> (Option<(C::SignableTransaction, C::Eventuality)>, Vec<PostFeeBranch>) {
|
|
|
|
loop {
|
|
|
|
match coin.prepare_send(keys.clone(), block_number, plan.clone(), fee).await {
|
|
|
|
Ok(prepared) => {
|
|
|
|
return prepared;
|
|
|
|
}
|
|
|
|
Err(e) => {
|
|
|
|
error!("couldn't prepare a send for plan {}: {e}", hex::encode(plan.id()));
|
|
|
|
// The processor is either trying to create an invalid TX (fatal) or the node went
|
|
|
|
// offline
|
|
|
|
// The former requires a patch, the latter is a connection issue
|
|
|
|
// If the latter, this is an appropriate sleep. If the former, we should panic, yet
|
|
|
|
// this won't flood the console ad infinitum
|
|
|
|
sleep(Duration::from_secs(60)).await;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
// Items which are mutably borrowed by Tributary.
|
|
|
|
// Any exceptions to this have to be carefully monitored in order to ensure consistency isn't
|
|
|
|
// violated.
|
|
|
|
struct TributaryMutable<C: Coin, D: Db> {
|
|
|
|
// The following are actually mutably borrowed by Substrate as well.
|
|
|
|
// - Substrate triggers key gens, and determines which to use.
|
|
|
|
// - SubstrateBlock events cause scheduling which causes signing.
|
|
|
|
//
|
|
|
|
// This is still considered Tributary-mutable as most mutation (preprocesses/shares) happens by
|
|
|
|
// the Tributary.
|
|
|
|
//
|
|
|
|
// Creation of tasks is by Substrate, yet this is safe since the mutable borrow is transferred to
|
|
|
|
// Tributary.
|
|
|
|
//
|
|
|
|
// Tributary stops mutating a key gen attempt before Substrate is made aware of it, ensuring
|
|
|
|
// Tributary drops its mutable borrow before Substrate acquires it. Tributary will maintain a
|
|
|
|
// mutable borrow on the *key gen task*, yet the finalization code can successfully run for any
|
|
|
|
// attempt.
|
|
|
|
//
|
|
|
|
// The only other note is how the scanner may cause a signer task to be dropped, effectively
|
|
|
|
// invalidating the Tributary's mutable borrow. The signer is coded to allow for attempted usage
|
|
|
|
// of a dropped task.
|
|
|
|
key_gen: KeyGen<C, D>,
|
|
|
|
signers: HashMap<Vec<u8>, Signer<C, D>>,
|
|
|
|
|
2023-04-18 00:16:58 +00:00
|
|
|
// This is also mutably borrowed by the Scanner.
|
|
|
|
// The Scanner starts new sign tasks.
|
|
|
|
// The Tributary mutates already-created signed tasks, potentially completing them.
|
|
|
|
// Substrate may mark tasks as completed, invalidating any existing mutable borrows.
|
|
|
|
// The safety of this follows as written above.
|
|
|
|
|
|
|
|
// TODO: There should only be one SubstrateSigner at a time (see #277)
|
2023-04-17 23:20:47 +00:00
|
|
|
substrate_signers: HashMap<Vec<u8>, SubstrateSigner<D>>,
|
|
|
|
}
|
|
|
|
|
|
|
|
// Items which are mutably borrowed by Substrate.
|
|
|
|
// Any exceptions to this have to be carefully monitored in order to ensure consistency isn't
|
|
|
|
// violated.
|
|
|
|
struct SubstrateMutable<C: Coin, D: Db> {
|
|
|
|
// The scanner is expected to autonomously operate, scanning blocks as they appear.
|
|
|
|
// When a block is sufficiently confirmed, the scanner mutates the signer to try and get a Batch
|
|
|
|
// signed.
|
|
|
|
// The scanner itself only mutates its list of finalized blocks and in-memory state though.
|
|
|
|
// Disk mutations to the scan-state only happen when Substrate says to.
|
|
|
|
|
|
|
|
// This can't be mutated as soon as a Batch is signed since the mutation which occurs then is
|
|
|
|
// paired with the mutations caused by Burn events. Substrate's ordering determines if such a
|
|
|
|
// pairing exists.
|
|
|
|
scanner: ScannerHandle<C, D>,
|
|
|
|
|
|
|
|
// Schedulers take in new outputs, from the scanner, and payments, from Burn events on Substrate.
|
|
|
|
// These are paired when possible, in the name of efficiency. Accordingly, both mutations must
|
|
|
|
// happen by Substrate.
|
|
|
|
schedulers: HashMap<Vec<u8>, Scheduler<C>>,
|
|
|
|
}
|
|
|
|
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
async fn sign_plans<C: Coin, D: Db>(
|
2023-04-18 03:20:48 +00:00
|
|
|
txn: &mut D::Transaction<'_>,
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
coin: &C,
|
2023-04-17 23:20:47 +00:00
|
|
|
substrate_mutable: &mut SubstrateMutable<C, D>,
|
2023-04-16 03:01:07 +00:00
|
|
|
signers: &mut HashMap<Vec<u8>, Signer<C, D>>,
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
context: SubstrateContext,
|
|
|
|
plans: Vec<Plan<C>>,
|
|
|
|
) {
|
|
|
|
let mut plans = VecDeque::from(plans);
|
2023-04-10 06:51:15 +00:00
|
|
|
|
|
|
|
let mut block_hash = <C::Block as Block<C>>::Id::default();
|
|
|
|
block_hash.as_mut().copy_from_slice(&context.coin_latest_finalized_block.0);
|
2023-04-17 23:20:47 +00:00
|
|
|
let block_number = substrate_mutable
|
|
|
|
.scanner
|
2023-04-10 06:51:15 +00:00
|
|
|
.block_number(&block_hash)
|
|
|
|
.await
|
|
|
|
.expect("told to sign_plans on a context we're not synced to");
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
let fee = get_fee(coin, block_number).await;
|
|
|
|
|
|
|
|
while let Some(plan) = plans.pop_front() {
|
|
|
|
let id = plan.id();
|
|
|
|
info!("preparing plan {}: {:?}", hex::encode(id), plan);
|
|
|
|
|
|
|
|
let key = plan.key.to_bytes();
|
2023-04-18 03:20:48 +00:00
|
|
|
MainDb::<C, D>::save_signing(txn, key.as_ref(), block_number.try_into().unwrap(), &plan);
|
2023-04-16 03:01:07 +00:00
|
|
|
let (tx, branches) =
|
2023-04-18 03:20:48 +00:00
|
|
|
prepare_send(coin, signers.get_mut(key.as_ref()).unwrap().keys(), block_number, fee, plan)
|
|
|
|
.await;
|
|
|
|
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
for branch in branches {
|
2023-04-17 23:20:47 +00:00
|
|
|
substrate_mutable
|
|
|
|
.schedulers
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
.get_mut(key.as_ref())
|
|
|
|
.expect("didn't have a scheduler for a key we have a plan for")
|
|
|
|
.created_output(branch.expected, branch.actual);
|
|
|
|
}
|
|
|
|
|
|
|
|
if let Some((tx, eventuality)) = tx {
|
2023-04-17 23:20:47 +00:00
|
|
|
substrate_mutable.scanner.register_eventuality(block_number, id, eventuality.clone()).await;
|
2023-04-18 03:20:48 +00:00
|
|
|
signers.get_mut(key.as_ref()).unwrap().sign_transaction(txn, id, tx, eventuality).await;
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
async fn handle_coordinator_msg<D: Db, C: Coin, Co: Coordinator>(
|
2023-04-18 03:20:48 +00:00
|
|
|
txn: &mut D::Transaction<'_>,
|
2023-04-17 23:20:47 +00:00
|
|
|
coin: &C,
|
|
|
|
coordinator: &mut Co,
|
|
|
|
tributary_mutable: &mut TributaryMutable<C, D>,
|
|
|
|
substrate_mutable: &mut SubstrateMutable<C, D>,
|
2023-04-18 03:20:48 +00:00
|
|
|
msg: &Message,
|
2023-04-17 23:20:47 +00:00
|
|
|
) {
|
|
|
|
// If this message expects a higher block number than we have, halt until synced
|
|
|
|
async fn wait<C: Coin, D: Db>(scanner: &ScannerHandle<C, D>, block_hash: &BlockHash) {
|
|
|
|
let mut needed_hash = <C::Block as Block<C>>::Id::default();
|
|
|
|
needed_hash.as_mut().copy_from_slice(&block_hash.0);
|
|
|
|
|
|
|
|
let block_number;
|
|
|
|
loop {
|
|
|
|
// Ensure our scanner has scanned this block, which means our daemon has this block at
|
|
|
|
// a sufficient depth
|
|
|
|
let Some(block_number_inner) = scanner.block_number(&needed_hash).await else {
|
|
|
|
warn!(
|
|
|
|
"node is desynced. we haven't scanned {} which should happen after {} confirms",
|
|
|
|
hex::encode(&needed_hash),
|
|
|
|
C::CONFIRMATIONS,
|
|
|
|
);
|
|
|
|
sleep(Duration::from_secs(10)).await;
|
|
|
|
continue;
|
|
|
|
};
|
|
|
|
block_number = block_number_inner;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// While the scanner has cemented this block, that doesn't mean it's been scanned for all
|
|
|
|
// keys
|
|
|
|
// ram_scanned will return the lowest scanned block number out of all keys
|
|
|
|
while scanner.ram_scanned().await < block_number {
|
|
|
|
sleep(Duration::from_secs(1)).await;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: Sanity check we got an AckBlock (or this is the AckBlock) for the block in
|
|
|
|
// question
|
|
|
|
|
|
|
|
/*
|
|
|
|
let synced = |context: &SubstrateContext, key| -> Result<(), ()> {
|
|
|
|
// Check that we've synced this block and can actually operate on it ourselves
|
|
|
|
let latest = scanner.latest_scanned(key);
|
|
|
|
if usize::try_from(context.coin_latest_block_number).unwrap() < latest {
|
|
|
|
log::warn!(
|
|
|
|
"coin node disconnected/desynced from rest of the network. \
|
|
|
|
our block: {latest:?}, network's acknowledged: {}",
|
|
|
|
context.coin_latest_block_number
|
|
|
|
);
|
|
|
|
Err(())?;
|
|
|
|
}
|
|
|
|
Ok(())
|
|
|
|
};
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
if let Some(required) = msg.msg.required_block() {
|
|
|
|
// wait only reads from, it doesn't mutate, the scanner
|
|
|
|
wait(&substrate_mutable.scanner, &required).await;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: Shouldn't we create a txn here and pass it around as needed?
|
|
|
|
// The txn would ack this message ID. If we detect this mesage ID as handled in the DB,
|
|
|
|
// we'd move on here. Only after committing the TX would we report it as acked.
|
|
|
|
|
|
|
|
match msg.msg.clone() {
|
|
|
|
CoordinatorMessage::KeyGen(msg) => {
|
2023-04-17 23:39:36 +00:00
|
|
|
// TODO: This may be fired multiple times. What's our plan for that?
|
2023-04-18 03:20:48 +00:00
|
|
|
coordinator
|
|
|
|
.send(ProcessorMessage::KeyGen(tributary_mutable.key_gen.handle(txn, msg).await))
|
|
|
|
.await;
|
2023-04-17 23:39:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
CoordinatorMessage::Sign(msg) => {
|
2023-04-18 03:20:48 +00:00
|
|
|
tributary_mutable.signers.get_mut(msg.key()).unwrap().handle(txn, msg).await;
|
2023-04-17 23:39:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
CoordinatorMessage::Coordinator(msg) => {
|
2023-04-18 03:20:48 +00:00
|
|
|
tributary_mutable.substrate_signers.get_mut(msg.key()).unwrap().handle(txn, msg).await;
|
2023-04-17 23:39:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
CoordinatorMessage::Substrate(msg) => {
|
|
|
|
match msg {
|
|
|
|
messages::substrate::CoordinatorMessage::ConfirmKeyPair { context, id } => {
|
|
|
|
// See TributaryMutable's struct definition for why this block is safe
|
|
|
|
let KeyConfirmed { activation_block, substrate_keys, coin_keys } =
|
2023-04-18 03:20:48 +00:00
|
|
|
tributary_mutable.key_gen.confirm(txn, context, id).await;
|
2023-04-17 23:20:47 +00:00
|
|
|
tributary_mutable.substrate_signers.insert(
|
|
|
|
substrate_keys.group_key().to_bytes().to_vec(),
|
2023-04-18 03:20:48 +00:00
|
|
|
SubstrateSigner::new(substrate_keys),
|
2023-04-17 23:20:47 +00:00
|
|
|
);
|
|
|
|
|
|
|
|
let key = coin_keys.group_key();
|
|
|
|
|
|
|
|
let mut activation_block_hash = <C::Block as Block<C>>::Id::default();
|
|
|
|
activation_block_hash.as_mut().copy_from_slice(&activation_block.0);
|
|
|
|
let activation_number = substrate_mutable
|
|
|
|
.scanner
|
|
|
|
.block_number(&activation_block_hash)
|
|
|
|
.await
|
|
|
|
.expect("KeyConfirmed from context we haven't synced");
|
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
substrate_mutable.scanner.rotate_key(txn, activation_number, key).await;
|
2023-04-17 23:20:47 +00:00
|
|
|
substrate_mutable
|
|
|
|
.schedulers
|
|
|
|
.insert(key.to_bytes().as_ref().to_vec(), Scheduler::<C>::new(key));
|
2023-04-17 23:39:36 +00:00
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
tributary_mutable
|
|
|
|
.signers
|
|
|
|
.insert(key.to_bytes().as_ref().to_vec(), Signer::new(coin.clone(), coin_keys));
|
2023-04-17 23:20:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
messages::substrate::CoordinatorMessage::SubstrateBlock {
|
|
|
|
context,
|
|
|
|
key: key_vec,
|
|
|
|
burns,
|
|
|
|
} => {
|
|
|
|
let mut block_id = <C::Block as Block<C>>::Id::default();
|
|
|
|
block_id.as_mut().copy_from_slice(&context.coin_latest_finalized_block.0);
|
|
|
|
|
|
|
|
let key = <C::Curve as Ciphersuite>::read_G::<&[u8]>(&mut key_vec.as_ref()).unwrap();
|
|
|
|
|
|
|
|
// We now have to acknowledge every block for this key up to the acknowledged block
|
2023-04-18 03:20:48 +00:00
|
|
|
let (blocks, outputs) =
|
|
|
|
substrate_mutable.scanner.ack_up_to_block(txn, key, block_id).await;
|
2023-04-18 00:16:58 +00:00
|
|
|
// Since this block was acknowledged, we no longer have to sign the batch for it
|
|
|
|
for block in blocks {
|
|
|
|
for (_, signer) in tributary_mutable.substrate_signers.iter_mut() {
|
2023-04-18 03:20:48 +00:00
|
|
|
signer.batch_signed(txn, block);
|
2023-04-18 00:16:58 +00:00
|
|
|
}
|
|
|
|
}
|
2023-04-17 23:20:47 +00:00
|
|
|
|
|
|
|
let mut payments = vec![];
|
|
|
|
for out in burns {
|
|
|
|
let OutInstructionWithBalance {
|
|
|
|
instruction: OutInstruction { address, data },
|
|
|
|
balance,
|
|
|
|
} = out;
|
|
|
|
if let Ok(address) = C::Address::try_from(address.consume()) {
|
|
|
|
payments.push(Payment {
|
|
|
|
address,
|
|
|
|
data: data.map(|data| data.consume()),
|
|
|
|
amount: balance.amount.0,
|
|
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let plans = substrate_mutable
|
|
|
|
.schedulers
|
|
|
|
.get_mut(&key_vec)
|
|
|
|
.expect("key we don't have a scheduler for acknowledged a block")
|
|
|
|
.schedule(outputs, payments);
|
|
|
|
|
|
|
|
sign_plans(
|
2023-04-18 03:20:48 +00:00
|
|
|
txn,
|
2023-04-17 23:20:47 +00:00
|
|
|
coin,
|
|
|
|
substrate_mutable,
|
|
|
|
// See commentary in TributaryMutable for why this is safe
|
|
|
|
&mut tributary_mutable.signers,
|
|
|
|
context,
|
|
|
|
plans,
|
|
|
|
)
|
|
|
|
.await;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-04-10 15:11:46 +00:00
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
async fn boot<C: Coin, D: Db>(
|
2023-04-18 03:20:48 +00:00
|
|
|
raw_db: &mut D,
|
2023-04-17 23:20:47 +00:00
|
|
|
coin: &C,
|
|
|
|
) -> (MainDb<C, D>, TributaryMutable<C, D>, SubstrateMutable<C, D>) {
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
let mut entropy_transcript = {
|
|
|
|
let entropy =
|
|
|
|
Zeroizing::new(env::var("ENTROPY").expect("entropy wasn't provided as an env var"));
|
|
|
|
if entropy.len() != 64 {
|
|
|
|
panic!("entropy isn't the right length");
|
|
|
|
}
|
|
|
|
let bytes = Zeroizing::new(hex::decode(entropy).expect("entropy wasn't hex-formatted"));
|
|
|
|
let mut entropy = Zeroizing::new([0; 32]);
|
2023-04-09 06:31:10 +00:00
|
|
|
let entropy_mut: &mut [u8] = entropy.as_mut();
|
|
|
|
entropy_mut.copy_from_slice(bytes.as_ref());
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
let mut transcript = RecommendedTranscript::new(b"Serai Processor Entropy");
|
2023-04-09 06:31:10 +00:00
|
|
|
transcript.append_message(b"entropy", entropy);
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
transcript
|
|
|
|
};
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
// TODO: Save a hash of the entropy to the DB and make sure the entropy didn't change
|
|
|
|
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
let mut entropy = |label| {
|
|
|
|
let mut challenge = entropy_transcript.challenge(label);
|
|
|
|
let mut res = Zeroizing::new([0; 32]);
|
2023-04-09 06:31:10 +00:00
|
|
|
let res_mut: &mut [u8] = res.as_mut();
|
|
|
|
res_mut.copy_from_slice(&challenge[.. 32]);
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
challenge.zeroize();
|
|
|
|
res
|
|
|
|
};
|
|
|
|
|
|
|
|
// We don't need to re-issue GenerateKey orders because the coordinator is expected to
|
|
|
|
// schedule/notify us of new attempts
|
2023-04-17 23:20:47 +00:00
|
|
|
let key_gen = KeyGen::<C, _>::new(raw_db.clone(), entropy(b"key-gen_entropy"));
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
// The scanner has no long-standing orders to re-issue
|
|
|
|
let (mut scanner, active_keys) = Scanner::new(coin.clone(), raw_db.clone());
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
let schedulers = HashMap::<Vec<u8>, Scheduler<C>>::new();
|
2023-04-10 15:11:46 +00:00
|
|
|
let mut substrate_signers = HashMap::new();
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
let mut signers = HashMap::new();
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
let main_db = MainDb::new(raw_db.clone());
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
for key in &active_keys {
|
|
|
|
// TODO: Load existing schedulers
|
|
|
|
|
2023-04-10 15:11:46 +00:00
|
|
|
let (substrate_keys, coin_keys) = key_gen.keys(key);
|
|
|
|
|
|
|
|
let substrate_key = substrate_keys.group_key();
|
2023-04-18 03:20:48 +00:00
|
|
|
let substrate_signer = SubstrateSigner::new(substrate_keys);
|
2023-04-10 15:11:46 +00:00
|
|
|
// We don't have to load any state for this since the Scanner will re-fire any events
|
|
|
|
// necessary
|
|
|
|
substrate_signers.insert(substrate_key.to_bytes().to_vec(), substrate_signer);
|
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
let mut signer = Signer::new(coin.clone(), coin_keys);
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
// Load any TXs being actively signed
|
|
|
|
let key = key.to_bytes();
|
2023-04-16 03:01:07 +00:00
|
|
|
for (block_number, plan) in main_db.signing(key.as_ref()) {
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
let block_number = block_number.try_into().unwrap();
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
let fee = get_fee(coin, block_number).await;
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
|
|
|
|
let id = plan.id();
|
|
|
|
info!("reloading plan {}: {:?}", hex::encode(id), plan);
|
|
|
|
|
|
|
|
let (Some((tx, eventuality)), _) =
|
2023-04-18 03:20:48 +00:00
|
|
|
prepare_send(coin, signer.keys(), block_number, fee, plan).await else {
|
2023-04-17 23:20:47 +00:00
|
|
|
panic!("previously created transaction is no longer being created")
|
|
|
|
};
|
2023-03-23 02:45:41 +00:00
|
|
|
|
|
|
|
scanner.register_eventuality(block_number, id, eventuality.clone()).await;
|
|
|
|
// TODO: Reconsider if the Signer should have the eventuality, or if just the coin/scanner
|
|
|
|
// should
|
2023-04-18 03:20:48 +00:00
|
|
|
let mut txn = raw_db.txn();
|
|
|
|
signer.sign_transaction(&mut txn, id, tx, eventuality).await;
|
|
|
|
// This should only have re-writes of existing data
|
|
|
|
drop(txn);
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
signers.insert(key.as_ref().to_vec(), signer);
|
|
|
|
}
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
(
|
|
|
|
main_db,
|
|
|
|
TributaryMutable { key_gen, substrate_signers, signers },
|
|
|
|
SubstrateMutable { scanner, schedulers },
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
async fn run<C: Coin, D: Db, Co: Coordinator>(mut raw_db: D, coin: C, mut coordinator: Co) {
|
2023-04-17 23:20:47 +00:00
|
|
|
// We currently expect a contextless bidirectional mapping between these two values
|
|
|
|
// (which is that any value of A can be interpreted as B and vice versa)
|
|
|
|
// While we can write a contextual mapping, we have yet to do so
|
|
|
|
// This check ensures no coin which doesn't have a bidirectional mapping is defined
|
|
|
|
assert_eq!(<C::Block as Block<C>>::Id::default().as_ref().len(), BlockHash([0u8; 32]).0.len());
|
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
let (mut main_db, mut tributary_mutable, mut substrate_mutable) = boot(&mut raw_db, &coin).await;
|
2023-04-17 23:20:47 +00:00
|
|
|
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
// We can't load this from the DB as we can't guarantee atomic increments with the ack function
|
|
|
|
let mut last_coordinator_msg = None;
|
|
|
|
|
|
|
|
loop {
|
2023-04-16 03:01:07 +00:00
|
|
|
// Check if the signers have events
|
|
|
|
// The signers will only have events after the following select executes, which will then
|
|
|
|
// trigger the loop again, hence why having the code here with no timer is fine
|
2023-04-17 23:20:47 +00:00
|
|
|
for (key, signer) in tributary_mutable.signers.iter_mut() {
|
2023-04-16 03:01:07 +00:00
|
|
|
while let Some(msg) = signer.events.pop_front() {
|
|
|
|
match msg {
|
|
|
|
SignerEvent::ProcessorMessage(msg) => {
|
|
|
|
coordinator.send(ProcessorMessage::Sign(msg)).await;
|
|
|
|
}
|
|
|
|
|
|
|
|
SignerEvent::SignedTransaction { id, tx } => {
|
|
|
|
coordinator
|
|
|
|
.send(ProcessorMessage::Sign(messages::sign::ProcessorMessage::Completed {
|
|
|
|
key: key.clone(),
|
|
|
|
id,
|
|
|
|
tx: tx.as_ref().to_vec(),
|
|
|
|
}))
|
|
|
|
.await;
|
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
let mut txn = raw_db.txn();
|
|
|
|
// This does mutate the Scanner, yet the eventuality protocol is only run to mutate
|
|
|
|
// the signer, which is Tributary mutable (and what's currently being mutated)
|
|
|
|
substrate_mutable.scanner.drop_eventuality(id).await;
|
|
|
|
main_db.finish_signing(&mut txn, key, id);
|
|
|
|
txn.commit();
|
|
|
|
|
2023-04-16 03:01:07 +00:00
|
|
|
// TODO
|
|
|
|
// 1) We need to stop signing whenever a peer informs us or the chain has an
|
|
|
|
// eventuality
|
|
|
|
// 2) If a peer informed us of an eventuality without an outbound payment, stop
|
|
|
|
// scanning the chain for it (or at least ack it's solely for sanity purposes?)
|
|
|
|
// 3) When the chain has an eventuality, if it had an outbound payment, report it up to
|
|
|
|
// Substrate for logging purposes
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
for (key, signer) in tributary_mutable.substrate_signers.iter_mut() {
|
2023-04-16 03:01:07 +00:00
|
|
|
while let Some(msg) = signer.events.pop_front() {
|
|
|
|
match msg {
|
|
|
|
SubstrateSignerEvent::ProcessorMessage(msg) => {
|
|
|
|
coordinator.send(ProcessorMessage::Coordinator(msg)).await;
|
|
|
|
}
|
|
|
|
SubstrateSignerEvent::SignedBatch(batch) => {
|
|
|
|
coordinator
|
|
|
|
.send(ProcessorMessage::Substrate(messages::substrate::ProcessorMessage::Update {
|
|
|
|
key: key.clone(),
|
|
|
|
batch,
|
|
|
|
}))
|
|
|
|
.await;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
tokio::select! {
|
|
|
|
// This blocks the entire processor until it finishes handling this message
|
|
|
|
// KeyGen specifically may take a notable amount of processing time
|
|
|
|
// While that shouldn't be an issue in practice, as after processing an attempt it'll handle
|
|
|
|
// the other messages in the queue, it may be beneficial to parallelize these
|
|
|
|
// They could likely be parallelized by type (KeyGen, Sign, Substrate) without issue
|
|
|
|
msg = coordinator.recv() => {
|
|
|
|
assert_eq!(msg.id, (last_coordinator_msg.unwrap_or(msg.id - 1) + 1));
|
|
|
|
last_coordinator_msg = Some(msg.id);
|
|
|
|
|
2023-04-18 03:20:48 +00:00
|
|
|
// Only handle this if we haven't already
|
|
|
|
if !main_db.handled_message(msg.id) {
|
|
|
|
let mut txn = raw_db.txn();
|
|
|
|
MainDb::<C, D>::handle_message(&mut txn, msg.id);
|
|
|
|
|
|
|
|
// This is isolated to better think about how its ordered, or rather, about how the other
|
|
|
|
// cases aren't ordered
|
|
|
|
//
|
|
|
|
// While the coordinator messages are ordered, they're not deterministically ordered
|
|
|
|
// Tributary-caused messages are deterministically ordered, and Substrate-caused messages
|
|
|
|
// are deterministically-ordered, yet they're both shoved into a singular queue
|
|
|
|
// The order at which they're shoved in together isn't deterministic
|
|
|
|
//
|
|
|
|
// This is safe so long as Tributary and Substrate messages don't both expect mutable
|
|
|
|
// references over the same data
|
|
|
|
handle_coordinator_msg(
|
|
|
|
&mut txn,
|
|
|
|
&coin,
|
|
|
|
&mut coordinator,
|
|
|
|
&mut tributary_mutable,
|
|
|
|
&mut substrate_mutable,
|
|
|
|
&msg,
|
|
|
|
).await;
|
|
|
|
|
|
|
|
txn.commit();
|
|
|
|
}
|
|
|
|
|
|
|
|
coordinator.ack(msg).await;
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
},
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
msg = substrate_mutable.scanner.events.recv() => {
|
2023-04-18 03:20:48 +00:00
|
|
|
let mut txn = raw_db.txn();
|
|
|
|
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
match msg.unwrap() {
|
2023-04-16 03:01:07 +00:00
|
|
|
ScannerEvent::Block { key, block, batch, outputs } => {
|
2023-04-10 06:51:15 +00:00
|
|
|
let key = key.to_bytes().as_ref().to_vec();
|
|
|
|
|
|
|
|
let mut block_hash = [0; 32];
|
|
|
|
block_hash.copy_from_slice(block.as_ref());
|
|
|
|
|
|
|
|
let batch = Batch {
|
|
|
|
network: C::NETWORK,
|
2023-04-11 12:47:15 +00:00
|
|
|
id: batch,
|
2023-04-10 06:51:15 +00:00
|
|
|
block: BlockHash(block_hash),
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
instructions: outputs.iter().filter_map(|output| {
|
|
|
|
// If these aren't externally received funds, don't handle it as an instruction
|
|
|
|
if output.kind() != OutputType::External {
|
|
|
|
return None;
|
|
|
|
}
|
|
|
|
|
2023-03-25 08:06:25 +00:00
|
|
|
let mut data = output.data();
|
|
|
|
let max_data_len = MAX_DATA_LEN.try_into().unwrap();
|
|
|
|
if data.len() > max_data_len {
|
2023-03-25 05:36:28 +00:00
|
|
|
error!(
|
|
|
|
"data in output {} exceeded MAX_DATA_LEN ({MAX_DATA_LEN}): {}",
|
|
|
|
hex::encode(output.id()),
|
|
|
|
data.len(),
|
|
|
|
);
|
2023-03-25 08:06:25 +00:00
|
|
|
data = &data[.. max_data_len];
|
2023-03-25 05:36:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
let shorthand = Shorthand::decode(&mut data).ok()?;
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
let instruction = RefundableInInstruction::try_from(shorthand).ok()?;
|
|
|
|
// TODO2: Set instruction.origin if not set (and handle refunds in general)
|
2023-03-25 08:06:25 +00:00
|
|
|
Some(InInstructionWithBalance {
|
|
|
|
instruction: instruction.instruction,
|
|
|
|
balance: output.balance(),
|
|
|
|
})
|
2023-04-10 06:51:15 +00:00
|
|
|
}).collect()
|
|
|
|
};
|
|
|
|
|
2023-04-17 23:20:47 +00:00
|
|
|
// Start signing this batch
|
2023-04-18 03:20:48 +00:00
|
|
|
tributary_mutable.substrate_signers.get_mut(&key).unwrap().sign(&mut txn, batch).await;
|
2023-04-10 15:11:46 +00:00
|
|
|
},
|
2023-04-11 09:49:27 +00:00
|
|
|
|
|
|
|
ScannerEvent::Completed(id, tx) => {
|
|
|
|
// We don't know which signer had this plan, so inform all of them
|
2023-04-17 23:20:47 +00:00
|
|
|
for (_, signer) in tributary_mutable.signers.iter_mut() {
|
2023-04-18 03:20:48 +00:00
|
|
|
signer.eventuality_completion(&mut txn, id, &tx).await;
|
2023-04-11 09:49:27 +00:00
|
|
|
}
|
|
|
|
},
|
2023-04-10 15:11:46 +00:00
|
|
|
}
|
2023-04-18 03:20:48 +00:00
|
|
|
|
|
|
|
txn.commit();
|
2023-04-10 15:11:46 +00:00
|
|
|
},
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::main]
|
|
|
|
async fn main() {
|
|
|
|
let db = MemDb::new(); // TODO
|
|
|
|
let coordinator = MemCoordinator::new(); // TODO
|
|
|
|
let url = env::var("COIN_RPC").expect("coin rpc wasn't specified as an env var");
|
|
|
|
match env::var("COIN").expect("coin wasn't specified as an env var").as_str() {
|
|
|
|
#[cfg(feature = "bitcoin")]
|
2023-03-18 01:25:38 +00:00
|
|
|
"bitcoin" => run(db, Bitcoin::new(url).await, coordinator).await,
|
Processor (#259)
* Initial work on a message box
* Finish message-box (untested)
* Expand documentation
* Embed the recipient in the signature challenge
Prevents a message from A -> B from being read as from A -> C.
* Update documentation by bifurcating sender/receiver
* Panic on receiving an invalid signature
If we've received an invalid signature in an authenticated system, a
service is malicious, critically faulty (equivalent to malicious), or
the message layer has been compromised (or is otherwise critically
faulty).
Please note a receiver who handles a message they shouldn't will trigger
this. That falls under being critically faulty.
* Documentation and helper methods
SecureMessage::new and SecureMessage::serialize.
Secure Debug for MessageBox.
* Have SecureMessage not be serialized by default
Allows passing around in-memory, if desired, and moves the error from
decrypt to new (which performs deserialization).
Decrypt no longer has an error since it panics if given an invalid
signature, due to this being intranet code.
* Explain and improve nonce handling
Includes a missing zeroize call.
* Rebase to latest develop
Updates to transcript 0.2.0.
* Add a test for the MessageBox
* Export PrivateKey and PublicKey
* Also test serialization
* Add a key_gen binary to message_box
* Have SecureMessage support Serde
* Add encrypt_to_bytes and decrypt_from_bytes
* Support String ser via base64
* Rename encrypt/decrypt to encrypt_bytes/decrypt_to_bytes
* Directly operate with values supporting Borsh
* Use bincode instead of Borsh
By staying inside of serde, we'll support many more structs. While
bincode isn't canonical, we don't need canonicity on an authenticated,
internal system.
* Turn PrivateKey, PublicKey into structs
Uses Zeroizing for the PrivateKey per #150.
* from_string functions intended for loading from an env
* Use &str for PublicKey from_string (now from_str)
The PrivateKey takes the String to take ownership of its memory and
zeroize it. That isn't needed with PublicKeys.
* Finish updating from develop
* Resolve warning
* Use ZeroizingAlloc on the key_gen binary
* Move message-box from crypto/ to common/
* Move key serialization functions to ser
* add/remove functions in MessageBox
* Implement Hash on dalek_ff_group Points
* Make MessageBox generic to its key
Exposes a &'static str variant for internal use and a RistrettoPoint
variant for external use.
* Add Private to_string as deprecated
Stub before more competent tooling is deployed.
* Private to_public
* Test both Internal and External MessageBox, only use PublicKey in the pub API
* Remove panics on invalid signatures
Leftover from when this was solely internal which is now unsafe.
* Chicken scratch a Scanner task
* Add a write function to the DKG library
Enables writing directly to a file.
Also modifies serialize to return Zeroizing<Vec<u8>> instead of just Vec<u8>.
* Make dkg::encryption pub
* Remove encryption from MessageBox
* Use a 64-bit block number in Substrate
We use a 64-bit block number in general since u32 only works for 120 years
(with a 1 second block time). As some chains even push the 1 second threshold,
especially ones based on DAG consensus, this becomes potentially as low as 60
years.
While that should still be plenty, it's not worth wondering/debating. Since
Serai uses 64-bit block numbers elsewhere, this ensures consistency.
* Misc crypto lints
* Get the scanner scratch to compile
* Initial scanner test
* First few lines of scheduler
* Further work on scheduler, solidify API
* Define Scheduler TX format
* Branch creation algorithm
* Document when the branch algorithm isn't perfect
* Only scanned confirmed blocks
* Document Coin
* Remove Canonical/ChainNumber from processor
The processor should be abstracted from canonical numbers thanks to the
coordinator, making this unnecessary.
* Add README documenting processor flow
* Use Zeroize on substrate primitives
* Define messages from/to the processor
* Correct over-specified versioning
* Correct build re: in_instructions::primitives
* Debug/some serde in crypto/
* Use a struct for ValidatorSetInstance
* Add a processor key_gen task
Redos DB handling code.
* Replace trait + impl with wrapper struct
* Add a key confirmation flow to the key gen task
* Document concerns on key_gen
* Start on a signer task
* Add Send to FROST traits
* Move processor lib.rs to main.rs
Adds a dummy main to reduce clippy dead_code warnings.
* Further flesh out main.rs
* Move the DB trait to AsRef<[u8]>
* Signer task
* Remove a panic in bitcoin when there's insufficient funds
Unchecked underflow.
* Have Monero's mine_block mine one block, not 10
It was initially a nicety to deal with the 10 block lock. C::CONFIRMATIONS
should be used for that instead.
* Test signer
* Replace channel expects with log statements
The expects weren't problematic and had nicer code. They just clutter test
output.
* Remove the old wallet file
It predates the coordinator design and shouldn't be used.
* Rename tests/scan.rs to tests/scanner.rs
* Add a wallet test
Complements the recently removed wallet file by adding a test for the scanner,
scheduler, and signer together.
* Work on a run function
Triggers a clippy ICE.
* Resolve clippy ICE
The issue was the non-fully specified lambda in signer.
* Add KeyGenEvent and KeyGenOrder
Needed so we get KeyConfirmed messages from the key gen task.
While we could've read the CoordinatorMessage to see that, routing through the
key gen tasks ensures we only handle it once it's been successfully saved to
disk.
* Expand scanner test
* Clarify processor documentation
* Have the Scanner load keys on boot/save outputs to disk
* Use Vec<u8> for Block ID
Much more flexible.
* Panic if we see the same output multiple times
* Have the Scanner DB mark itself as corrupt when doing a multi-put
This REALLY should be a TX. Since we don't have a TX API right now, this at
least offers detection.
* Have DST'd DB keys accept AsRef<[u8]>
* Restore polling all signers
Writes a custom future to do so.
Also loads signers on boot using what the scanner claims are active keys.
* Schedule OutInstructions
Adds a data field to Payment.
Also cleans some dead code.
* Panic if we create an invalid transaction
Saves the TX once it's successfully signed so if we do panic, we have a copy.
* Route coordinator messages to their respective signer
Requires adding key to the SignId.
* Send SignTransaction orders for all plans
* Add a timer to retry sign_plans when prepare_send fails
* Minor fmt'ing
* Basic Fee API
* Move the change key into Plan
* Properly route activation_number
* Remove ScannerEvent::Block
It's not used under current designs
* Nicen logs
* Add utilities to get a block's number
* Have main issue AckBlock
Also has a few misc lints.
* Parse instructions out of outputs
* Tweak TODOs and remove an unwrap
* Update Bitcoin max input/output quantity
* Only read one piece of data from Monero
Due to output randomization, it's infeasible.
* Embed plan IDs into the TXs they create
We need to stop attempting signing if we've already signed a protocol. Ideally,
any one of the participating signers should be able to provide a proof the TX
was successfully signed. We can't just run a second signing protocol though as
a single malicious signer could complete the TX signature, and publish it,
yet not complete the secondary signature.
The TX itself has to be sufficient to show that the TX matches the plan. This
is done by embedding the ID, so matching addresses/amounts plans are
distinguished, and by allowing verification a TX actually matches a set of
addresses/amounts.
For Monero, this will need augmenting with the ephemeral keys (or usage of a
static seed for them).
* Don't use OP_RETURN to encode the plan ID on Bitcoin
We can use the inputs to distinguih identical-output plans without issue.
* Update OP_RETURN data access
It's not required to be the last output.
* Add Eventualities to Monero
An Eventuality is an effective equivalent to a SignableTransaction. That is
declared not by the inputs it spends, yet the outputs it creates.
Eventualities are also bound to a 32-byte RNG seed, enabling usage of a
hash-based identifier in a SignableTransaction, allowing multiple
SignableTransactions with the same output set to have different Eventualities.
In order to prevent triggering the burning bug, the RNG seed is hashed with
the planned-to-be-used inputs' output keys. While this does bind to them, it's
only loosely bound. The TX actually created may use different inputs entirely
if a forgery is crafted (which requires no brute forcing).
Binding to the key images would provide a strong binding, yet would require
knowing the key images, which requires active communication with the spend
key.
The purpose of this is so a multisig can identify if a Transaction the entire
group planned has been executed by a subset of the group or not. Once a plan
is created, it can have an Eventuality made. The Eventuality's extra is able
to be inserted into a HashMap, so all new on-chain transactions can be
trivially checked as potential candidates. Once a potential candidate is found,
a check involving ECC ops can be performed.
While this is arguably a DoS vector, the underlying Monero blockchain would
need to be spammed with transactions to trigger it. Accordingly, it becomes
a Monero blockchain DoS vector, when this code is written on the premise
of the Monero blockchain functioning. Accordingly, it is considered handled.
If a forgery does match, it must have created the exact same outputs the
multisig would've. Accordingly, it's argued the multisig shouldn't mind.
This entire suite of code is only necessary due to the lack of outgoing
view keys, yet it's able to avoid an interactive protocol to communicate
key images on every single received output.
While this could be locked to the multisig feature, there's no practical
benefit to doing so.
* Add support for encoding Monero address to instructions
* Move Serai's Monero address encoding into serai-client
serai-client is meant to be a single library enabling using Serai. While it was
originally written as an RPC client for Serai, apps actually using Serai will
primarily be sending transactions on connected networks. Sending those
transactions require proper {In, Out}Instructions, including proper address
encoding.
Not only has address encoding been moved, yet the subxt client is now behind
a feature. coin integrations have their own features, which are on by default.
primitives are always exposed.
* Reorganize file layout a bit, add feature flags to processor
* Tidy up ETH Dockerfile
* Add Bitcoin address encoding
* Move Bitcoin::Address to serai-client's
* Comment where tweaking needs to happen
* Add an API to check if a plan was completed in a specific TX
This allows any participating signer to submit the TX ID to prevent further
signing attempts.
Also performs some API cleanup.
* Minimize FROST dependencies
* Use a seeded RNG for key gen
* Tweak keys from Key gen
* Test proper usage of Branch/Change addresses
Adds a more descriptive error to an error case in decoys, and pads Monero
payments as needed.
* Also test spending the change output
* Add queued_plans to the Scheduler
queued_plans is for payments to be issued when an amount appears, yet the
amount is currently pre-fee. One the output is actually created, the
Scheduler should be notified of the amount it was created with, moving from
queued_plans to plans under the actual amount.
Also tightens debug_asserts to asserts for invariants which may are at risk of
being exclusive to prod.
* Add missing tweak_keys call
* Correct decoy selection height handling
* Add a few log statements to the scheduler
* Simplify test's get_block_number
* Simplify, while making more robust, branch address handling in Scheduler
* Have fees deducted from payments
Corrects Monero's handling of fees when there's no change address.
Adds a DUST variable, as needed due to 1_00_000_000 not being enough to pay
its fee on Monero.
* Add comment to Monero
* Consolidate BTC/XMR prepare_send code
These aren't fully consolidated. We'd need a SignableTransaction trait for
that. This is a lot cleaner though.
* Ban integrated addresses
The reasoning why is accordingly documented.
* Tidy TODOs/dust handling
* Update README TODO
* Use a determinisitic protocol version in Monero
* Test rebuilt KeyGen machines function as expected
* Use a more robust KeyGen entropy system
* Add DB TXNs
Also load entropy from env
* Add a loop for processing messages from substrate
Allows detecting if we're behind, and if so, waiting to handle the message
* Set Monero MAX_INPUTS properly
The previous number was based on an old hard fork. With the ring size having
increased, transactions have since got larger.
* Distinguish TODOs into TODO and TODO2s
TODO2s are for after protonet
* Zeroize secret share repr in ThresholdCore write
* Work on Eventualities
Adds serialization and stops signing when an eventuality is proven.
* Use a more robust DB key schema
* Update to {k, p}256 0.12
* cargo +nightly clippy
* cargo update
* Slight message-box tweaks
* Update to recent Monero merge
* Add a Coordinator trait for communication with coordinator
* Remove KeyGenHandle for just KeyGen
While KeyGen previously accepted instructions over a channel, this breaks the
ack flow needed for coordinator communication. Now, KeyGen is the direct object
with a handle() function for messages.
Thankfully, this ended up being rather trivial for KeyGen as it has no
background tasks.
* Add a handle function to Signer
Enables determining when it's finished handling a CoordinatorMessage and
therefore creating an acknowledgement.
* Save transactions used to complete eventualities
* Use a more intelligent sleep in the signer
* Emit SignedTransaction with the first ID *we can still get from our node*
* Move Substrate message handling into the new coordinator recv loop
* Add handle function to Scanner
* Remove the plans timer
Enables ensuring the ordring on the handling of plans.
* Remove the outputs function which panicked if a precondition wasn't met
The new API only returns outputs upon satisfaction of the precondition.
* Convert SignerOrder::SignTransaction to a function
* Remove the key_gen object from sign_plans
* Refactor out get_fee/prepare_send into dedicated functions
* Save plans being signed to the DB
* Reload transactions being signed on boot
* Stop reloading TXs being signed (and report it to peers)
* Remove message-box from the processor branch
We don't use it here yet.
* cargo +nightly fmt
* Move back common/zalloc
* Update subxt to 0.27
* Zeroize ^1.5, not 1
* Update GitHub workflow
* Remove usage of SignId in completed
2023-03-17 02:59:40 +00:00
|
|
|
#[cfg(feature = "monero")]
|
|
|
|
"monero" => run(db, Monero::new(url), coordinator).await,
|
|
|
|
_ => panic!("unrecognized coin"),
|
|
|
|
}
|
|
|
|
}
|