research-lab/source-code/RingCT/rctOps.h

147 lines
5.4 KiB
C++

#define DBG
// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#ifndef RCTOPS_H
#define RCTOPS_H
#include <cstddef>
#include <mutex>
#include <vector>
#include <tuple>
#include "generic-ops.h"
#include "crypto-ops.h"
#include "random.h"
#include "keccak.h"
#include "crypto.h"
#include "rctTypes.h"
using namespace std;
using namespace crypto;
namespace rct {
//Various key initialization functions
//Creates a zero scalar
key zero();
void zero(key &z);
//Creates a zero elliptic curve point
key identity();
void identity(key &Id);
//copies a scalar or point
void copy(key &AA, const key &A);
key copy(const key & AA);
//initializes a key matrix;
//first parameter is rows,
//second is columns
keyM keyMInit(int, int);
//Various key generation functions
//generates a random scalar which can be used as a secret key or mask
key skGen();
void skGen(key &);
//generates a vector of secret keys of size "int"
keyV skvGen(int );
//generates a random curve point (for testing)
key pkGen();
//generates a random secret and corresponding public key
void skpkGen(key &sk, key &pk);
tuple<key, key> skpkGen();
//generates a <secret , public> / Pedersen commitment to the amount
tuple<ctkey, ctkey> ctskpkGen(xmr_amount amount);
//this one is mainly for testing, can take arbitrary amounts..
tuple<ctkey, ctkey> ctskpkGen(key bH);
//generates a random uint long long
xmr_amount randXmrAmount(xmr_amount upperlimit);
//Scalar multiplications of curve points
//does a * G where a is a scalar and G is the curve basepoint
void scalarmultBase(key & aG, const key &a);
key scalarmultBase(const key & a);
//does a * P where a is a scalar and P is an arbitrary point
void scalarmultKey(key &aP, const key &P, const key &a);
key scalarmultKey(const key &P, const key &a);
//Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint
key scalarmultH(const key & a);
//Curve addition / subtractions
//for curve points: AB = A + B
void addKeys(key &AB, const key &A, const key &B);
//aGB = aG + B where a is a scalar, G is the basepoint, and B is a point
void addKeys1(key &aGB, const key &a, const key & B);
//aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point
void addKeys2(key &aGbB, const key &a, const key &b, const key &B);
//Does some precomputation to make addKeys3 more efficient
// input B a curve point and output a ge_dsmp which has precomputation applied
void precomp(ge_dsmp rv, const key &B);
//aAbB = a*A + b*B where a, b are scalars, A, B are curve points
//B must be input after applying "precomp"
void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B);
//AB = A - B where A, B are curve points
void subKeys(key &AB, const key &A, const key &B);
//checks if A, B are equal as curve points
bool equalKeys(key & A, key & B);
//Hashing - cn_fast_hash
//be careful these are also in crypto namespace
//cn_fast_hash for arbitrary multiples of 32 bytes
void cn_fast_hash(key &hash, const void * data, const size_t l);
//cn_fast_hash for a 32 byte key
void cn_fast_hash(key &hash, const key &in);
//cn_fast_hash for a 32 byte key
key cn_fast_hash(const key &in);
//for mg sigs
key cn_fast_hash96(const void * in);
//returns cn_fast_hash(input) * G where G is the basepoint
key hashToPoint(const key &in);
void hashToPoint(key &out, const key &in);
//sums a vector of curve points (for scalars use sc_add)
void sumKeys(key & Csum, const key &Cis);
//Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
// where C= aG + bH
void ecdhEncode(ecdhTuple & unmasked, const key & receiverPk);
void ecdhDecode(ecdhTuple & masked, const key & receiverSk);
}
#endif /* RCTOPS_H */