@ MONERO

RESEARCH LAB
TECHNICAL NOTE MRL-XXXX

Application of Bulletproofs in Monero Transactions

Sarang Noetherff]
Monero Research Lab
March 5, 2018

Abstract

This technical note briefly describes the proposed application of Bulletproofs [?] in Monero. The proofs
are used as a drop-in replacement of the existing Borromean bitwise non-interactive zero-knowledge range
proofs used to show that a committed amount is in a specified range. Bulletproofs reduce both proof
size and verification time, as well as provide a straightforward method for batch verification of proofs
from multiple transactions. We describe our implementation, noting specific areas of optimization from

the original paper.

1 Introduction

The implementation of confidential transaction amounts in Monero is accomplished using homomorphic
commitments. Each input and output amount, including fees, is represented by a commitment of the form
vG+pH, where G and H are elliptic curve generators, v is the amount, and p is a mask. Without knowledge
of the commitment opening, a third party cannot determine the amount; however, it is trivial for the third
party to convince itself that a transaction balances (that is, that the difference between inputs and output
amounts is zero). The homomorphic property of the commitments is such that the difference in commitments
must itself be a commitment to zero.

However, this is not sufficient to ensure a correct and safe transaction model. An adversary could easily
construct a combination of positive and negative outputs such that the transaction amounts balance. A
third party would still verify that the transaction balances, though the adversary has effectively printed free
money in an undetected fashion. To combat this, we require that each amount commitment come equipped
with a range proof that convinces a verifier that the corresponding output is both positive and does not risk
an overflow by being too large. The range proof scheme must be non-interactive and zero-knowledge; that is,
the verifier does not need to communicate with the prover once the proof is generated, and the proof itself
reveals no information about the amount except that it is within the stated range.

The current range proof style used in Monero confidential transactions is a Borromean bitwise range
proof. To generate a proof that a commitment C = vG + pH represents an amount v € [0,2" — 1] for
some bit length n > 0 (in Monero n = 64), the prover generates separate commitments for each bit. The
prover then generates a Borromean ring signature showing that each commitment is to either 0 or 2¢ for
appropriate i. Any third-party verifier can then convince itself that the bit commitments reconstruct the
committed amount, that each commitment is to either 0 or 2¢, and therefore that the committed amount
lies in the correct range.

However, this comes at a cost. Borromean bitwise proofs scale linearly in size with the number of bits in
the range. Further, if multiple outputs are used in a transaction, a separate proof is required for each. Each
proof is large, taking up 6.2 kB of space.

*sarang.noether@protonmail.com

2 Bulletproofs

Bulletproofs are a recent general non-interactive zero-knowledge proof construction [?]. Using a novel inner
product argument, they can be used in a variety of applications ranging from range proofs (pun intended)
to verifiable shuffles and even proofs of general arithmetic circuit evaluation. For our purposes, they can
accomplish the same goal as Borromean bitwise range proofs: convincing a verifier that a committed amount
is within a claimed range.

The details of Bulletproof construction, both for prover and verifier, are discussed in the paper [?], so we
will not duplicate them here. However, several definitions are useful when discussing the scaling. A standard
Bulletproof that shows an amount is within the n-bit range [0,2™ — 1] is called a single-output proof or a
1-proof. However, it is possible for a prover to construct a single proof showing that m separate amounts
(with separate random masks) each lie within the range [0, 2™ — 1], where m is a power of two. Such a proof
is called an aggregate proof or, more precisely, an m-proof. The scheme is constructed in such a way that a
single-output proof is trivially an m-proof with m = 1 (which simplifies the code). It is important to note
that the construction of an aggregate proof requires that the prover know each amount and mask; this means
that while it is useful for all outputs in a transaction to be contained within a single aggregate proof for
space savings, it is not possible for a third party to take existing proofs and construct an aggregate proof,
either within a single transaction or between different transactions.

The size scaling benefits of Bulletproofs occur at two levels:

1. Bit length of range. The size of a Bulletproof increases logarithmically with the number of bits in
the range. In bitwise range proofs, the proof size increased linearly with the number of bits.

2. Number of amounts in aggregate proof. The size of a Bulletproof increases logarithmically with
the number of amounts included in a single aggregate proof. In bitwise range proofs, the proof size

increased linearly with the number of bits (since a separate proof was needed for each amount).

We discuss efficiency in more detail below.

There is a separate scaling argument that is useful. A new node that comes online will receive many
m-proofs, at least one per post-Bulletproof transaction in the blockchain. Instead of verifying each of the
proofs separately, the node can perform a batch verification of as many proofs at a time as it wishes. As
described below, this process requires that certain portions of each proof be verified separately, but allows
for the remaining parts of the proofs to be batched and verified together. The resulting verification time
is linear in the number of proofs, but with a significantly lower time per proof. An existing node that has
already verified the transactions in the blockchain can still use batch verification on new transactions it
receives, but the benefits are not as great due to the lower number of transactions that must be verified in
a short time.

3 Optimizations

For the most part, the proposed implementation of Bulletproofs in Monero follows the Bulletproofs paper
in scope and notation wherever possible. However, we include several optimizations that have also been
discussed for other projects. These optimizations are algebraically equivalent to those in the paper, but
reduce the time required for verification. The author understands that some or all of the optimizations
may be included in an update to the Bulletproofs paper sometime in the future. However, we document
them here for completeness and ease of code review. The reader is encouraged to refer to the paper for the

complete context of our changes.

3.1 Curve group notation

The paper is written with a general group structure in mind, so scalar-group operations are written mul-

tiplicatively (e.g. = = abc?). In the case of elliptic curve groups, we use additive notation instead (e.g.
X = bA+ dC) and use case to differentiate between curve points and scalars for clarity. This is purely a

notational convenience.

3.2 Basepoint notation

Throughout the paper, amount commitments are expressed as V = vG + uH, where G and H are distinct
(but arbitrary) fixed elliptic curve group generators. We interchange the roles of G and H throughout our
implementation to match the use of existing base points used in commitments elsewhere in the Monero

codebase. Note that the indexed {G;} and {H;} curve points are not modified in this way.

3.3 Fiat-Shamir challenges

To make the Bulletproof scheme non-interactive, we follow the paper by introducing Fiat-Shamir challenges
computed by hashing the proof transcript up to the point that a new challenge is needed. This is done by
introducing a rolling hash that uses as input the previous challenge and any new proof elements introduced.
The prover and verifier compute these challenges identically.

3.4 Inner product argment

The inner product argument in Protocol 1 of the Bulletproofs paper uses recursion to shrink the size of its
input vectors down to single elements. These inputs include distinct curve group generators {G;} and {H,},
which we compute using an indexed hash function. We make several optimizations to this protocol for the
verifier.

First, we observe that the curve points in Equation (10) are in fact linear combinations of {G;} and
{H,} that use the scalar challenges in Equations (24)-(25). Next, we note that the point P in Equation (62)
is passed into Protocol 1 as described in Section 4.2 of the paper. Since this curve point contains a linear
combination of the same group generators as Protocol 1, we can take advantage of this and compute a single
linear combination, rather than separately compute Equations (62) and (10).

In practice, we replace Equations (62) and (10) with the following check, where M = |{L,}| = [{R;}|:

M-1 mn—1
At aS—pG+ > (WL +w; *Ry) + (t—abjaH — Y (:Gs + hiH;) =0
j7=0 =0

The symbols are mostly those used in the paper. However, we use w; to represent the round challenges in
Lines (21)-(22), and z to represent the challenge in Lines (32)-(33) to avoid reuse of symbols. The scalars g;
and h; are computed in the following way. Express the index i = bgby - - - bys—1 bitwise, where b1 is the
least-significant bit. Then

M—-1
2b;,—1
gi=a [[w" ™ +2

7=0
and
M—-1
h; = by—v H w;ij+1 _ zyl + Z2+Li/Nj 9imod N y—i
=0

This optimization is applied only to the verifier.

3.5 Batch verification

Our implementation permits the verifier to take many aggregate proofs and verify them together as a batch.
We do not assume that the proofs each have the same number of outputs, nor make any restrictions on the
maximum size of a batch. The batch verification we describe will only succeed if each proof is valid, and will
fail if one or more proofs are invalid.

Batch verification is split into two checks, performed after iterating over each proof in the batch. During
the iteration, the verifier keeps ongoing sums of components from each proof and then performs the first-stage
check for Equation (61):

Z(ﬂszl)G + ZBZ [t — (ke + 2T, ™) H — Zﬂz Z PV — Ty — 2Ty | =0
] I

l J

The second-phase check proceeds similarly:

DB A+ @S) =Y (Bum)G+ Y | B (wiiLy +wiPRiy) | + Y Bt — aib) H
l l l

l

=D (Bgi)Gi + > (Bihui)H; | =0
i L ;

Here each Il-indexed sum is over each proof in the batch, and §; is a weighting factor chosen at random (not
deterministically) by the verifier. This ensures that, except with negligible probability, the checks will only
succeed if each proof is separately valid; an adversary cannot selectively provide a batch containing invalid
proofs in an attempt to fool the verifier. The benefit to this approach is that the sums can be computed as
large multi-exponentiation operations after the scalars from all proofs have been assembled.

If the batch fails either check, at least one proof in the batch is invalid. To identify which proofs are at
fault, the verifier can either iterate through each proof and perform the checks separately (in linear time),
or perform a binary search by successively performing the checks on half-batches until it identifies all faulty

proofs (in logarithmic time).

4 Proof size

Including the amount commitment V| a single Borromean bitwise range proof occupies 6.2 kB of space; a
transaction with m outputs therefore requires 6.2m kB of space. An m-proof (with a 64-bit range) requires
21gm + 17 group elements and 5 scalars, each of which takes up 32 bytes. Table [l| shows the space savings

from Bulletproofs for several values of m.

m | Bulletproof Borromean | Relative size
1 704 6200 0.114
2 768 12400 0.062
8 896 49600 0.018
16 960 99200 0.010
128 1152 793600 0.001

Table 1: Size (bytes) of m Borromean proofs versus m-proof

Using data from the Monero blockchairm on the distribution of the number of outputs in transactions,

the use of Bulletproofs would reduce the total size of range proofs by 94%.

References

fData was taken from blocks 1400000 through 1500000

	Introduction
	Bulletproofs
	Optimizations
	Curve group notation
	Basepoint notation
	Fiat-Shamir challenges
	Inner product argment
	Batch verification

	Proof size

