
RESEARCH BULLETIN MRL-XXXX

An efficient implementation of Monero subaddresses

Sarang Noether∗ and Brandon Goodell†

Monero Research Lab

October 3, 2017

Abstract

Users of the Monero cryptocurrency who wish to reuse wallet addresses in an unlinkable way must

maintain separate wallets, which necessitates scanning incoming transactions for each one. We document

a new address scheme that allows a user to maintain a single master wallet address and generate an

arbitary number of unlinkable subaddresses. Each transaction needs to be scanned only once to determine

if it is destinated for any of the user’s subaddresses. The scheme additionally supports multiple outputs

to other subaddresses, and is as efficient as traditional wallet transactions.

1 Introduction

Privacy within Monero transactions is achieved by three primary constructions: ring signatures, one-time

keys, and amount commitments. The use of ring signatures ensures that an attacker cannot determine the

actual input public key used in the transaction, as it is obscured by the presence of randomly chosen input

public keys [3]. Amount commitments use homomorphic properties to guarantee that while a third party

is not able to determine the amount of a transaction output, it can prove that the transaction inputs and

outputs are balanced. When combined with a range proof to ensure that the output is within a defined

and valid range, commitments mask transaction amounts while avoiding misuse by a malicious spender.

One-time keys are generated using transaction parameters and the recipient’s published wallet address, and

are intended to make it impossible for anyone but the recipient to identify the destination of transactions or

spend the resulting funds.

An issue not addressed (pun intended) by these privacy guards is that of recipient addresses. Bob may

wish to receive Monero into a wallet for personal donations, but also wish to receive Monero for purchases

from his business. If Bob is conscious of his privacy, he may not wish to use the same wallet address, since

this links his personal and business online presence to the same individual. An obvious solution is for Bob to

create two wallets and publish the addresses separately, one to his personal blog and the other to his business

site. However, this means that Bob must scan each incoming transaction twice to determine if it was sent

to one of his two wallets. This problem is compounded linearly when Bob creates additional addresses for

separate uses.

What is needed is a method for allowing Bob to publish different and unlinkable addresses in a way that

does not adversely affect computations applied to incoming transactions. In this whitepaper, we document

an efficient solution to the problem: a subaddress scheme [1]. The scheme allows Bob to produce as many

addresses as he wishes and distribute them in any way he sees fit. These subaddresses cannot be linked to each

other, nor to Bob’s original wallet address. When scanning incoming transactions, the computations required

scale in constant time with the number of subaddresses, meaning there is no additional computational

complexity.

∗sarang.noether@protonmail.com
†surae.noether@protonmail.com

1



2 Construction

Suppose that Alice wishes to send some of her hard-earned Monero to Bob. Bob’s master wallet address,

which he has not published anywhere, is (A,B) = (aG, bG), where a and b are secret scalars and G a common

elliptic curve basepoint. Bob wishes to use his master address to generate a subaddress, which he can give

to Alice or otherwise publish.

Bob is assumed to maintain a list on the computer tasked with managing his wallets; this list consists of

scalars used in previous subaddresses. To create a new subaddress, Bob chooses a scalar i, not necessarily

at random, that is not already in the list. He computes the following:

Di ≡ B + Hs(a, i)G

Ci ≡ aDi

Here Hs is a cryptographic scalar hash function. The subaddress is defined as the pair of points (Ci, Di).

Bob is assumed to also have a hash table stored on his computer that maps Di 7→ i.

To send Monero to Bob’s subaddress (Ci, Di), Alice chooses a random transaction scalar s and computes

the transaction public key:

R ≡ sDi

Alice then computes the output public key:

P ≡ Hs(sCi)G + Di

The use of separate transaction keys for each output allows Alice to include multiple outputs directed to

subaddresses.

If Alice wants to send change to her own master wallet address (X,Y ) = (xG, yG), she can do so by

constructing a change public key:

Pchange ≡ Hs(xR)G + Y

If instead Alice has a subaddress (Zj ,Wj) of her own, she can direct her change output there:

Pchange ≡ Hs(xR)G + Wj

When Bob scans incoming transactions, he checks each output public key P (with associated transaction

public key R) by computing the following:

D′ ≡ P −Hs(aR)G

If Bob sees that this value D′ maps to a scalar i in his local hash table, he is assured that the output was

sent to the subaddress (Ci, Di). This is because

P −Hs(aR)G = Hs(sCi)G + Di −Hs(a(sDi))G

= Hs(sCi)G + Di −Hs(s(aDi))G

= Hs(sCi)G + Di −Hs(sCi)G

= Di.

In order to use his funds as the input to a later transaction, Bob needs to be able to determine the private

key associated to P . He can do this easily using the index returned from the hash table lookup:

p ≡ Hs(aR) + b + Hs(a, i)

2



This succeeds since

pG = (Hs(aR) + b + Hs(a, i))G

= (Hs(sCi) + b + Hs(a, i))G

= Hs(sCi)G + Di

= P.

3 Integration with transactions

The present subaddress scheme introduces a necessary change in the handling of transactions, and cannot

be considered a “drop-in” replacement for standard wallets. When Alice wishes to spend to Bob’s standard

wallet, she constructs a transaction public key R = rG using the common basepoint. One naive way that

Alice could later prove she was the author of the transaction is to prove knowledge of r (or, even more

naively, reveal r directly) to a third party; notably, she can do this without revealing that the funds go to

Bob’s wallet address.

Using subaddresses, Alice must instead construct the transaction public key as R = sD, using Bob’s

subaddress public key as the basepoint. Since the secret key s is chosen uniformly at random, a subaddress

transaction public key is still uniformly distributed; however, Alice can no longer naively prove she knows

the common basepoint secret key without also revealing Bob’s subaddress as the recipient of the funds, since

it is tied in with Bob’s subaddress in the Diffie-Hellman exchange. She would need to reveal D in addition

to s. While other methods exist to prove authorship of a transaction using commitments, it is worth noting

this change.

With standard transactions, Bob can ask Charlie to watch incoming transactions for him, or otherwise

wish for Charlie to audit his wallet. To do this, Bob would reveal to Charlie the secret view key a and wallet

address component B. In the subaddress scheme, Bob can similarly reveal a to Charlie. Charlie must then

construct the hash table using either a list of known indices from Bob or a set range that he precomputes.

4 Subaddress accounts

Since a change output can be directed to either the sender’s master wallet or a subaddress, it is possible to

logically group subaddresses in a natural way that parallels the function of separate wallet balances. One

way to do this is to replace the subaddress index i with an ordered pair (i, j). For any fixed i, the wallet

holder defines the set of subaddresses {i, j}j as an account, where each subaddress has major index i and

minor index j.

When Bob receives funds at a subaddress (i, j) within account i, his wallet software sums the funds held

by all subaddresses in the account as a single balance. Change can then be redirected to the subaddress (i, 0)

when spent. We stress that this is a protocol convenience only, and has no bearing on the cryptography of

the subaddress scheme.

3



5 Analysis

5.1 Linking and wallet determination

Because the cryptographic scalar hash function Hs has uniformly distributed output, the set of Bob’s possible

subaddress components

{Di}i = {B + Hs(a, i)G}i

is also uniformly distributed [2]. This means an adversary in possession of an arbitrary collection of sub-

addresses {(Ci, Di)}i = {aDi, Di} can neither determine the discrete logarithm a = logCi
Di nor invert

the hash function (which would also require knowledge of B). This means Bob’s master wallet address is

protected, even if the adversary convinces him to generate new subaddresses with chosen indices.

5.2 Reconstructed wallet

If Bob loses access to his local wallet software and restores from the seed, he will not immediately be able to

identify transactions destined for his subaddresses, as he would need access to the hash table. To reconstruct

the table without missing any likely subaddresses, Bob chooses two lookahead values, LM and Lm. He

generates the hash table using major indices i ≤ LM and minor indices j ≤ Lm (for each major index).

After scanning transactions using the initial table, Bob repeats this process, ensuring he has generated hash

entries LM past the highest major index of any transaction, and Lm past the highest minor index within

each major index. Provided used subaddresses do not fall beyond these lookahead values in any transactions,

Bob will recover the necessary hash entries.

5.3 Mixed-type transactions

Suppose that Alice’s wallet software had one too many glasses of cryptocognac, and formats a transaction

incorrectly. In particular, suppose Alice produces the transaction public key R = sG (instead of R = sD)

but continues to compute the output public key as P = Hs(sCi) + Di. That is, the transaction is now of

“mixed type” and is not a correct subaddress transaction.

In this case, the transaction public key no longer contains information about the subaddress destination,

and Bob cannot use a single scan to detect this transaction. Indeed, his wallet software will fail to recognize

that the mixed-type transaction is directed at him. However, if Bob suspects that this situation has arisen,

he can iterate through his subaddress indices and compute

P −Hs(a[b + Hs(a, j)]R)

for each j that he has used to generate a subaddress. For j = i, the result is guaranteed to be Di. This means

that Alice’s error can be detected if Bob performs such a linear scan, and Bob can still recover the private

key needed to spend his money. The tradeoff is that Bob loses the ability to perform single transaction scans,

so he may choose to have his wallet software complete a linear scan every so often if he is concerned about

mixed-type transactions.

5.4 Secret view key

It is not possible to provide view access to a third party selectively to only particular subaddresses under

the assumption of uniformly distributed secret keys. If Charlie receives Bob’s view key a and one hash table

entry Di 7→ i, he computes the master wallet address component B = Di − Hs(a, i)G. If Bob does not

4



choose his subaddress indices at random, Charlie can easily reconstruct other hash table entries using low

indices that are likely also subaddresses Bob has used:

Dj = B + Hs(a, j)G

In order to keep other transactions private so Charlie cannot view them, Bob must create a new master

wallet and ensure Charlie does not have access to its secret view key.

5.5 Secret spend key

Similarly, it is not possible to provide a third party with the ability to selectively spend funds from a

particular subaddress if the secret keys are uniformly distributed. To spend funds from any subaddress, Bob

needs both master wallet secret keys a and b, as well as the subaddress index. Revealing this information

to Charlie would allow him to spend funds sent to any subaddress to which he knows (or can otherwise

determine) the index. Of course, the correct way to do this is for Bob to send funds to Charlie’s wallet or

subaddress, just as with a standard wallet setup.

5.6 Efficiency

Construction of a new subaddress requires a trivial number of elliptic curve operations and is negligible since

this operation is performed only as needed.

Sending to a subaddress requires the same number of operations as an equivalent traditional transaction

to a standard wallet address. However, instead of computing the transaction key R = rG using the common

basepoint in a traditional transaction, Alice instead computes the key as R = sD using the subaddress

basepoint; indeed, Alice does not even know the transaction secret key in this case! This means she cannot

precompute the transaction key without knowing the desired recipient’s subaddress. In practice, this is not

an issue. Computation of the output public key is precisely analogous to the traditional case.

Using a standard wallet, Bob would check a transaction against his master wallet secret view key by

applying one hash-to-scalar operation, two elliptic curve scalar multiplications, and one elliptic curve point

addition (where the hash time is negligible). In the present scheme, Bob must apply the same number of

equivalent operations, with the point addition replaced with point subtraction. There is an additional hash

lookup for each transaction, but this scales in constant time with the number of generated subaddresses.

This is in stark contrast to the use of multiple wallet addresses, where each transaction must be separately

checked against each secret view key.

We therefore conclude that scanning incoming (correctly formatted) transactions for ownership by an

arbitrary number of subaddresses is no greater than scanning for ownership by a single standard wallet

address. This reduces the otherwise linear scaling of scanning for multiple standard wallet addresses to

constant time in the subaddress case.

6 Conclusions

We have presented brief documentation of a subaddress scheme, an efficient alternative to maintenance of

multiple wallet addresses. Under the standard CryptoNote wallet implementation in Monero, Bob must

publish separate wallet addresses if he wishes to keep them unlinkable from the perspective of a third party

or adversary. However, this approach requires Bob (or another holder of his secret view key) to check every

incoming transaction against each of his addresses.

5



The proposed scheme allows Bob to use a single master wallet address to efficiently generate as many

subaddresses as he wishes. An adversary can neither determine if two subaddresses are generated from the

same master wallet address, nor identify the parent address. Bob need only maintain a local private hash

table that links subaddresses to the scalar index used to generate them.

Transactions to a subaddress require only a minor change to the existing transaction protocol. Multiple

outputs are supported, and the change output of a transaction from Alice to Bob can be directed to either

Alice’s master wallet address or to a subaddress of her choice. When examining incoming transactions, Bob

performs only a single verification for each transaction regardless of the number of subaddresses he maintains,

using his local hash table to recover the corresponding transaction private key.

Unlinkable subaddresses represent an efficient and secure solution to the problem of multiple wallet

addresses, allowing users to determine how their wallets are presented to others and the level of privacy they

desire.

References

[1] Monero project. Subaddresses. https://github.com/monero-project/monero/pull/2056. GitHub

pull request #2056.

[2] Paola Scozzafava. Uniform distribution and sum modulo m of independent random variables. Statistics

& Probability Letters, 18(4):313–314, 1993.

[3] Nicolas van Saberhagen. Cryptonote v2.0, 2013.

6

https://github.com/monero-project/monero/pull/2056

	Introduction
	Construction
	Integration with transactions
	Subaddress accounts
	Analysis
	Linking and wallet determination
	Reconstructed wallet
	Mixed-type transactions
	Secret view key
	Secret spend key
	Efficiency

	Conclusions

