
MRL: Notes

September 28, 2015

Abstract

In this note I examine possibilities for simple improvements to the

Monero protocol. This is a preliminary draft, so there may be errors. I

have also included an experimental extension of gmaxwell's CT proto-

col to CryptoNote. Please contact me with comments and suggestions

at Shen.Noether@gmx.com

Contents

1 Size Improvements in Ring Signatures 2

1.1 Compatibility . 5

1.2 Threshold Version . 5

2 Knapsack Scheme for Anonymity 6

2.1 Comparison to Other Techniques 7

3 Con�dential Transactions for CryptoNote 9

1

4 PigeonHole Problem 12

4.1 Example of the attack 13

4.2 Preventing this attack 13

1 Size Improvements in Ring Signatures

In this section, I give a brief explanation of a ring signature scheme which

is similar to the one used in Monero as it exists circa June 2015, but of-

fers a small size improvements. This scheme is copied (the original post is

poorly typeset, so I have reproduced it below) from an explanation given

by Adam Back in a bitcointalk.org, and appears to have been originally

designed by Liu, Wei, and Wong in [LWW]. As of this draft (September

2015) an example implementation appears in the MiniNero repository at

github.com/ShenNoether/MiniNero.

In the current Monero ring signature, which is the same as it's parent

protocol (CryptoNote), ring signatures follow [CN, 4.4]. The proposed alter-

native algorithm is the four following steps:

Keygen: Find a number of public keys Pi, i = 0, 1, ..., n and a secret

index j such that xG = Pj where G is the ed25519 basepoint and x is the

signers spend key. Let I = xH (Pj) where H is a hash function returning a

point (in practice toPoint(Keccak(Pk))).

SIGN: Let α, si, i 6= j, i ∈ {1, ..., n} be random values in Zq (the ed25519

base �eld).

2

Compute

Lj = αG

Rj = αH (Pj)

cj+1 = h (P1, ..., Pn, Lj, Rj)

where h is a hash function returning a value in Zq. Now, working successively

in j modulo n, de�ne

Lj+1 = sj+1G+ cj+1Pj+1

Rj+1 = sj+1H (Pj+1) + cj+1 · I

cj+2 = h (P1, ..., Pn, Lj+1, Rj+1)

· · ·

Lj−1 = sj−1G+ cj−1Pj+1

3

Rj−1 = sj−1H (Pj−1) + cj−1 · I

cj = h (P1, ..., Pn, Lj−1, Rj−1)

so that c1, ..., cn are de�ned.

Let sj = α − cj · x mod l, (l being the ed25519 curve order) hence α =

sj + cjx mod l so that

Lj = αG = sjG+ cjxG = sjG+ cjPj

Rj = αH (Pj) = sjH (Pj) + cjI

and

cj+1 = h (P1, ..., Pn, Lj, Rj)

and thus, given a single ci value, the Pj values, the key image I, and all

the sj values, all the other ck, k 6= i can be recovered by an observer. The

signature therefore becomes:

σ = (I, c1, s1, ..., sn)

which represents a space savings over [CN, 4.4].

4

Veri�cation proceeds as follows. An observer computes Li, Ri, and ci

for all i and checks that cn+1 = c1. Then the veri�er checks that

ci+1 = h (P1, ..., Pn, Li, Ri)

for all i.

LINK: Signatures with duplicate key images I are rejected.

1.1 Compatibility

The above scheme uses no additional elliptic curve functions than already

exist in Monero, and thus should be relatively easy to implement (perhaps

a prototype in MiniNero is called for). A hard-fork could be accomplished

by (perhaps temporarilty) including both the current and proposed schemes,

and then deciding which to verify based on the size of the signature. Note

that the key image is the same in each scheme, so it is impossible to double

spend utilizing both schemes in combination.

1.2 Threshold Version

It is simple to get a t of n threshold version of the above signature by simply

concatenating t such signatures. Using a t-of n ring signature (sometimes

denoted (t, n)) will allow you to take t inputs, so you can use this in place of

a �sweeping� transaction.

5

2 Knapsack Scheme for Anonymity

Recall the one time public keys implemented in the CryptoNote protocol

[CN, 4.3]: if Alice wants to send a payment to Bob, she gets Bob's public

key (A,B), generates a random r ∈ [1, l − 1] (where l is the ed25519 curve

order) and computes a one-time public key P = h (rA)G + B and sends a

message to P containing R = rG as additional information.

Bob uses his private key (a, b) to then compute P ′ = h (aR)G + B =

h (rA)G + B = P and when he �nds a match he computes the private key

x = h (aR) + b, so that P = xG.

The above is standard CryptoNote protocol. Now let's suppose that Alice

wants to hide the amount D which she sends to Bob. In this case, Alice could

partition the amount D into d1 + d2 + ... + dn = D and send the amounts

d1, ..., dn to one-time public keys Pi = h (riA)G + B, i ∈ {1, ..., n} . To

save space, the Pi could be created by choosing a single r1, and then (for

example) deterministically letting P2 = h (2r1A)G + B, P3 = h (3r1A)G +

B = h (3aR1)G+B. This deterministic manner allows that only one R = r1G

needs to be included in a given transaction.

Finally, Alice includes randomly generated values d′1, d
′
2, ..., d

′
m chosen so

that
n∑

i=1

di +
m∑
j=1

d′j = D +D′ = D

and d′j represents a (positive) amount sent to Alice's deterministically gen-

erated change address and D =D +D′ represents the total input amount of

6

the transaction.

2.1 Comparison to Other Techniques

Recall the set of all subsets of {d1, ..., dn, d′1, ..., d′m} has size 2n+m = 2N

Thus the total number of possible amounts sent to Bob by Alice is 2N . The

additional size added to the transaction is N · 32 bytes. Thus for example, if

it is desired to limit the additional size of an output to 2560 kb (for example,

the amount hiding given in gmaxwell's Con�dential Transactions for Bitcoin

[CT] has an additional 2564 bytes per output) and include a change address,

then N = 2560 · 2/32 = 160, which implies that the total number of possible

amounts sent to Bob by Alice is 2160. In comparison, [CT] o�ers masking of

a 32 bit value with a 2564 proof. This seems to o�er about a 2160/232 = 2128

times improvement over CT 1 for no change to the Monero code2, however

this is not quite optimal as coins will eventually be split into smaller and

smaller chunks. In addition, the total amount of inputs and outputs are

necessarily known using this technique so not all information is hidden.

For example, here are some random amounts generated (each sent to one

time keys) which might be used to send 250 out of 500 coins to someone else,

and the remaining 250 coins to your one-time change addresses:

(' a l l amounts : ' , [0 . 0 1 , 0 . 03 , 0 . 03 , 0 . 04 , 0 . 1 ,

1(just in regards to hiding transaction amounts with no mention of the additional
privacy o�ered by ring signatures, one-time keys, etc)

2this is possible simply with some smarter wallet software see Knapsack.py in my
personal MiniNero repository for example

7

0 . 11 , 0 . 49 , 0 . 69 , 2 . 05 , 2 . 84 , 3 . 63 , 5 . 65 ,

11 .28 , 14 .23 , 19 .61 , 32 .05 , 34 . 1 , 36 .86 ,

38 .91 , 43 .93 , 44 .34 , 48 .47 , 60 .18 , 1 0 0 . 3 7])

In contrast, here are some random amounts generated to send 2.5 out of

500 coins:

(' a l l amounts : ' , [0 . 0 2 , 0 . 05 , 0 . 07 , 0 . 59 ,

0 . 97 , 1 . 03 , 1 . 46 , 2 . 62 , 2 . 77 , 6 . 59 , 10 .54 ,

11 .11 , 17 . 3 , 37 . 05 , 59 .01 , 61 .43 , 72 .09 , 2 1 5 . 3])

Each of the above lists has a powerset with cardinality around 50,000

after duplicate amounts are removed. In addition, a small optional fuzz fee3

between 0 and t xmr, for some optional t is applied to the sent amount for

further obfuscation.

The simple technique in the previous paragraph is possible, however in

practice it is undesirable to have coins spread among many addresses (even-

tually, for convenience, you will have to sweep the coins to your main ad-

dress). Thus consider the following modi�cation. Assume for simplicity,

that we are comparing again to a single output and single change address so

N = 2560 ·2/32 = 160 is the number to beat (note that the above scheme has

even more signi�cant improvements over [CT] for each additional output).

In practice, masking a 16 bit value may be su�cient. (216 = 65536 gives you

3Note that in practice, this optional fuzz fee may not actually be any more expensive
than using the CT technique of the next section, since currently Monero implements a .1
xmr fee per kilobyte, and the range proofs are about 2.5 kilobytes per output.

8

65536 possible amounts which should be enough for plausible deniability, in

particular it should be su�cient to deter any sort of blockchain-wide analysis

of the amounts spent). Thus, if the number of change addresses Alice chooses

is chosen randomly in {1, 16} , then Bob will receive on average 8 inputs. In

order to keep the average amount of inputs equal to the average amount of

outputs, after subtracting 160 − 16, we have 144, 32 byte chunks we can

still �t in our transaction. Thus if Bob uses 8 inputs into the next transac-

tion, then Bob can a�ord an (8, 20) ring signature. Although in practice the

number will not be 8, on average the values should work out.

3 Con�dential Transactions for CryptoNote

In this section, I discuss how to make a slight extension to gmaxwells Con�-

dential Transactions protocol, described in[CT], so that it works in Monero.

This section is fairly experimental at this point, and will need to be checked

carefully before I am con�dent in it's security. The bene�t of the [CT] tech-

niques are that they accomplish more mathematically and precisely the pre-

vious section accomplishes. However some downsides include: it might be

the (possibly much) larger size of the ring signatures which are used, and the

fact that it would require a fairly complex hard fork to the current code to

use these, for potentially not that much bene�t to the techniques of the pre-

vious section (Since senders and receivers are, in any case, hidden in Monero,

there is a question of how precisely do the amounts being sent actually need

9

to be hidden).

Let G be the ed25519 basepoint. Let4

H = toPoint (cn_fast_hash (G))

It is di�cult to �nd an x such that xG = H.

De�ne C (a, x) = xG + aH, the commitment to the value a with mask

x. Note that as long as logGH is unknown, and if a 6= 0, then logGC (a, x)

is unknown. On the other hand, if a = 0, then logGC (a, x) = x, so it is

possible to sign with sk-pk keypair (x,C (0, x)) .

In [CT], there are input commitments, output commitments, and the

network checks that ∑
Inputs =

∑
Outputs.

However, this does not su�ce in Monero: Since a given transaction contains

multiple possible inputs Pi, i = 1, ..., n, only one of which belong to the

sender, (see [CN, 4.4]), then if we are able to check the above equality, it

must be possible for the network to see which Pi belongs to the sender of the

transaction. This is undesirable, since it removes the anonymity provided by

the ring signatures. Thus instead, commitments for the inputs and outputs

are created as follows (suppose �rst that there is only one input)

Cin = xG+ aH

4H = MiniNero.getHForCT ()

10

Cout−1 = y1G+ b1H

Cout−2 = y2G+ b2H

such that x = y1 + y2 + z, x − y1 − y2 = z, yi are mask values, z > 0 and

a = b1 + b2. In this case,

Cin −
2∑

i=1

Cout−i

= xG+ aH − y1G− b1H − y2G− b2H

= zG.

Thus, the above summation becomes a commitment to 0, with sk = z, and

pk = zG, rather than an actual equation summing to zero.

Since it is undesirable to show which input belongs to the sender, a ring

signature consisting of all the input commitments Ci, i = 1, ..., s, ..., n (where

s is the secret index of the commitment of the sender), adding the cor-

responding pubkey (so commitments and pubkeys are paired (Ci, Pi) only

being allowed to be spent together) and subtracting
∑
Cout is created:

{
P1 + C1,in −

∑
j

Cj,out, ..., Ps + Cs,in −
∑
j

Cj,out, ..., Pn + Cn,in −
∑
j

Cj,out

}
.

This is a ring signature which can be signed since we know one of the private

keys (namely z+x′ with z as above and x′G = Ps). The technique of section

1 may be used.

11

As noted in [CT], it is important to prove that the output amounts 5

b1, ...bn all lie in a range of positive values, e.g. (0, 216). This can be accom-

plished essentially the same way as in [CT]:

• Prove �rst C
(j)
out−i ∈ {0, 2j} for all j ∈ {0, 1, ..., 16} .

• By carefully choosing the blinding values for each j, ensure that

16∑
j=1

C
(j)
out−i = Cout−i.

• By homomorphicity of the commitments, bi =
∑

j δji2
j, where δji is the

jth digit in the binary expansion of bi.

Thus in total, by the above, the sum of inputs into a transaction equals the

outputs, yet the speci�c input (and it's index!) is hidden. In addition, the

outputs are positive values.

Some prototype ring signature and commitment code in progress is in-

cluded in the repository at https://github.com/ShenNoether/MiniNero

4 PigeonHole Problem

This section gives a solution to an attack on CryptoNote where using a tree

analysis, some outputs may be proved to be spent.

5since input commitments could potentially be just inherited from the previous trans-
action, it su�ces to consider the output amounts

12

4.1 Example of the attack

Suppose that (a, b), (b, c), (c, a) are rings. By drawing out the possible choices

of which could be spent as in the following picture:

we see that all of a, b, and c have been spent. Thus if (a, d) is another

ring, then d must be the spender as a has already been spent.

4.2 Preventing this attack

This attack is made possible through something called the Pigeonhole princi-

ple, which states that, if there are n items put into m containers, and n > m,

then at least one container must contain more than one item.

13

In terms of ring signatures, the �containers� are pubkeys and the �items�

are rings. So if there are n rings with m pubkeys are n > m then there must

be one pubkey in more than one ring (a double spend). However double

spends are impossible by the key image, but what can happen is if n = m,

then you can prove that all the pubkeys have been spent.

Thus to prevent the attack, keep track of the number of rings each pubkey

has been in, and then enforce that for each subsequent ring it is a part of

must have at least one greater member than the number of rings it has been

in. This solves the problem since at each step of the tree there are more

pubkeys than rings (see the image on the next page).

Note that if you have a large and unique amount in an input, then there

should be a value MAX_MIX above which you are not allowed to mix,

but instead the input should �rst be split into slightly smaller and divisible

amounts (there is no million dollar bill) to emulate cash, which can then be

mixed.

14

References

[AB] https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684

[CN] van Saberhagen, Nicolas. "Cryptonote v 2. 0." HYPERLINK

�https://cryptonote. org/whitepaper. pdf� https://cryptonote.

org/whitepaper. pdf (2013).

[CT] https://people.xiph.org/~greg/con�dential_values.txt

[LWW] https://eprint.iacr.org/2004/027.pdf

15

