
RESEARCH BULLETIN MRL-XXXX

Ring Threshold Multisignature Schemes and Security Models

Brandon Goodell∗ and Sarang Noether†

Monero Research Lab

October 7, 2017

Abstract

This research bulletin extends [3] by constructing a t-of-n threshold multi-layered linkable spontaneous

anonymous group signature scheme (t-of-n MLSAG) in the same style as the LSAG schemes put forth

by [2].

1 Introduction and Background

Ring signatures can play a critical role in promoting user anonymity (or at least user ambiguity) during

message authentication. A one-time signature scheme inserts a barrier between user key pairs and one-time

signature key pairs. Due to this utility, one-time ring signature schemes enjoy application in many cryp-

tocurrency protocols. Multisignatures play a critical role in off-chain transactions for cryptocurrencies (e.g.

the Bitcoin Lightning Network) and for message authentication in general (e.g. multi-factor authentication).

A t-of-N threshold multisignature scheme specifies sets containing N public keys and thresholds t such that

any subset with at least t elements may collaborate to fashion a signature. A usual digital signature scheme

is a 1-of-1 multisignature scheme, so we can regard all keys as shared public keys (just perhaps with a coali-

tion of only one member). It is therefore natural to extend the notion of ring signatures to ring threshold

multisignatures for implementation in cryptocurrencies to enjoy signer-ambiguous multisignatures.

A multisignature scheme is a t-of-N ring threshold multisignature (RTM) scheme if any set of N keys

may be specified as a coalition of signers and assigned a shared public key Xshared such that any t coalition

members may collaborate to fashion a ring signature. The ring of signatories R contains the key Xshared,

but an adversary cannot determine which element of R computed the signature.

If the number of users cooperating in the construction of a signature is not secret, naive multisignature

schemes can be constructed from any signature scheme (ring signature or otherwise) by simply requiring

each participating user to present a separate signature. More sophisticated implementations combine these

together using boolean AND circuits as in the Borromean ring set-up described in [] for efficiency reasons.

If a user does not desire to reveal to an adversary how many devices were used for some multi-factor

authentication, it should be difficult for an adversary to determine the size of a coalition behind some shared

public key. This property should be satisfied even if the adversary can persuade the party (or parties)

controlling the shared public key to sign arbitrary messages chosen by the adversary. We introduce the

security definition of coalition-indistinguishable multisignature schemes against adaptive chosen message

attacks: given a shared t-of-N public key Xshared, an adversary should be unable to guess any information

about t or N .

∗surae.noether@protonmail.com
†sarang.noether@protonmail.com

1

1.1 Our Contribution

We consider a formal definition of one-time linkable ring threshold multisignature (OT-LRTM) schemes.

We investigate modifications to security definitions that take threshold behaviors into account and a new

security model. We describe a modified implementation of t-of-N linkable ring threshold multisignature

(under the restriction N − 1 ≤ t ≤ N) first described by previous MRL contributors Shen Noether in [3] and

implemented for use in Monero by contributor Luigi, and we prove that this implementation satisfies our

security definitions.

1.2 Notation and Prerequisites

We let G be a group with prime order q and we letG denote a commonly known point with order q. Denote the

user and transaction key spaces, respectively, as Kuser,Ktxn. In implementations involving cryptocurrencies,

there exists a function dest : Ktxn → Kuser describing the user key pair to whom a certain transaction key

pair is addressed. For any transaction key pair (q,Q) ∈ Ktxn, we say dest(q,Q) is the destination user key

pair for (q,Q). We sometimes write Q as QX to emphasize the destination user key X associated with the

transaction key Q.

2 MLSAG and Straightforward Threshold Set-ups

We briefly describe LSAG ring signatures in the sense of [2] and their MLSAG variant used in Monero, and

then a straightforward implementation of an LRTM scheme.

2.1 MLSAGs

A user with user key pair (y, Y) wishes to spend an old transaction output with private-public transaction

key pair (q,Q) ∈ Ktxn such that dest(q,Q) = (y, Y). The user constructs an appropriate message M , a

destination user key X, computes the key image J = qHp(Q), and selects a ring of public transaction keys

R = {Q1, . . . QL} such that, for a secret distinguished index k, Qk = Q. For each i = 1, . . . , L, the signer

computes an elliptic curve point from the ith ring member public key as Hi := Hp(Qi). The signer selects a

random secret scalar u, computes an initial temporary pair of points uG and uHk, and computes an initial

commitment ck+1 := Hp(M,uG, uHk).

The signer sequentially proceeds through indices i = k + 1, k + 2, . . . , n, 1, 2, . . . , k − 1 in the following

way. The signer selects a random scalar si, computes the next temporary pair of points siG + ciQi and

siHi + ciJ , and computes the next commitment ci+1 := Hp(m, siG+ ciQi, siHi + ciJ). The signer continues

proceeding through the set of keys until commitments ci have been computed for each i = 1, . . . , L. The

signer then computes sk := u− ckqk and publishes the signature σ = (c1, s1, . . . , sn) and the key image J in

a signature-tag pair (σ, J).

A signature-tag pair (σ∗, J∗) on m can be verified to have been generated by at least one ring member

in the following way: for each i = 1, 2, . . . , L, the verifier computes zi = s∗iG + c∗iQi and z′i = s∗iHi + c∗i J
∗

and uses these to compute the (i+ 1)th commitment ci+1 = Hp(m, zi, z
′
i). After computing c2, c3, . . . , cL, c1,

the verifier approves of the signature if and only if c1 = c∗1. A verifier can check against double spends by

comparing the key images of two signature-tag pairs.

Remark 2.1.1. The MLSAG generalization, where transaction keys are represented by vectors, is straight-

forward. With transaction keys q = (q1, . . . , qw), each component of q is used to generate a temporary pair of

2

points starting with ujG, ujHk and then sj,iG+ ciQj,i, sj,iHj,i+ ciJ , providing the associated commitments

ci+1 := Hp

(
m, {(sj,iG+ ciQj,i, sj,iHj,i + ciJ)}wj=1

)
.

Remark 2.1.2. Note that user keys are not used above except as a destination for the transaction key.

Anyone with a destination public user key in mind and knowledge of a transaction private key may fashion a

signature like the one above. In the reference CryptoNote protocol, the private transaction key q associated

to some public transaction key Q is only feasibly computable by a user who knows the private destination

user key in dest(q,Q) or by an adversary who can solve the discrete logarithm problem.

2.2 Extending to Threshold Signatures

Note that a 1-of-N threshold signature scheme may be accomplished by simply handing out an identical set

of keys to N individuals: whoever decides to use them first will be able to fashion a signature. We consider

this a degenerate case. On the other hand, a 1-of-1 signature scheme is a usual signature scheme, as we

mentioned.

Generally, we wish to allow a coalition of (distinct) public user keys C = {X1, X2, . . . , XN} ⊆ Kuser (where

each Xi = xiG) to collaboratively fashion a shared public user key Xshared such that, for any transaction key

pair (q,Q) ∈ Ktxn such that dest(q,Q) = Xshared, any subset of at least t of the users in C can collaborate

to fashion a signature on a message M corresponding to public transaction key Q. Certainly we wish that

no member of C reveal their own private user key xi, but moreover we wish that coalition members cannot

feasibly learn the private transaction key q.

In the N -of-N case, we may use CryptoNote-styled user and transaction keys to see an example imple-

mentation. For this example, we assume user private-public key pairs (x,X) take the form x = (a, b) for

some scalars a, b and X = (A,B) where A = aG and B = bG for some common point G. The private-public

transaction key pair (q,Q) takes the form Q = (S, P), q = (s, p) where s is a scalar, S = sG, p = Hs(aR)+b,

and P = pG. Given message M , a coalition of user keys C, the coalition members compute their shared

public key as Xshared :=
∑N
j=1Xj , which is published. Assume (q,Q) = ((s, p), (S, P)) is a transaction key

pair such that dest(q,Q) = Xshared.

The coalition C selects a ring of public transaction keys R = {Q1, Q2, . . . , QL} such that Q = Qk

for some secret index k. For each j = 1, . . . , N , the jth coalition member in C computes a partial key

image Jj = (Hs(ajS) + bj) · Hp(Q), picks a random secret scalar uj , and computes Hi = Hp(Qi) for each

Qi ∈ R. The coalition C computes the key image J =
∑
j Jj , the random points ukG =

∑
j ujG, and

ukHk =
∑
j ujHk. The coalition C decides upon random values sk+1, . . . , sL, s1, . . . , sk−1. Using these, any

member in C may compute the commitments

ck+1 :=Hp(m,ukG, ukHk) and

ci+1 :=Hp(m, siG+ ciPi, siHi + ciJ) for i = k + 1, . . . , k − 1.

All coalition members then use ck to compute their personal sk,j = uj − ck(Hs(ajS) + bj). The signers share

their sk,j with the other signers. Any threshold member may then compute the value sk =
∑
j sk,j and

publish the signature-tag pair (σ, J) where σ = (c1, s1, . . . , sL) as usual. Any user may verify this signature

corresponds to the N -of-N shared public key Xshared using the same method as above.

This implementation satisfies our immediate two properties: members in C do not learn the private

transaction key q =
∑
j Hs(ajS) + bj and do not reveal their own private keys. Assuming at least one

contributing user key in C was honestly generated from a uniform random scalar, an adversary who has

3

learned a public threshold address cannot determine the number of summands contributing to it, let alone

determine the summands.

This set-up extends naturally to an (N−1)-of-N set-up. As before, a set ofN public keys {X1, X2, . . . , XN}
form a coalition. Each pair of users has a shared secret scalar zi,j = Hs(xiXj) with associated point

Zij = zi,jG. There are N(N−1)
2 such pairs; if any N − 1 members get together, all of the associated shared

secrets are known. Hence, we may simply instantiate the (N−1)-of-N threshold as an N∗-of-N∗ set-up with

N∗ = N(N−1)
2 . All values Zi,j are necessary to compute the shared public user key, Zshared and all values of

zi,j are necessary to fashion a signature with a public transaction key Q with dest(Q) = Zshared.

Remark 2.2.1. Note that the above extension works for coalitions containing t-of-N keys also. For example,

when the jth coalition member computes the partial key image Jj , if this coalition member is some sub-

coalition, then each member of the sub-coalition can compute their own partial key image Jj,k and the

sub-coalition can report the sum Jj =
∑
k Jj,k. In this manner, signatures involving nested coalitions may

be executed recursively. We elaborate on this in Section 3.1.

Remark 2.2.2. Note that an adversary with knowledge of some set of public keys can compute the sums

of all subsets to brute-force test whether a certain user key X is a threshold key. Using hash functions and

encrypt-then-authenticate communication, we may resolve the brute force problem.

Consider modifying the N -of-N implementation by having coalition members select secret scalars µj

associated with the threshold t and coalition C, e.g.:

µj = Hs(“multisig constant for escrow at local coffee shop”, secret salt)

Now merely require that participating members not use their private user keys in the construction of their

shared user key pair, but instead the ith coalition member selects a constant µi associated with their coalition

and instead uses x∗i = H(xi, µi) as their private key (or in the (N−1)-of-N case, computing z∗i,j = Hs(x
∗
iX
∗
j)

instead of zi,j = Hs(xiXj) and communicating the points Z∗i,j to the coalition).

With this modification, an adversary cannot use strictly public information to determine if a certain key

is a threshold key or not. The possibility remains that the adversary may overhear the associated public

points X∗i (or Z∗i,j) being communicated within the coalition, allowing the adversary to fall back on the brute

force approach again. Hence, the points X∗i (or Z∗i,j) should be communicated with a secure encrypt-then-

authenticate scheme. Note that either step alone (hashing, then encrypt-then-authenticating) is insufficient

to prevent the adversary from using brute force.

3 Security Models

3.1 One-Time Linkable Ring Threshold Multisignatures

We begin by defining a one-time linkable ring threshold multisignature (OT-LRTM) scheme. A central idea

to our security models is that a coalition of user keys may be merged into a new user key, which may then

be again merged with other user keys.

Definition 3.1.1. [One-Time Linkable Ring Threshold Multisignature Scheme] A one-time linkable ring

threshold multisignature scheme is a set of PPT algorithms, (UserKeyGen, TxnKeyGen, Merge,Sign,Verify,

Link) that, respectively, generates usual private-public keypairs for users, generates public transaction keys,

merges user keys into new shared user keys, fashions signatures on messages given a ring of public transaction

keys, verifies signatures, and links signatures. Formally:

4

(i) UserKeyGen(1λ) outputs a random user key pair (x,X) called a 1-of-1 user key pair where x is a private

user key with associated public user key X.

(ii) Merge(t, C) takes as input a positive integer (threshold) t and coalition of private-public user keypairs

C = {(x1, X1), (x2, X2), . . . , (xn, XN)} and outputs a public user key Xt,C called a t-of-N user key pair

or a shared user key pair.

(iii) TxnKeyGen(1λ, X) takes as input a public user key X called the destination key. A one-time random

private-public transaction key pair (qX , QX) is generated. TxnKeyGen outputs QX .

(iv) ImageGen(1λ, Q, y) takes as input a public transaction key Q with a set of private user keys y = {x1, . . .}
and outputs a point JQ called the key image for the private transaction key q and outputs JQ.

(v) Sign(M,X,R, k, y) takes as input message M , a destination user key X, ring of public transac-

tion keys R = {Q1, . . . , QL}, secret index k, and a set of private user keys y. Sign obtains Q ←
TxnKeyGen(1λ, X), J ← ImageGen(1λ, Q, y). Sign generates a signature σ and publishes the signature-

image pair (σ, J).

(vi) Verify(M,R, σ) takes as input a message M , a ring of public transaction keys R, and a signature σ,

and outputs a bit b ∈ {0, 1}.

(vii) Link((M0, R0, (σ0, J0)), (M1, R1, (σ1, J1))) takes as input two (possibly distinct) messages, two (pos-

sibly distinct) rings of transaction public keys, and two signature-image pairs. Link outputs a bit

b ∈ {0, 1}.

Note that a 1-of-1 user key may be regarded as a “usual” user key in a one-time linkable ring signature

scheme. In this way, we may regard all user keys as t-of-N shared user keys by simply regarding 1-of-1 keys

as having a coalition of a single member. We consider only restricted OT-LRTM schemes where Merge is

modified such that (i) if t = 1 and |C| = 1, then Merge returns the public user key in C, (ii) if the inequalities

2 ≤ N − 1 ≤ t ≤ N do not hold then Merge outputs ⊥ instead of a key.

Definition 3.1.2. Assume for each i = 0, 1, Mi is an arbitrary message, Xi is an arbitrary ti-of-Ni shared

public user key with coalition Ci, Ri = {Qi,j}|Ri|
j=1 is an arbitrary ring of public transaction keys with

associated secret indices ki such that dest(Qi,ki) = Xi, each yi is a set of private user keys such that yi ⊆ Ci
and ti ≤ |yi|, and each signature-tag pair (σi, Ji) is honestly generated as (σi, Ji)← Sign(Mi, Xi, Ri, ki, yi).

We say an OT-LRTM scheme is complete if

(a) VER(Mi, Ri, (σi, Ji)) = 1 and

(b) if Qi,ki = Qj,kj then LNK((σi, Ji), (σj , Jj)) = 1.

Recall Remark 2.2.2 and consider the hash-then-encrypt-then-authenticate approach to computing shared

public keys. We let Π = (UserKeyGen∗, Enc∗, Auth∗, Ver∗, Dec∗) be a secure encrypt-then-authenticate

scheme (where Πenc = (Gen∗, Enc∗, Dec∗) is a secure encryption sub-scheme and Πauth = (Gen∗, Auth∗, Ver∗)

is a secure message authentication sub-scheme). Augmenting the implementation of Section 2.2 with Π al-

lows the coalition for Xshared to compute the appropriate values to participate in the signing of a message in

a recursive fashion. To see how, note that when the implementation of Section 2.2 is carried out, this t-of-N

shared public user key Xshared must first compute the partial key image, next select a random secret scalar

uj , then compute the commitments ck, and finally must compute the value sk,j = uj − ck(Hs(ajR) + bj).

Denote the coalition of user key pairs forXshared as {((aj , bj), (Aj , Bj))}. The coalition forXshared may use

Πauth to share their (Hs(ajS)+bj) ·Hp(Q) and compute the key image J = (
∑
j Hs(aj)S+bj)Hp(Q). If some

5

index, say j, corresponds to a user key pair ((aj , bj), (Aj , Bj)) that is a tj-of-Nj public key, then the secrets

aj and bj are not known by the coalition and so the jth share of the key image, Jj , must be collaboratively

computed by at least tj coalition members for the shared key ((aj , bj), (Aj , Bj)). Denote the coalition for

this key as {((aj,i, bj,i), (Aj,i, Bj,i))}Nj

i=1. Each member computes their share, Jj,i = (Hs(aj,iS) + bj,i)Hp(Q),

this sub-coalition uses Πauth to compute Jj =
∑
i Jj,i, and the sub-coalition reports Jj when prompted.

Similarly the random scalar uj is computed as a sum uj =
∑
i uj,i using Π. Now any of these coalition

members may compute the commitments ck and disseminate this to the rest of the coalition with Πauth. At

that point each member of the coalition may compute their individual sk,j,i = uj,i − ckxj,i and the coalition

may use Πauth to compute sk,j =
∑
i sk,j,i. In this way, sub-coalitions are simply handled recursively.

Remark 3.1.3. If an OT-LTRM scheme is secure under the CIK model from Definition 3.2.1 in Section

3.2, then it is not feasible for any PPT algorithm to check whether the keys used as input for Merge are

1-of-1, so modifying the straightforward implementation by banning composite coalition keys is not feasible.

Recursion seems to be a natural design choice.

3.2 Coalition Indistinguishable Keys

Definition 3.2.1 formalizes the idea that an adversary should not be able to determine information about the

input of Merge based on its output except with negligible probability.

Definition 3.2.1 (Coalition Indistinguishable Keys). Let A be a PPT adversary. Let N(−), L(−) be

polynomials.

(i) A set of user key pairs S∗ ⊆ Kuser with |S| = N(λ) is generated where the ith key pair is ti-of-Ni public

user key for some 2 ≤ ti ≤ Ni ≤ L(λ). The set of public keys S = {Xi | ∃(xi, Xi) ∈ S∗} is sent to A.

(ii) A outputs (τ0, C0) where C0 ⊆ S, τ0 ∈ N, and τ0 ≤ |C0|.

(iii) A random pair (τ1, C1) is selected where C1 ⊆ S, τ1 ∈ N, τ0 6= τ1, and C1 6= C0. A random bit b is

selected. The key Xτb,Cb
← Merge(τb, Cb) is sent to A.

(iv) A outputs a bit b′. This counts as a success if b = b′.

We say an OT-LRTM scheme has Coalition Indistinguishable Keys (CIK) if the adversary can succeed with

probability only negligibly more than 1/2.

Remark 3.2.2. Even taking the above modification into account, each Hs(Xj , µj)G must be communicated

to the coalition. An adversary who can learn these points may simply check whether a given public key X is

the sum of some observed values of Hs(Xj , µj)G, determining non-trivial information about coalition size.

Hence, these points should be communicated with Π if an OT-LRTM scheme is to satisfy Definition 3.2.1.

Remark 3.2.3. We may be tempted to strengthen Definition 3.2.1 to take into account corruption oracle

access on the part of the adversary. Unfortunately this leads to certain problems with the security definition.

However, by using the hash-then-encrypt-then-authenticate method of computing shared public keys, without

knowledge of the values of µj , even if the adversary corrupts all the public keys in S, then A cannot

successfully run Merge for each value 1 ≤ t ≤ |S| to check the results by hand in comparison against the key

Xtb,Cb
. Thus, if the participating coalition members keep each µj and µjG secret, then even a very powerful

adversary with oracle access for computing discrete logs will still be unable to discern whether some user

key is a coalition key or not.

6

3.3 Signer Ambiguity

In addition to coalition indistinguishability, we desire the ring signature property of signer ambiguity. Vari-

ations of security models appear in [1].

Double spend protection in Monero relies on a one-time linkable ring signature scheme that is not signer

ambiguous with respect to adversarially generated keys according to the definition presented in [1]. Indeed,

in Monero, Link simply checks if two key images Ji are identical. In this way, the signer ambiguity game

falls apart: A can obtain signature-tag pair (σ0, J0) on M0 using ring R0 with Qi0 ∈ R0 and a pair (σ1, J1)

on M1 using ring R1 with Qi1 ∈ R1. Then, upon receipt of (σ, J) in step (v), A can check if J = J0 or

J = J1. The definition may be modified, however, to take key images into account.

Let SO(−,−,−,−) be a signing oracle that takes as input (M,X,R, k) (a message, a destination public

user key, a ring of public transaction keys, and an index k) and outputs a valid signature-tag pair (σ, J)←
Sign(M,X,R, k, y) for some set y of private user keys.

Definition 3.3.1. [Linkable Signer Ambiguity v. Adversarially Generated Keys] Let N(−), L(−) be a

positive polynomial. Let A be a PPT adversary. Let A have access to SO. Consider the following game:

(i) A set of user key pairs S∗ ⊆ Kuser is selected with |S∗| = N(λ). The public keys in S∗ are sent to A.

(ii) A outputs a set of user key pairs S ⊆ S∗.

(iii) For each public user key Xi ∈ S, a public transaction key Q∗i ← TxnKeyGen(1λ, Xi) is generated and

the set R∗ := {Q∗i } is generated, randomly permuted, and then sent to A.

(iv) A selects a message M , a destination public user key X ∈ Kuser, a ring of transaction public keys

R = {Q1, . . . , QL} ⊆ Ktxn, and two indices i0 6= i1 such that {Qi0 , Qi1} ⊆ R∗ ∩R.

(v) A random bit b is chosen. The signature-tag pair (σ, J)← SO(M,X,R, ib) is sent to A.

(vi) A outputs a bit b′. The game counts as a success if (a) b = b′ and (b) if (M ′, X ′, R′, i) is a query from

A to SO, then the ith element of R′ is not Qi0 or Qi1 .

We say the scheme is linkably signer ambiguous against adversarially generated keys (LSA-AGK) if the

probability that A succeeds is negligibly close to 1/2 (with respect to λ).

Definition 3.3.1 essentially modifies the signer ambiguity game in [1] by adding requirements in step (vi)

requiring that A see in step (v) either the key image for Qi0 or the key image for Qi1 for the first time.

3.4 Unforgeability

Unforgeability of any threshold signature scheme must take into account subthreshold corruption oracle

access. Multisignatures must not be forgeable by a subthreshold collection of malicious coalition members,

otherwise they have no utility as signatures, of course. A naive definition may be something like this:

Definition 3.4.1. [Prototype: Subthreshold Oracle Access] Given a S = {X1, . . . , XN} ⊆ Kuser where each

Xi ∈ S is a ti-of-Ni public user key, we say that any PPT adversary A with access to an oracle O(−) has

had subthreshold oracle access to S if, for any Xi ∈ S, at most ti− 1 coalition members for Xi appear in the

transcript between A and O(−).

However, since Merge allows inputs of arbitrary (possibly threshold) user keys, this definition is insuffi-

cient. For notational convenience, we call M(−) an oracle that inverts Merge by taking as input a public

7

t-of-N key X and producing as output (t, C), the threshold t and coalition C such that X = Merge(t, C).

For any subset S ⊆ Kuser, define M(S) = ∪Y ∈SM(Y). This provides the iterative definition Mi+1(S) =

∪Y ∈SMi(Y). Define M←(Y) := ∪iMi(Y).

Definition 3.4.2. [Subthreshold Oracle Access] Let S be a set of public user keys S = {X1, . . . , XN} where

each Xi is a ti-of-Ni public user key. We say that any PPT adversary A with access to an oracle O(−) has

had subthreshold oracle access to S if, for any public user key Y ∈M←(S), if Y is a tY -of-NY shared public

user key, then at most tY − 1 coalition members fromM(Y) appear in the transcript between A and O(−).

Also for notational convenience, we call T (−) an oracle that inverts TxnKeyGen by taking as input a

public transaction key QX and produces as output the user key X.

Definition 3.4.3. [Existential Unforgeability v. Adaptive Chosen Message and Subthreshold Insider Cor-

ruption] Let A be a PPT adversary and L(−) be polynomials. A is given access to a signing oracle SO, a

corruption oracle COuser. Consider the following game:

(i) A set of user key pairs S∗ ⊆ Kuser is selected with |S∗| = N(λ). The public keys in S∗ are sent to A.

(ii) A outputs a set of user key pairs S ⊆ S∗.

(iii) For each public user key Xi ∈ S, a public transaction key Q∗i ← TxnKeyGen(1λ, Xi) is generated and

the set R∗ := {Q∗i } is constructed, randomly permuted, and then sent to A.

(iv) A outputs a message M , a destination public user key X ∈ Kuser, ring R ⊆ Ktxn of public transaction

keys, and a signature σ. The game counts as a success if

(a) R ⊆ R∗,

(b) VER(M,R, σ) = 1,

(c) for each index k in R, (M,X,R, k) does not appear in the queries between A and SO

(d) for each Qk ∈ R, COuser is not queried with the public user key T (Qk), and

(e) A has had subthreshold COuser access to the set {T (Qk) | Qk ∈ R}.

A scheme in which an adversary is only negligibly likely to succeed is said to be existentially unforgeable with

respect to adaptive chosen message attacks and subthreshold insider corruption (or st-EUF for subthreshold

existentially unforgeable).

4 Proposed Implementation

We provide an implementation of a restricted OT-LRTM scheme allowing only for N − 1 ≤ t ≤ N in the

spirit of the original CryptoNote methodology. User secret keys and public keys are both ordered pairs

of keys, i.e. private key (a, b) and public key (A,B). Following terminology from [5], we refer to (a,A) as

the view keypair and (b, B) and the spend keypair. We let Π = (Gen∗, Enc∗, Auth∗, Ver∗, Dec∗) be a secure

encrypt-then-authenticate scheme (where Πenc = (Gen∗, Enc∗, Dec∗) is a secure encryption sub-scheme and

Πauth = (Gen∗, Auth∗, Ver∗) is a secure message authentication sub-scheme).

UserKeyGen generates the secret key z = (a, b) by selecting a, b from an i.i.d. uniform distribution on Zq,
and computing Z = (A,B) with A := aG and B := bG. UserKeyGen then outputs (z, Z).

Merge takes as input a threshold t and a set of key pairs C = {(z1, Z1), . . . , (zn, ZN)} such that 2 ≤
N − 1 ≤ t ≤ N where each Zi = (Ai, Bi). If N = 1, Merge outputs Z1. Otherwise:

8

(1) Each member of the coalition selects constants µi, γi for the multisig address.

(2) Each member derives a partial secret keypair (a∗i , b
∗
i) where a∗i = Hs(ai, µi) and b∗i = Hs(bi, γi) and

computes their associated public points A∗i = a∗iG, B∗i = b∗iG.

(3) If t = N , then the coalition uses Π to collaboratively compute the shared secret view key a∗ =
∑
i a
∗
i
‡,

uses Πauth to collaboratively compute the shared public spend key B∗ =
∑N
i=1B

∗
i . If t = N − 1, then

(a) For each i, j, a partial shared secret view key αi,j := Hs(a
∗
iA
∗
i) and a partial shared secret spend

key βi,j := Hs(b
∗
iB
∗
i) is computed by either participant i or j.

(b) Set N∗ := N(N+1)
2 , S∗ := {((αi,j , βi,j), (αi,jG, βi,jG))}1≤i<j≤N , and run Merge(N∗, S∗).

(4) Every coalition member now knows the shared secret view key a∗ and the shared public spend key B∗.

TxnKeyGen takes as input a destination user public key (A,B), selects a random scalar r, computes

R = rG and P = Hs(rA)G+B, and outputs (R,P).

ImageGen takes as input a set of private user keys y = {(a1, b1), . . . , (aN , bN)} and a public transaction key

(R,P). For each i = 1, . . . , N , the ith member of y computes partial key image Ji = (Hs(aiR)+bi)Hp(R,P).

The participating members use Πauth to compute J =
∑
i Ji.

Sign takes as input a message M , a destination public user key (Adest, Bdest), a set of public transaction

keys {(R1, P1), . . . , (RL, PL)}, a secret index 1 ≤ k ≤ L, and a set of t private keys y = {(a∗i , b∗i)}
t
i=1.

(1) The points (R∗, P ∗)← TxnKeyGen(1λ, (Adest, Bdest)) are computed.

(2) The owners of y = {(a∗i , b∗i)} (the signatories) run J ← ImageGen(1λ, (Rk, Pk), y)

(3) A set {sk+1, sk+2, . . . , sk−1} of i.i.d. observations of uniform random variables are generated by the

coalition and shared among the coalition using Πauth.
§

(4) For each j, the jth signatory selects a random scalar uj , computes Hi := Hp(Bi) for each index 1 ≤
i ≤ L, and computes the points ujG and ujHk. The coalition uses Πauth to collaboratively compute

ukG :=
∑
j ujG and ukHk :=

∑
j ujHk.

(5) Some threshold member computes

ck+1 =Hp(m,ukG, ukHk) and

ci+1 =Hp(m, siG+ ciBi, siHi + ciJ) for i = k + 1, k + 2, . . . , k − 1.

(6) The threshold member from the previous step uses Πauth to send ck to all other signers with authenti-

cation. These signers may check that their received ck matches their expected computations.

(7) If t = N , each signatory computes their personal sk,j := uj−ckb∗j . If t = N−1, each signatory computes

sk,j = uj − ck
∑L
i=1 zi,j . The coalition uses Πauth to collaboratively compute sk =

∑
j sk,j and construct

the signature σ = (c1, s1, s2, . . . , sL).

(8) Any signatory may now publish the signature-tag pair (σ, J) where σ = (c1, s1, . . . , sN) together with

the public transaction key (R∗, P ∗).

‡Note that although secret information is about ai not being directly shared with the coalition, the result of the computation

is, in fact, a secret key, a∗.
§We recommend that a coordinating user randomly selects these using a cryptographic random number generator; only the

user coordinating the signature needs these values.

9

Remark 4.0.1. The resulting signature takes the same form as LSAG signatures as in [2]. Modifying the

above to appropriately to take into account key vectors provides the generalization to MLSAG signatures.

Thus the verification algorithm for these signatures is identical to the verification algorithm for usual MLSAG

signatures and we omit its description. Similarly, Link merely outputs a bit signifying whether two key images

are identical, so we don’t describe it further either.

Remark 4.0.2. Each uj is kept secret from the other users and is generated randomly when the signature

process begins. Certainly if uj is revealed to another signatory, since the values of sj and ci are communicated

in with authentication but not encryption, revealing the value uj − ci′xj can lead an observer to deduce xj .

Encryption does not solve the problem if threshold members are untrustworthy.

Similarly, if some value of uj is re-used twice with the same private key, an observer can deduce the private

key. Indeed, assuming we are using a hash function resistant to second pre-image attacks, the commitments

from two signature processes ci′ , c
∗
i′ are unequal except with negligible probability even if the other threshold

members are colluding. Hence since si′,j = uj − ci′xj and s∗i′,j = uj − c∗i′xj , an observer may solve for the

private key xj . Don’t re-use values of uj , keep them secret, generate them randomly.

Remark 4.0.3. Note that users in (N − 1)-of-N processes are prompted to select constants µ, γ multiple

times for multiple sets of keys. If our hash function Hs(−) is suitably secure, the lazy user can re-use the

same constants µ and γ without concern; nevertheless, it is recommended that users do not re-use constants

in Merge.

5 Security

Recall the critical fact proven in [4] that the sum of a uniform random variable with any indepenent random

variable in Z/mZ results in a uniform random variable (and conversely when m is prime). Hence, no PPT

algorithm will be able to distinguish between a uniform random variable U and a sum of uniform random

variables,
∑
i Ui.

Assume Hs, Hp in the OT-LRTM implementation from Section 4 are cryptographic hash functions under

the random oracle model whose outputs are statistically indistinguishable from a uniform distribution except

with non-negligible probability, and whose outputs are independent of one another. Assume UserKeyGen

produces keys from a distribution that is statistically indistinguishable from a uniform distribution.

Theorem 5.0.1. The restricted OT-LRTM implementation from Section 4 is CIK.

Proof. Either the key pair Xb = (A,B) received by A in step (iii) of Definition 3.2.1 is N -of-N for some

N ≥ 2, (N − 1)-of-N for some N ≥ 3, or a mere 1-of-1 user key. Of course, (N − 1)-of-N key pairs are

N∗-of-N∗ key pairs. Thus, we really only need to deal with two cases: an N -of-N key pair with N > 1 or a

1-of-1 key pair.

If (A,B) is an N -of-N key pair, then A∗ =
∑
iHs(ai, µi)G and B∗ =

∑
iHs(bi, γi)G. Since Hs is a

random oracle, any one of its outputs is uniformly random, and so any sum of its outputs is uniformly

random [4], so no PPT adversary may determine the number of signatories. On the other hand, if (A,B)

is a 1-of-1 key pair, then A and B are each independent uniform random variables from UserKeyGen, so no

PPT algorithm can determine whether A or B is a sum or not.

Theorem 5.0.2. The OT-LRTM implementation from Section 4 is LSA-AGK.

10

Proof. A selects transaction public keys as ring members (R0, P0) = (r0G,Hs(r0A0)G+B0) and (R1, P1) =

(r1G,Hs(r1A1)G+B1), a message M , a destination key pair (Adest, Bdest) and receives a signature-tag pair

(σ, Jb). A can compute Hp(Rb, Pb) for each b ∈ {0, 1}, but without knowing the secrets ab, bb, computing

Jb = (Hs(abRb) + bb)Hp(Rb, Pb) for either b is infeasible for PPT A. Moreover, σ has the same security

properties as in [2].¶

Theorem 5.0.3. The OT-LRTM implementation from Section 4 is st-EUF.

Proof. Assume A is a PPT adversary that can succeed at the game in Definition ?? with non-negligible

advantage. The adversary has sub-threshold access to the ring, A cannot execute Sign fairly and must

attempt a forgery by generating additional random numbers. In this case, the adversary is merely attempting

to forge a usual LSAG signature, and the security proof reduces to the one presented by [2].

6 Further Analysis

6.1 Efficiency and comparisons

The signatures resulting from the OT-LRTM scheme are indistinguishable from MLSAG signatures, so space

complexity and verification time complexity of the OT-LRTM scheme is identical to that of MLSAGs. Due

to the use of Π and several (possibly recursive) rounds of communication between coalition participants,

efficiency of signatures is greatly reduced.

For a coalition consisting of 1-of-1 keys, Merge takes one round of communication inside the coalition with

Π, ImageGen takes one round of communication inside the coalition with Πauth, Sign takes three distinct

rounds of communication with Πauth and calls TxnKeyGen and ImageGen each once. In total, this amounts

to five rounds of communication inside the coalition per signature. For a coalition containing shared user

keys for sub-coalitions, the rounds of communication in Sign must also take place inside each sub-coalition

(and sub-sub-coalition, and so on).

In total, if we define the depth of 1-of-1 public user key as depth 0, and the depth of any t-of-N public

user key X with coalition C as max {depth(X) | X ∈ C}+ 1. Then for a signature with a coalition of depth

D where each coalition has at most N members, we require at most 2 + 3 ·DN rounds of communication to

fashion a signature.

6.2 Elaborations

We speculate that modifications to the CryptoNote-styled constructions of key images may allow for stronger

notions of signer ambiguity in the future without sacrificing robustness against double-spend attacks. For

example, by taking key images as homomorphic commitments, two commitments may be linked if their

difference is a commitment to zero without revealing their masks. This is beyond the scope of this document.

Can the notion of CIK be expanded to CIKS so as to include signatures and chosen messages? With

an LRTM, this expansion is nontrivial but straightforward. With an OT-LRTM, this becomes a delicate

generalization due to the one-time transaction keys.

Special Thanks: We would like to issue a special thanks to the members of the Monero community who

used the GetMonero.org Forum Funding System to support the Monero Research Lab. Readers may also

¶WORK ON THIS

11

regard this as a statement of conflict of interest, since our funding is denominated in Monero and provided

directly by members of the Monero community by the Forum Funding System.

References

[1] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and con-

structions without random oracles. In TCC, volume 6, pages 60–79. Springer, 2006.

[2] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous group signature

for ad hoc groups. In ACISP, volume 4, pages 325–335. Springer, 2004.

[3] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.

[4] Paola Scozzafava. Uniform distribution and sum modulo m of independent random variables. Statistics

& probability letters, 18(4):313–314, 1993.

[5] Nicolas van Saberhagen. Cryptonote v 2. 0, 2013.

12

