CT Using Aggregate Range Proof

Shen Noether - MRL

October 20, 2015

Abstract

In this experimental note, I present a scheme for "confidential transactions" which equals the optimization given by the Borromean signatures. The idea is to use an aggregate schnorr signature. I must stress this is experimental and should be checked carefully!

Definition 1. Schnorr1 Signatures

Generation Let (x, xG = P) be a secret / public key pair. Let $\alpha \leftarrow$ random and $L = \alpha G$. Let $s = \alpha + xH(L)$. Output (L, s)

Verification Check if sG = L + H(L)P

Definition 2. Aggregate Schnorr1 Signatures

Generation: Given (L_i, s_i) signed by $(x_i, x_i G = P_i)$ for i = 1, ..., n compute $s = \sum s_i \mod q$. Output $(L_1, ..., L_n, s)$ **Verification**: Check that $sG = \sum_i (L_i + H(L_i) P_i)$

Definition 3. Schnorr non-linkable ring signatures

Generation Let $(x, xG = P_1)$ and P_2 be two keys. Let $\alpha \leftarrow$ random, $L_1 =$ αG , $s_2 \leftarrow$ random, $L_2 = s_2 G + H(L_1) P_2$, $L_1 = s_1 G + H(L_2) P_1$ and then solve for s_1 , and shuffle the indices. Output (L_1,s_1,s_2) (after an index shuffle).

Verification Compute $L_2 = s_2G + H(L_1)P_2$, $L'_1 = s_1G + H(L_2)P_1$, and verify that $L_1 = L'_1$.

Definition 4. Aggregate schnorr non-linkable ring signatures

Generation Let $\left\{ \left(x_1^j, P_1^j \right), P_2^j \right\}$ a set of keys for j = 1, ..., n with signatures $\left(L_1^j, s_1^j, s_2^j\right)$ for all j. $s = \sum s_1$, output $\left(L_1^j, s_2^j\right)$ for all i and s.

Verification Recompute L_2^j for all j, and then compute $\sum L_1^j \stackrel{?}{=} sG +$ $\sum H\left(L_2^j\right) P_1$

Definition 5. Borromean Confidential Transactions Range Proof algorithm Let $C = \sum_{i=1}^n C_i$ be the decomposition of C, which is a commitment to some value, into the commitments to the binary decomposition of C. In other words, $C = \alpha G + bH$ and $b = b_0 2^0 + b_1 2^1 + ... + b_n 2^n$ so that $C_i = \alpha_i G + b_i 2^i H$. Now compute ring signatures on $\{C_i, C_i - 2^i H\}$ for all i, and combine these into one Borromean signature of size $2 \cdot n + 1$.

Definition 6. Confidential Transactions using Aggregate Range Proof Algorithm

Let $C = \sum_{i=1}^{n} C_i$ be the decomposition of C, which is a commitment to some value, into the commitments to the binary decomposition of C. In other words, $C = \alpha G + bH$ and $b = b_0 2^0 + b_1 2^1 + ... + b_n 2^n$ so that $C_i = \alpha_i G + b_i 2^i H$. Now use the aggregate schnorr algorithm to compute a signature of size $2 \cdot n + 1$.