
c©Monero Research Lab

RESEARCH BULLETIN MRL-9999

Threshold Ring Confidential Transactions
August 31, 2017
Brandon Goodell

Correspondence:
bggoode@g.clemson.edu
Monero Research Lab

Abstract
This research bulletin extends [4] by constructing a t-of-n threshold multi-layered
linkable spontaneous anonymous group signature scheme (t-of-n MLSAG) in the
same style as the LSAG schemes put forth by [3].

1 Introduction and Background
Multi-factor authentication plays a critical role in modern-day security. A user in
control over several devices may wish to distribute the right to fashion a signature
across all of those devices, so that a malicious user who has gained control over
any one device requires other devices to complete a signature. Moreover, ring
signatures can play a critical role in establishing user anonymity (or at least user
ambiguity) during message authentication. Due to this utility, ring signatures enjoy
application in many cryptocurrency protocols. By generalizing ring signatures to
allow for multi-factor authentication, these protocols may employ new multi-factor
authentication features.
If the number of users cooperating in the construction of a signature is not se-

cret, multi-signature schemes can be constructed from any signature scheme (ring
signature or otherwise) by simply requiring each participating user to present a sep-
arate signature; some implementations combine these together using boolean AND
circuits as in the Borromean ring set-up described in []. We call these schemes
transparent because it is clear to an adversary how many keys are used in a signa-
ture. On the other hand, if a user does not desire to reveal to an adversary how
many devices were used for some multi-factor authentication, it should be difficult
for an adversary to determine whether more than one key is used in the construc-
tion of a signature. We call these multi-signature schemes opaque. We say that a
multi-signature scheme is t-of-n or t-of-n threshold if a set of n keys are specified
and any t of them may be used to fashion a signature.
This leads us to the construction of opaque t-of-n threshold signatures, where a

single joint public key and signatures from that key are computed by at least t
members of a group of n without revealing that any collaboration took place. An
opaque t-of-n threshold ring signature is merely a usual ring signature fashioned
collaboratively and secretly by a subset of tmembers from some group of nmembers.
Note that a 1-of-n threshold signature scheme is equivalent to simply handing out

an identical set of keys to n individuals: whoever decides to use them first will be

mailto:bggoode@g.clemson.edu

c©Monero Research Lab Page 2 of 10

able to fashion a signature. We consider this a degenerate case. On the other hand,
a 1-of-1 signature scheme is a usual signature scheme. Moreover, for multi-factor
authentication purposes, (n− 1)-of-n and n-of-n schemes are of particular interest.
Due to this, we consider only t-of-n threshold ring signatures with n − 1 ≤ t ≤ n,
with t > 1, and with n > 1.

1.1 Our Contribution
We describe an implementation of t-of-n LSAG signatures first described by previ-
ous MRL contributors Shen Noether in [4] and implemented for use in Monero by
contributor Luigi.

1.2 Notation and Prerequisites
We denote the message space M = {0, 1}∗. We let G be an additive group with
prime order q an an arbitrary generator G. We denote HX ,Y(−) as a cryptographic
hash function from the space X to Y. For example HG,Zq

(−) is a cryptographic
point-to-scalar function. We assume that any two hash functions HX ,Y(−) and
HX ′,Y′(−) are statistically independent.

2 MLSAG Ring Signatures
We briefly describe LSAG ring signatures in the sense of [3] and their MLSAG
variant used in Monero. Let Q denote the set of ring members (public keys) Q =

{Y1, . . . YL}. Let i′ be a distinguished index in this set corresponding to the signing
key Yi′ . Let yi′ ∈ Zq such that Yi′ = yi′G. Let m be a message. A signer computes
a key image I based on the private key yi′ .
For each i, the signer computes an elliptic curve point from the ith ring mem-

ber public key as Hi := HG,G(Yi). The signer selects a random secret u ∈R Zq,
computes an initial temporary pair of points ki′ = (uG, uHi′) and computes
an initial commitment ci′+1 := HM,G(m, ki′). The signer sequentially proceeds
through indices i = i′ + 1, i′ + 2, . . . , n, 1, 2, . . . , i′ − 1 in the following way. The
signer selects at random secret si ∈R Zq, computes the next temporary pair
of points ki = (siG + ciYi, siHi + ciI), and computes the next commitment
ci+1 := HM,G(m, ki). The signer continues proceeding through the set of keys
until commitments ci have been computed for each i = 1, ...L. The signer then
computes si′ := u− ci′yi′ and published the signature (c1, s1, . . . , sn, I).
A signature (c∗1, s

∗
1, . . . , s

∗
n, I
∗) on m can be verified to have been generated by

at least one member of the ring’s private key in the following way: for each i =

1, 2, . . . , L, the verifier computes zi = s∗iG + c∗i Yi and z′i = s∗iHi + c∗i I
∗ and uses

these to compute the (i+1)th commitment ci+1 = HM,G(m, zi, z
′
i). After computing

c2, c3, . . . , cL, c1, the verifier approves of the signature if and only if c1 = c∗1.
The MLSAG generalization, where user keys are represented by vectors, is

straightforward. For a user with secret key y = (y1, . . . , yw), the jth component
of this key vector is used to generate a temporary secret as above described ki,j , so
the ith temporary secret is the list ki = (ki,1, ki,2, . . . , ki,w) yielding the associated
commitment

ci+1 := HM,G

(
m, {(si,jG+ ciYi,j , si,jhi,j + ciI)}wj=1

)
.

c©Monero Research Lab Page 3 of 10

2.1 Extending to Threshold Signatures
Generally, we wish to allow a group of users with the public keys X =

{X1, X2, . . . , Xn} to collaboratively fashion a shared public key Y (which we call
a t-of-n shared public key) such that any subset of at least t of the users in X can
collaborate to fashion a signature on Y . In the n-of-n case, implementation works
in the following manner. Given message m, a group of friends with the public keys
X = {X1, X2, . . . , Xn} wish to collaboratively construct a signature using all their
private keys without revealing any collaboration took place. They first must com-
pute a shared public key Y =

∑n
j=1Xj and publish it. They select their ring to be

a set of public keys Q = {Y1, Y2, . . . , YL} such that Y = Yi′ for some secret index
i′. Each user can compute Hi = HG,G(Yi). For each 1 ≤ j ≤ n, the jth signer (who
owns the secret key xj) computes a partial key image Ij = xjHi′ , picks a random
initial temporary secret uj , and shares the triple of points Ij , ujG, ujHi′ with the
other signers.
Now any of these users may compute the key image J =

∑
j Ij , the random

points ui′G =
∑

j ujG and ui′Hi′ =
∑

j ujHi′ . Using these, any of these users may
compute the first in the sequence of commitments ci′+1 := HM,G(m,ui′G, ui′Hi′).
The group decides upon random values si′+1, . . . , sL, s1, . . . , si′−1 and computes
each ci+1 := HM,G(m, siG+ ciYi, siHi + ciI) for i = i′+ 1, . . . , i′− 1. All threshold
members then use ci′ to compute their si′,j = uj − ci′xj . Each member may reveal
their value of si′,j without fear and the threshold members may then compute the
value si′ =

∑
j si′,j and publish the signature (c1, s1, . . . , sL, J). Any user may

verify this signature corresponds to the n-of-n shared public key Y .
The above set-up extends naturally to an (n− 1)-of-n set-up. As before, a set of

n public keys {X1, X2, . . . , Xn} form a coalition. Each pair of users has a shared
secret scalar zi,j = HG,Zq (xiXj) with associated public point Zij = zi,jG. There
are n(n−1)

2 such pairs; if any n−1 members get together, all of the associated shared
secrets are known. Hence, we may simply instantiate the (n− 1)-of-n threshold as
an n∗-of-n∗ set-up with n∗ = n(n−1)

2 , wherein all values zi,j are necessary to fashion
a signature with the public key Y :=

∑
1≤i≤n

∑
i<j≤n Zi,j .

3 Security Models
In this section we present a few security definitions we use later on. Our definition
of unforgeability begins with the definition from [3], which is stronger than notions
of unforgeability put forth previously (c.f. [7]), but which was expanded further
in [2].

Definition 3.1 [Ring Signature Existential Unforgeability against Adaptive Cho-
sen Message Attack] Let Q = {Y1, . . . , YL} be a ring of public keys. Let SO(−)

be a ring signing oracle that accepts as input any non-empty subset Q′ and mes-
sage m′ and produces a ring signature σ′ that always passes verification. Let A
be any PPT adversary with oracle access to SO. A ring signature scheme is ex-
istentially unforgeable with respect to adaptive chosen message attacks if, for any
message m and subset Q∗ not in the transcript of queries from A to SO, the output
(Q∗,m, σ)← ASO(Q) passes verification with only negligible probability.

c©Monero Research Lab Page 4 of 10

This definition, however, only applies to ring signatures and ignores the possibil-
ity that the adversary has corrupted some public keys. We first expand the notion
to take into account the idea that the adversary may corrupt public keys by con-
sidering the adaptive chosen message attack with insider corruption first described
in [2].Expanding that definition to threshold signatures requires a modification to
allow for the adversary to control a sub-threshold number of private keys.

We need to ensure unforgeability even if the adversary has corrupted some, but
not a threshold number, of public keys used in the computation of shared keys
in the ring. We do this by checking that each threshold/shared public key in
the ring has had the signing oracle queried on fewer of its parent keys than its
threshold. Moreover, if any of the parent keys of any of the shared keys in the ring
are themselves shared keys, the problem repeats: for each public key contributing
to some shared public key contributing to some shared public key contributing to
. . . some shared public key in the ring, we must check that the signing oracle has
been queried with fewer of the parent keys than the associated threshold for each
of them. Turtles all the way down.THIS IS A NOVEL

DEFINITION
HOLY WOW!
THIS TOOK ME
TOTALLY BY
SURPRISE! NONE
OF THE PROOFS
I THOUGHT
WOULD WORK
WILL WORK!
WOW! Learn
something new ev-
ery day.

THIS IS A NOVEL
DEFINITION
HOLY WOW!
THIS TOOK ME
TOTALLY BY
SURPRISE! NONE
OF THE PROOFS
I THOUGHT
WOULD WORK
WILL WORK!
WOW! Learn
something new ev-
ery day.

Definition 3.2 [Threshold Ring Signature Existential Unforgeability against In-
sider Adaptive Chosen Message Attack] Let Q = {B1, . . . , BL} be a set of public
keys. Let SO(−) be a ring signing oracle that accepts as input any non-empty
subset Q′ and message m′ and produces a ring signature σ′ that always passes ver-
ification. We say a threshold ring signature scheme is existentially unforgeable with
respect to insider adaptive chosen message attacks if for any message m, for any
subset Q∗ ⊆ Q such that:

(a) Q∗ is not in the transcript of queries from A to SO,
(b) if B is any tB-of-nB threshold public key that contributes to the computation

of any shared public key in Q∗, and if B′ =
{
B′1, . . . , B

′
nB

}
is the set of public

keys used to compute B, then at most t − 1 distinct elements of B′ appear in
the transcript of A to SO..

the output (Q∗,m, σ)← ASO(Q) passes verification with only negligible probability.

Our definition of signer ambiguity also comes from [3], informally stated this way:
given any ring signature σ on messagem with ring of public keys Q = {X1, . . . , Xn},
an adversary can determine public key Xi′ corresponding to the secret key xi′ used
in the construction of σ with only negligible probability.

This definition of signer ambiguity may be strengthened, as in [1] or [7], by re-
quiring that adversaries gain at most a negligible advantage even when some or
all of the private keys of the ring are revealed. For usage in Monero (and other
CryptoNote protocols), this stronger definition of signer ambiguity is impossible to
satisfy due to our construction of key images. Modifications to our construction of
key images may allow for stronger notions of signer ambiguity in the future without
sacrificing robustness against double-spend attacks (e.g. by taking key images as
homomorphic commitments, two commitments may be linked if their difference is
a commitment to zero), but that is beyond the scope of this document.

c©Monero Research Lab Page 5 of 10

4 Proposed Implementation
We provide an implementation of the above scheme in the spirit of the original
CryptoNote methodology, wherein user secret keys and public keys are both ordered
pairs of keys, i.e. sk = (sk1, sk2) and pk = (pk1, pk2). We expand upon the MLSAG
generalization to key vectors in Section ??. Following terminology from [8], we refer
to (sk1, pk1) as the view keypair and (sk2, pk2) and the spend keypair.
The keys (sk, pk) ← GenUserKey are chosen by selecting a, b ← Zq, computing

A := aG, B := bG, and setting (sk, pk) := ((a, b), (A,B)). ThrRingSign, given a
messageM , a set of public keys {(A∗1, B∗1), . . . , (A∗n, B

∗
n)}, a threshold t ∈ {n− 1, n}

with t ≥ 2 and n ≥ 2, and a secret index 1 ≤ i′ ≤ L, generates a t-of-n signature as
follows.
(1) A random secret view key a∗ ← Zq is chosen and distributed to the threshold

members. The public view key is A∗ = a∗G.
(2) (All threshold signatories) If t = n, the public spend key B∗ is computed as

B∗ :=
∑n

i=1B
∗
i . If t = n − 1, each pair of users computes the shared secrets

zi,j = HG,Zq
(b∗iB

∗
j) and publishes the public values Zi,j = zi,jG. The public

spend key is B∗ :=
∑n−1

i=1

∑n
j=i Zi,j .

(3) (All threshold signatories) The signatories decide upon a set of public keys
to include as false signatories in their ring, they decide upon a secret index
i′ at which they store their shared public key inside the ring, and for i 6= i′

they decide on a random scalar si ← Zq. Denote the set of public keys Q =

{(A1, B1), . . . , (AL, BL)} where (Ai′ , Bi′) = (A∗, B∗).
(4) (All threshold signatories) The jth signatory selects a random uj ← Zq, com-

putes Hi := HG,G(Bi) for each index 1 ≤ i ≤ L, and computes the points ujG
and ujHi′ . The jth signatory sends the points ujG, ujHi′ to the other threshold
members with authentication.

(5) (All threshold signatories) If t = n, the jth signatory computes the partial key
image Ij := b∗jHG,G(B∗) and sends Ij to the other threshold members with
authentication. If t = n− 1, the jth signatory computes the partial key image
Ij :=

∑n
i=1 zi,jHG,G(B∗) and sends Ij to the other threshold members with

authentication.
(6) (Some signer) Some threshold member computes I =

∑
j Ij , the random point

ui′G =
∑

j ujG, and the random point ui′Hi′ =
∑

j ujHi′ . That member then
(i) computes ci′+1 = HM,G(m,ui′G, ui′Hi′) and
(ii) computes ci+1 = HM,G(m, siG+ ciBi, siHi + ciI) for i 6= i′.

(7) (Some signer) The threshold member from the previous step sends ci′ to all
other signers with authentication.

(8) (All threshold signatories) If t = n, each signatory computes their personal
si′,j := uj − ci′b

∗
j and the group computes (with authentication) their sum∑

j si′,j . If t = n−1, each signatory computes si′,j = uj − ci′
∑L

i=1 zi,j and the
group computes (with authentication) the sum.

(9) Any signatory may now publish (c1, s1, . . . , sN , I).
The resulting signature takes the same form as LSAG signatures as in [3]. Mod-

ifying the above to appropriately to take into account key vectors provides the
generalization to MLSAG signatures. Thus the verification algorithm for these sig-
natures is identical to the verification algorithm for usual MLSAG signatures and
we omit its description.

c©Monero Research Lab Page 6 of 10

Remark 4.1 Each uj is kept secret from the other users and is generated ran-
domly when the signature process begins. Certainly if uj is revealed to another
signatory, since the values of sj and ci are communicated in with authentication
but not encryption, revealing the value uj − ci′xj can lead an observer to deduce
xj . Encryption does not solve the problem if threshold members are untrustworthy.
Similarly, if some value of uj is re-used twice with the same private key, an observer

can deduce the private key. Indeed, assuming we are using a hash function resistant
to second pre-image attacks, the commitments from two signature processes ci′ , c∗i′
are unequal except with negligible probability even if the other threshold members
are colluding. Hence since si′,j = uj − ci′xj and s∗i′,j = uj − c∗i′xj , an observer may
solve for the private key xj .
Don’t re-use values of uj , keep them secret, generate them randomly.

5 Security Proofs
If we assume all threshold members are honest, the scheme reduces to the usual
LSAG signature as in [3]. However, this is an undesirable assumption for appli-
cations in cryptocurrency. Definition 3.1 is inadequate in the threshold setting
because, if some Bi is a ti-of-ni shared public key in the ring, the adversary may
query the oracle SO to sign messages on behalf of some of the ni members sharing
the public key Bi without violating the conditions of Definition 3.1. Do to this, we
consider Definition 3.2 to describe adaptive chosen message attacks where insiders.
Since we may regard any (n− 1)-of-n instantiation of the above scheme as an n∗-

of-n∗ instantiation, it is sufficient to prove that any n-of-n instantiation is secure.
The 1-of-1 instantiation is merely the LSAG signature from [3]; in this setting,
Definitions 3.1 and 3.2 coincide, so we only must concern ourselves with n-of-n
instantiations with n ≥ 2.
The strength of the security proof from [3] rests on novel rewind-on-success sim-

ulations. Rewind simulations were first presented as the forking lemma in [6] and
the heavy row lemma in [5]; rewind-on-success simulations are first presented in [3].
With a master PPTM invoking a PPT adversary A to obtain a transcript T in an
attack game on some scheme Π may, the rewind-on-success simulation will, upon
finding a success in T , rewind T to some point, header h and “begin again” to seek
an additional success. Resimulating A with new random data,M generates a new
transcript T ∗ where T and T ∗ are identical up to (and including) header h. It is
established in [3, Lem E.1] that the probabilities of success of T and T ∗ are identical
(although this says nothing of their independence). Thus an attacker who can find
one success with non-negligible probability can find any finite number they desire
using rewind-on-success with non-negligible probability.
Thus, if the adversary can successfully compute one forged signature on a message

with non-negligible probability, say σ = (c1, s1, . . . , sN , J), then that adversary can
rewind and compute a second forged signature with the same key image but different
random values s∗i , say σ∗ = (c∗1, s

∗
1, . . . , s

∗
N , J), also with non-negligible probability.

In checking that these forgeries satisfy verification, the adversary must compute the
commitments in the LSAG signature, and hence must query some hash function H
at least once per commitment. So the adversary must make as many queries to H
as there are ring members, L, each of the form H(J,m, sG+cB, sH(B)+cJ), where

c©Monero Research Lab Page 7 of 10

B is a public key in the ring and J is the key image associated to the signature.
In computing the first forgery, the adversary must compute some first commitment
H(m,J, uG, vG′) = H(m,J, sG+ cB, sH(B) + cJ), where u, v, and the base point
G′ are each unknown before rewinding. After rewinding and computing a second
forgery, the adversary has the system of equations

uG =sG+ cB

uG =s∗G+ c∗B

vG′ =sH(B) + cJ

vG′ =s∗H(B) + c∗J

The adversary can then compute the secret key b = s−s∗
c∗−c , solving the discrete log

problem B = bG.
This proof extends directly to MLSAG signatures; this was claimed in [4] but the

proof therein contained a mistake, which we correct here: Shen’s security the-
orem and corrected
proof

Shen’s security the-
orem and corrected
proofTheorem 5.1 *

6 Elaboration
The signatories must make several joint decisions in the process described under
Section 4. We are vague in their description because the implementation of these
steps can be done in many ways.
For example, in Step 3, the signatories decide upon a ring and a secret index to

store their public keys. This may be done by merely having some member do it
randomly (introducing a sort of Byzantine General problem), or using some deter-
ministic (but seemingly random) method chosen ahead of time in meatspace based
on the input message. The secret index should appear to be uniformly random,
regardless of method employed. Note that one of the signatories can publicly com-
municate a sort of encryption of the secret index without harm by merely publishing
the ring of public keys Q; other signatories know their own public keys, so they can
inspect the ring and determine the secret index without any further information
from the first signatory and without observers being able to discern which index is
the threshold key.
Also in Step 3, the signatories decide on the values of si randomly. One method

is for each signatory to compute their own si,j and computing the shared sums
si =

∑
j si,j . This requires a lot of interaction; another method is to simply let

one threshold member do it and communicate the values to the group with authen-
tication. Note that the values si are eventually made public in the signature and
there is no harm in sharing these values without encryption. Similarly, in step 8,
we compute the sum

∑
j si′,j ; since each user keeps their uj secret, they can reveal

their uj − ci′b∗j or uj − ci′
∑L

i=1 zi,j without risking their private keys, so there is
no harm in sharing these values without encryption.
To communicate a message with authentication, we use the HMAC scheme: for the

jth threshold member to communicate a message M to the ith threshold member,

c©Monero Research Lab Page 8 of 10

a shared secret ti,j is computed and (M, HMAC(ti,j ,M)) is sent. For a CCA-secure
encrypt-and-authenticate scheme [?], two users generate two shared secrets ti,j , t∗i,j .
The sending user computes the ciphertext C = Enc(ti,j ,M) and the authentication
codes τ = HMAC(t∗i,j , C) and sends (C, τ) to the receiver. If a receiver sees some
(C, τ), they can check if τ is a valid HMAC on C for any of their shared secrets. If
so, they can decrypt C with the other shared secret.

c©Monero Research Lab Page 9 of 10

EVERYTHING BELOW THIS LINE IS NOT WRITTEN BY ME. It
is reference copy-pasta from another document as I write the above.

6.1 Security Models
group-changing attack: can attacker change ring without changing sig? Multiple-
Known-Signature Existential Forgery [On the security models of threshold ring
signature schemes. Liu and Wong]
Unforgeability: LWW LSAGs definition of unforgeability.
A t-of-n threshold signature σ on a message M with set of public signing keys P ∗

will not pass Verify except with negligible probability unless σ is a non-⊥ output
of RingSign. Against fixed-ring attacks: same ring, different message. against
chosen subring attacks: any subring, different message. against adversarially chosen
pubkeys: honest users tricked into participating in signatures with adversarially
chosen ring members. against insider corruption: like chosen subring + adversary
can corrupt or subpoena users into giving up their secret keys.
Anonymity/linkable signer ambiguity: Basic, wrt Adversarially chosen keys, At-

tribution attacks and full key exposure. [Ring Signatures: Stronger Definitions, and
Constructions without Random Oracles.]
From LWW: By signer anonymity, we require that given a signature with respect

to a group of keys, it is infeasible to identify which private key is used to generate
the signature. In this paper, we focus on providing near maximum privacy in such a
way that the chance of guessing correctly which key of a set of n keys generated by G
with security parameter k is used to generate a given signature is negligibly greater
than 1/n provided that the signing key is chosen at random and the adversary only
knows the public keys (but not the private keys). If t private keys of the set are
also known by the adversary, where t < n, but the signing private key is not one of
them, then the success probability of the
adversary should still be negligibly greater than1/(n− t) .
The notion of signer anonymity above is different from those of

31, 1

which require that revealing private keys does not reduce the level of signer
anonymity. However, we specify the weaker form for supporting the property of
culpability. On the other hand, the original notion of [31, 1] should be used if
exculpability is required.
Traceability
Linkability:

6.2 Implementation
6.3 Security Proofs

7 Further Analysis
Efficiency and comparisons

Special Thanks: We would like to issue a special thanks to the members of the
Monero community who used the GetMonero.org Forum Funding System to support
the Monero Research Lab. Readers may also regard this as a statement of conflict

c©Monero Research Lab Page 10 of 10

of interest, since our funding is denominated in Monero and provided directly by
members of the Monero community by the Forum Funding System.

References
1. Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of keys.

Advances in Cryptology, Asiacrypt 2002, pages 639–645, 2002.
2. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and

constructions without random oracles. In TCC, volume 6, pages 60–79. Springer, 2006.
3. Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous group signature for ad

hoc groups. In ACISP, volume 4, pages 325–335. Springer, 2004.
4. Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.
5. Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from

identification. In Annual International Cryptology Conference, pages 354–369. Springer, 1998.
6. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Eurocrypt, volume 96,

pages 387–398. Springer, 1996.
7. Ronald Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. Advances in Cryptology, ASIACRYPT

2001, pages 552–565, 2001.
8. Nicolas van Saberhagen. Cryptonote v 2. 0, 2013.

	Abstract
	Introduction and Background
	Our Contribution
	Notation and Prerequisites

	MLSAG Ring Signatures
	Extending to Threshold Signatures

	Security Models
	Proposed Implementation
	Security Proofs
	Elaboration
	Security Models
	Implementation
	Security Proofs

	Further Analysis

