More robust FS challenge computation.

This commit is contained in:
Brandon Goodell 2017-12-18 14:41:21 -05:00 committed by GitHub
parent 7cfce83fad
commit c7269c0514
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -0,0 +1,554 @@
// NOTE: this interchanges the roles of G and H to match other code's behavior
package how.monero.hodl.bulletproof;
import how.monero.hodl.crypto.Curve25519Point;
import how.monero.hodl.crypto.Scalar;
import how.monero.hodl.crypto.CryptoUtil;
import java.math.BigInteger;
import java.util.Random;
import static how.monero.hodl.crypto.Scalar.randomScalar;
import static how.monero.hodl.crypto.CryptoUtil.*;
import static how.monero.hodl.util.ByteUtil.*;
public class MultiBulletproof
{
private static int N;
private static int logMN;
private static int M;
private static Curve25519Point G;
private static Curve25519Point H;
private static Curve25519Point[] Gi;
private static Curve25519Point[] Hi;
public static class ProofTuple
{
private Curve25519Point V[];
private Curve25519Point A;
private Curve25519Point S;
private Curve25519Point T1;
private Curve25519Point T2;
private Scalar taux;
private Scalar mu;
private Curve25519Point[] L;
private Curve25519Point[] R;
private Scalar a;
private Scalar b;
private Scalar t;
public ProofTuple(Curve25519Point V[], Curve25519Point A, Curve25519Point S, Curve25519Point T1, Curve25519Point T2, Scalar taux, Scalar mu, Curve25519Point[] L, Curve25519Point[] R, Scalar a, Scalar b, Scalar t)
{
this.V = V;
this.A = A;
this.S = S;
this.T1 = T1;
this.T2 = T2;
this.taux = taux;
this.mu = mu;
this.L = L;
this.R = R;
this.a = a;
this.b = b;
this.t = t;
}
}
/* Given two scalar arrays, construct a vector commitment */
public static Curve25519Point VectorExponent(Scalar[] a, Scalar[] b)
{
assert a.length == M*N && b.length == M*N;
Curve25519Point Result = Curve25519Point.ZERO;
for (int i = 0; i < M*N; i++)
{
Result = Result.add(Gi[i].scalarMultiply(a[i]));
Result = Result.add(Hi[i].scalarMultiply(b[i]));
}
return Result;
}
/* Compute a custom vector-scalar commitment */
public static Curve25519Point VectorExponentCustom(Curve25519Point[] A, Curve25519Point[] B, Scalar[] a, Scalar[] b)
{
assert a.length == A.length && b.length == B.length && a.length == b.length;
Curve25519Point Result = Curve25519Point.ZERO;
for (int i = 0; i < a.length; i++)
{
Result = Result.add(A[i].scalarMultiply(a[i]));
Result = Result.add(B[i].scalarMultiply(b[i]));
}
return Result;
}
/* Given a scalar, construct a vector of powers */
public static Scalar[] VectorPowers(Scalar x, int size)
{
Scalar[] result = new Scalar[size];
for (int i = 0; i < size; i++)
{
result[i] = x.pow(i);
}
return result;
}
/* Given two scalar arrays, construct the inner product */
public static Scalar InnerProduct(Scalar[] a, Scalar[] b)
{
assert a.length == b.length;
Scalar result = Scalar.ZERO;
for (int i = 0; i < a.length; i++)
{
result = result.add(a[i].mul(b[i]));
}
return result;
}
/* Given two scalar arrays, construct the Hadamard product */
public static Scalar[] Hadamard(Scalar[] a, Scalar[] b)
{
assert a.length == b.length;
Scalar[] result = new Scalar[a.length];
for (int i = 0; i < a.length; i++)
{
result[i] = a[i].mul(b[i]);
}
return result;
}
/* Given two curvepoint arrays, construct the Hadamard product */
public static Curve25519Point[] Hadamard2(Curve25519Point[] A, Curve25519Point[] B)
{
assert A.length == B.length;
Curve25519Point[] Result = new Curve25519Point[A.length];
for (int i = 0; i < A.length; i++)
{
Result[i] = A[i].add(B[i]);
}
return Result;
}
/* Add two vectors */
public static Scalar[] VectorAdd(Scalar[] a, Scalar[] b)
{
assert a.length == b.length;
Scalar[] result = new Scalar[a.length];
for (int i = 0; i < a.length; i++)
{
result[i] = a[i].add(b[i]);
}
return result;
}
/* Subtract two vectors */
public static Scalar[] VectorSubtract(Scalar[] a, Scalar[] b)
{
assert a.length == b.length;
Scalar[] result = new Scalar[a.length];
for (int i = 0; i < a.length; i++)
{
result[i] = a[i].sub(b[i]);
}
return result;
}
/* Multiply a scalar and a vector */
public static Scalar[] VectorScalar(Scalar[] a, Scalar x)
{
Scalar[] result = new Scalar[a.length];
for (int i = 0; i < a.length; i++)
{
result[i] = a[i].mul(x);
}
return result;
}
/* Exponentiate a curve vector by a scalar */
public static Curve25519Point[] VectorScalar2(Curve25519Point[] A, Scalar x)
{
Curve25519Point[] Result = new Curve25519Point[A.length];
for (int i = 0; i < A.length; i++)
{
Result[i] = A[i].scalarMultiply(x);
}
return Result;
}
/* Compute the inverse of a scalar, the stupid way */
public static Scalar Invert(Scalar x)
{
Scalar inverse = new Scalar(x.toBigInteger().modInverse(CryptoUtil.l));
assert x.mul(inverse).equals(Scalar.ONE);
return inverse;
}
/* Compute the slice of a curvepoint vector */
public static Curve25519Point[] CurveSlice(Curve25519Point[] a, int start, int stop)
{
Curve25519Point[] Result = new Curve25519Point[stop-start];
for (int i = start; i < stop; i++)
{
Result[i-start] = a[i];
}
return Result;
}
/* Compute the slice of a scalar vector */
public static Scalar[] ScalarSlice(Scalar[] a, int start, int stop)
{
Scalar[] result = new Scalar[stop-start];
for (int i = start; i < stop; i++)
{
result[i-start] = a[i];
}
return result;
}
/* Construct an aggregate range proof */
public static ProofTuple PROVE(Scalar[] v, Scalar[] gamma)
{
Curve25519Point[] V = new Curve25519Point[M];
V[0] = H.scalarMultiply(v[0]).add(G.scalarMultiply(gamma[0]));
// This hash is updated for Fiat-Shamir throughout the proof
Scalar hashCache = hashToScalar(V[0].toBytes());
for (int j = 1; j < M; j++)
{
V[j] = H.scalarMultiply(v[j]).add(G.scalarMultiply(gamma[j]));
hashCache = hashToScalar(concat(hashCache.bytes,V[j].toBytes()));
}
// PAPER LINES 36-37
Scalar[] aL = new Scalar[M*N];
Scalar[] aR = new Scalar[M*N];
for (int j = 0; j < M; j++)
{
BigInteger tempV = v[j].toBigInteger();
for (int i = N-1; i >= 0; i--)
{
BigInteger basePow = BigInteger.valueOf(2).pow(i);
if (tempV.divide(basePow).equals(BigInteger.ZERO))
{
aL[j*N+i] = Scalar.ZERO;
}
else
{
aL[j*N+i] = Scalar.ONE;
tempV = tempV.subtract(basePow);
}
aR[j*N+i] = aL[j*N+i].sub(Scalar.ONE);
}
}
// PAPER LINES 38-39
Scalar alpha = randomScalar();
Curve25519Point A = VectorExponent(aL,aR).add(G.scalarMultiply(alpha));
// PAPER LINES 40-42
Scalar[] sL = new Scalar[M*N];
Scalar[] sR = new Scalar[M*N];
for (int i = 0; i < M*N; i++)
{
sL[i] = randomScalar();
sR[i] = randomScalar();
}
Scalar rho = randomScalar();
Curve25519Point S = VectorExponent(sL,sR).add(G.scalarMultiply(rho));
// PAPER LINES 43-45
hashCache = hashToScalar(concat(hashCache.bytes,A.toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,S.toBytes()));
Scalar y = hashCache;
hashCache = hashToScalar(hashCache.bytes);
Scalar z = hashCache;
// Polynomial construction by coefficients
Scalar[] l0;
Scalar[] l1;
Scalar[] r0;
Scalar[] r1;
l0 = VectorSubtract(aL,VectorScalar(VectorPowers(Scalar.ONE,M*N),z));
l1 = sL;
// This computes the ugly sum/concatenation from PAPER LINE 65
Scalar[] zerosTwos = new Scalar[M*N];
for (int i = 0; i < M*N; i++)
{
zerosTwos[i] = Scalar.ZERO;
for (int j = 1; j <= M; j++) // note this starts from 1
{
Scalar temp = Scalar.ZERO;
if (i >= (j-1)*N && i < j*N)
temp = Scalar.TWO.pow(i-(j-1)*N); // exponent ranges from 0..N-1
zerosTwos[i] = zerosTwos[i].add(z.pow(1+j).mul(temp));
}
}
r0 = VectorAdd(aR,VectorScalar(VectorPowers(Scalar.ONE,M*N),z));
r0 = Hadamard(r0,VectorPowers(y,M*N));
r0 = VectorAdd(r0,zerosTwos);
r1 = Hadamard(VectorPowers(y,M*N),sR);
// Polynomial construction before PAPER LINE 46
Scalar t0 = InnerProduct(l0,r0);
Scalar t1 = InnerProduct(l0,r1).add(InnerProduct(l1,r0));
Scalar t2 = InnerProduct(l1,r1);
// PAPER LINES 47-48
Scalar tau1 = randomScalar();
Scalar tau2 = randomScalar();
Curve25519Point T1 = H.scalarMultiply(t1).add(G.scalarMultiply(tau1));
Curve25519Point T2 = H.scalarMultiply(t2).add(G.scalarMultiply(tau2));
// PAPER LINES 49-51
hashCache = hashToScalar(concat(hashCache.bytes,z.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,T1.toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,T2.toBytes()));
Scalar x = hashCache;
// PAPER LINES 52-53
Scalar taux = tau1.mul(x);
taux = taux.add(tau2.mul(x.sq()));
for (int j = 1; j <= M; j++) // note this starts from 1
{
taux = taux.add(z.pow(1+j).mul(gamma[j-1]));
}
Scalar mu = x.mul(rho).add(alpha);
// PAPER LINES 54-57
Scalar[] l = l0;
l = VectorAdd(l,VectorScalar(l1,x));
Scalar[] r = r0;
r = VectorAdd(r,VectorScalar(r1,x));
Scalar t = InnerProduct(l,r);
// PAPER LINES 32-33
hashCache = hashToScalar(concat(hashCache.bytes,x.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,taux.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,mu.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,t.bytes));
Scalar x_ip = hashCache;
// These are used in the inner product rounds
int nprime = M*N;
Curve25519Point[] Gprime = new Curve25519Point[M*N];
Curve25519Point[] Hprime = new Curve25519Point[M*N];
Scalar[] aprime = new Scalar[M*N];
Scalar[] bprime = new Scalar[M*N];
for (int i = 0; i < M*N; i++)
{
Gprime[i] = Gi[i];
Hprime[i] = Hi[i].scalarMultiply(Invert(y).pow(i));
aprime[i] = l[i];
bprime[i] = r[i];
}
Curve25519Point[] L = new Curve25519Point[logMN];
Curve25519Point[] R = new Curve25519Point[logMN];
int round = 0; // track the index based on number of rounds
Scalar[] w = new Scalar[logMN]; // this is the challenge x in the inner product protocol
// PAPER LINE 13
while (nprime > 1)
{
// PAPER LINE 15
nprime /= 2;
// PAPER LINES 16-17
Scalar cL = InnerProduct(ScalarSlice(aprime,0,nprime),ScalarSlice(bprime,nprime,bprime.length));
Scalar cR = InnerProduct(ScalarSlice(aprime,nprime,aprime.length),ScalarSlice(bprime,0,nprime));
// PAPER LINES 18-19
L[round] = VectorExponentCustom(CurveSlice(Gprime,nprime,Gprime.length),CurveSlice(Hprime,0,nprime),ScalarSlice(aprime,0,nprime),ScalarSlice(bprime,nprime,bprime.length)).add(H.scalarMultiply(cL.mul(x_ip)));
R[round] = VectorExponentCustom(CurveSlice(Gprime,0,nprime),CurveSlice(Hprime,nprime,Hprime.length),ScalarSlice(aprime,nprime,aprime.length),ScalarSlice(bprime,0,nprime)).add(H.scalarMultiply(cR.mul(x_ip)));
// PAPER LINES 21-22
hashCache = hashToScalar(concat(hashCache.bytes,L[round].toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,R[round].toBytes()));
w[round] = hashCache;
// PAPER LINES 24-25
Gprime = Hadamard2(VectorScalar2(CurveSlice(Gprime,0,nprime),Invert(w[round])),VectorScalar2(CurveSlice(Gprime,nprime,Gprime.length),w[round]));
Hprime = Hadamard2(VectorScalar2(CurveSlice(Hprime,0,nprime),w[round]),VectorScalar2(CurveSlice(Hprime,nprime,Hprime.length),Invert(w[round])));
// PAPER LINES 28-29
aprime = VectorAdd(VectorScalar(ScalarSlice(aprime,0,nprime),w[round]),VectorScalar(ScalarSlice(aprime,nprime,aprime.length),Invert(w[round])));
bprime = VectorAdd(VectorScalar(ScalarSlice(bprime,0,nprime),Invert(w[round])),VectorScalar(ScalarSlice(bprime,nprime,bprime.length),w[round]));
round += 1;
}
// PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20)
return new ProofTuple(V,A,S,T1,T2,taux,mu,L,R,aprime[0],bprime[0],t);
}
/* Given a range proof, determine if it is valid */
public static boolean VERIFY(ProofTuple proof)
{
// Reconstruct the challenges
Scalar hashCache = hashToScalar(proof.V[0].toBytes());
for (int j = 1; j < M; j++)
hashCache = hashToScalar(concat(hashCache.bytes,proof.V[j].toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,proof.A.toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,proof.S.toBytes()));
Scalar y = hashCache;
hashCache = hashToScalar(hashCache.bytes);
Scalar z = hashCache;
hashCache = hashToScalar(concat(hashCache.bytes,z.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,proof.T1.toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,proof.T2.toBytes()));
Scalar x = hashCache;
hashCache = hashToScalar(concat(hashCache.bytes,x.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,proof.taux.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,proof.mu.bytes));
hashCache = hashToScalar(concat(hashCache.bytes,proof.t.bytes));
Scalar x_ip = hashCache;
// PAPER LINE 61
Curve25519Point L61Left = G.scalarMultiply(proof.taux).add(H.scalarMultiply(proof.t));
Scalar k = Scalar.ZERO.sub(z.sq().mul(InnerProduct(VectorPowers(Scalar.ONE,M*N),VectorPowers(y,M*N))));
for (int j = 1; j <= M; j++) // note this starts from 1
{
k = k.sub(z.pow(j+2).mul(InnerProduct(VectorPowers(Scalar.ONE,N),VectorPowers(Scalar.TWO,N))));
}
Curve25519Point L61Right = H.scalarMultiply(k.add(z.mul(InnerProduct(VectorPowers(Scalar.ONE,M*N),VectorPowers(y,M*N)))));
for (int j = 0; j < M; j++)
{
L61Right = L61Right.add(proof.V[j].scalarMultiply(z.pow(j+2)));
}
L61Right = L61Right.add(proof.T1.scalarMultiply(x));
L61Right = L61Right.add(proof.T2.scalarMultiply(x.sq()));
if (!L61Right.equals(L61Left))
return false;
// PAPER LINE 62
Curve25519Point P = Curve25519Point.ZERO;
P = P.add(proof.A);
P = P.add(proof.S.scalarMultiply(x));
// PAPER LINES 21-22
// The inner product challenges are computed per round
Scalar[] w = new Scalar[logMN];
hashCache = hashToScalar(concat(hashCache.bytes,proof.L[0].toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,proof.R[0].toBytes()));
w[0] = hashCache;
if (logMN > 1)
{
for (int i = 1; i < logMN; i++)
{
hashCache = hashToScalar(concat(hashCache.bytes,proof.L[i].toBytes()));
hashCache = hashToScalar(concat(hashCache.bytes,proof.R[i].toBytes()));
w[i] = hashCache;
}
}
// Basically PAPER LINES 24-25
// Compute the curvepoints from G[i] and H[i]
Curve25519Point InnerProdG = Curve25519Point.ZERO;
Curve25519Point InnerProdH = Curve25519Point.ZERO;
for (int i = 0; i < M*N; i++)
{
// Convert the index to binary IN REVERSE and construct the scalar exponent
int index = i;
Scalar gScalar = proof.a;
Scalar hScalar = proof.b.mul(Invert(y).pow(i));
for (int j = logMN-1; j >= 0; j--)
{
int J = w.length - j - 1; // because this is done in reverse bit order
int basePow = (int) Math.pow(2,j); // assumes we don't get too big
if (index / basePow == 0) // bit is zero
{
gScalar = gScalar.mul(Invert(w[J]));
hScalar = hScalar.mul(w[J]);
}
else // bit is one
{
gScalar = gScalar.mul(w[J]);
hScalar = hScalar.mul(Invert(w[J]));
index -= basePow;
}
}
gScalar = gScalar.add(z);
hScalar = hScalar.sub(z.mul(y.pow(i)).add(z.pow(2+i/N).mul(Scalar.TWO.pow(i%N))).mul(Invert(y).pow(i)));
// Now compute the basepoint's scalar multiplication
// Each of these could be written as a multiexp operation instead
InnerProdG = InnerProdG.add(Gi[i].scalarMultiply(gScalar));
InnerProdH = InnerProdH.add(Hi[i].scalarMultiply(hScalar));
}
// PAPER LINE 26
Curve25519Point Pprime = P.add(G.scalarMultiply(Scalar.ZERO.sub(proof.mu)));
for (int i = 0; i < logMN; i++)
{
Pprime = Pprime.add(proof.L[i].scalarMultiply(w[i].sq()));
Pprime = Pprime.add(proof.R[i].scalarMultiply(Invert(w[i]).sq()));
}
Pprime = Pprime.add(H.scalarMultiply(proof.t.mul(x_ip)));
if (!Pprime.equals(InnerProdG.add(InnerProdH).add(H.scalarMultiply(proof.a.mul(proof.b).mul(x_ip)))))
return false;
return true;
}
public static void main(String[] args)
{
// Test parameters
N = 64; // number of bits in amount range (so amounts are 0..2^(N-1))
M = 4; // number of outputs (must be a power of 2)
logMN = 8; // must be manually set to log_2(MN)
int TRIALS = 25; // number of randomized trials to run
// Set the curve base points
G = Curve25519Point.G;
H = Curve25519Point.hashToPoint(G);
Gi = new Curve25519Point[M*N];
Hi = new Curve25519Point[M*N];
for (int i = 0; i < M*N; i++)
{
Gi[i] = getHpnGLookup(2*i);
Hi[i] = getHpnGLookup(2*i+1);
}
// Run a bunch of randomized trials
Random rando = new Random();
int count = 0;
Scalar[] amounts = new Scalar[M];
Scalar[] masks = new Scalar[M];
while (count < TRIALS)
{
for (int j = 0; j < M; j++)
{
long amount = -1L;
while (amount > Math.pow(2,N)-1 || amount < 0L)
amount = rando.nextLong();
amounts[j] = new Scalar(BigInteger.valueOf(amount));
masks[j] = randomScalar();
}
ProofTuple proof = PROVE(amounts,masks);
if (!VERIFY(proof))
System.out.println("Test failed");
count += 1;
}
}
}