mirror of
https://github.com/monero-project/research-lab.git
synced 2025-01-18 16:44:36 +00:00
Merge pull request #2 from ShenNoether/master
Updated rct code with ring multisig and fixing key image bug I found …
This commit is contained in:
commit
65fe5d3e89
11 changed files with 267 additions and 207 deletions
|
@ -1,17 +0,0 @@
|
|||
--for quick conversion of the MiniNero python code to c++
|
||||
--
|
||||
if #arg > 0 then
|
||||
class = string.lower(arg[1]) --asdf
|
||||
object = arg[1] --Asdf
|
||||
deff = string.upper(arg[1]) --ASDF
|
||||
hfile = io.input("TemplateHead"):read("*a")
|
||||
cppfile = io.input("TemplateBody"):read("*a")
|
||||
hfile = string.gsub(hfile, "asdf", class)
|
||||
hfile = string.gsub(hfile, "Asdf", object)
|
||||
hfile = string.gsub(hfile, "ASDF", deff)
|
||||
cppfile = string.gsub(cppfile, "asdf", class)
|
||||
cppfile = string.gsub(cppfile, "Asdf", object)
|
||||
cppfile = string.gsub(cppfile, "ASDF", deff)
|
||||
io.output(object..".h"):write(hfile)
|
||||
io.output(object..".cpp"):write(cppfile)
|
||||
end
|
|
@ -1,4 +0,0 @@
|
|||
gtags.exe
|
||||
mingw32-make.exe clean
|
||||
mingw32-make.exe
|
||||
a.exe > .results
|
|
@ -1,4 +0,0 @@
|
|||
gtags.exe
|
||||
make clean
|
||||
make
|
||||
./a.exe
|
|
@ -1,3 +0,0 @@
|
|||
rm.exe a.exe
|
||||
g++ bits.cpp
|
||||
./a.exe
|
|
@ -1 +0,0 @@
|
|||
%1
|
|
@ -34,4 +34,74 @@ using namespace std;
|
|||
|
||||
namespace rct {
|
||||
|
||||
}
|
||||
int i;
|
||||
//Generate Signing Keys
|
||||
//This function is called by each participant in
|
||||
//A ring multisignature transaction.
|
||||
//The participant will send the returned parameters
|
||||
//to whomever is managing the transaction.
|
||||
//returns a, aG, aHP and I
|
||||
tuple<key, key, key, key> InitiateRMS(key x) {
|
||||
key I = scalarmultKey(hashToPoint(scalarmultBase(x)), x);
|
||||
key a, aG;
|
||||
skpkGen(a, aG);
|
||||
key aHP = scalarmultKey(hashToPoint(scalarmultBase(x)), a);
|
||||
return make_tuple(a, aG, aHP, I);
|
||||
}
|
||||
|
||||
//returns "c" which is the last index needed to get the last s-values
|
||||
key rmsMgSigStart(const keyM & pk, mgSig & rv, keyV aG, keyV aHP, const int index) {
|
||||
|
||||
int rows = pk[0].size();
|
||||
int cols = pk.size();
|
||||
if (cols < 2) {
|
||||
printf("Error! What is c if cols = 1!");
|
||||
}
|
||||
int i = 0, j = 0;
|
||||
key c, c_old, c0, L, R, Hi;
|
||||
sc_0(c_old.bytes);
|
||||
vector<ge_dsmp> Ip(rows);
|
||||
rv.ss = keyM(cols, rv.II);
|
||||
unsigned char m2[96];
|
||||
for (i = 0; i < rows; i++) {
|
||||
memcpy(m2, pk[index][i].bytes, 32);
|
||||
memcpy(m2 + 32, aG[i].bytes, 32);
|
||||
memcpy(m2 + 64, aHP[i].bytes, 32);
|
||||
precomp(Ip[i], rv.II[i]);
|
||||
sc_add(c_old.bytes, c_old.bytes, cn_fast_hash96(m2).bytes);
|
||||
}
|
||||
|
||||
int oldi = index;
|
||||
i = (index + 1) % cols;
|
||||
while (i != index) {
|
||||
|
||||
rv.ss[i] = skvGen(rows);
|
||||
sc_0(c.bytes);
|
||||
for (j = 0; j < rows; j++) {
|
||||
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
|
||||
hashToPoint(Hi, pk[i][j]);
|
||||
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j]);
|
||||
memcpy(m2, pk[i][j].bytes, 32);
|
||||
memcpy(m2 + 32, L.bytes, 32);
|
||||
memcpy(m2 + 64, R.bytes, 32);
|
||||
sc_add(c.bytes, c.bytes, cn_fast_hash96(m2).bytes);
|
||||
}
|
||||
c_old = copy(c);
|
||||
if (i == 0) {
|
||||
c0 = copy(c);
|
||||
}
|
||||
oldi = i;
|
||||
i = (i + 1) % cols;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
//have to return s = a - cx
|
||||
//for each participant in the MG sig..
|
||||
key rmsSign(key a, key c, key x) {
|
||||
key s;
|
||||
sc_mulsub(s.bytes, c.bytes, x.bytes, a.bytes);
|
||||
return s;
|
||||
}
|
||||
|
||||
}
|
|
@ -50,6 +50,7 @@
|
|||
|
||||
#include "rctTypes.h"
|
||||
#include "rctOps.h"
|
||||
#include "rctSigs.h"
|
||||
|
||||
|
||||
|
||||
|
@ -58,11 +59,8 @@ using namespace std;
|
|||
using namespace crypto;
|
||||
|
||||
namespace rct {
|
||||
|
||||
int i;
|
||||
//rctSig genRMS(ctkeyV & inSk, ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> amounts, const int mixin);
|
||||
|
||||
|
||||
|
||||
tuple<key, key, key, key> InitiateRMS(key x);
|
||||
key rmsMgSigStart(const keyM & pk, mgSig & rv, keyV aG, keyV aHP, const int index);
|
||||
key rmsSign(key a, key c, key x) ;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -352,16 +352,43 @@ namespace rct {
|
|||
sc_reduce32(hash.bytes);
|
||||
return hash;
|
||||
}
|
||||
|
||||
//returns cn_fast_hash(input) * G where G is the basepoint
|
||||
key hashToPoint(const key & in) {
|
||||
return scalarmultBase(cn_fast_hash(in));
|
||||
|
||||
//cn_fast_hash for a 96 byte unsigned char
|
||||
key cn_fast_hash96(const void * in) {
|
||||
uint8_t md2[32];
|
||||
int j = 0;
|
||||
key hash;
|
||||
keccak((uint8_t *)in, 96, md2, 32);
|
||||
for (j = 0; j < 32; j++) {
|
||||
hash[j] = (unsigned char)md2[j];
|
||||
}
|
||||
sc_reduce32(hash.bytes);
|
||||
return hash;
|
||||
}
|
||||
|
||||
//returns cn_fast_hash(input) * G where G is the basepoint
|
||||
void hashToPoint(key & out, const key & in) {
|
||||
scalarmultBase(out, cn_fast_hash(in));
|
||||
|
||||
key hashToPoint(const key & hh) {
|
||||
key pointk;
|
||||
ge_p2 point;
|
||||
ge_p1p1 point2;
|
||||
ge_p3 res;
|
||||
key h = cn_fast_hash(hh);
|
||||
ge_fromfe_frombytes_vartime(&point, h.bytes);
|
||||
ge_mul8(&point2, &point);
|
||||
ge_p1p1_to_p3(&res, &point2);
|
||||
ge_p3_tobytes(pointk.bytes, &res);
|
||||
return pointk;
|
||||
}
|
||||
|
||||
void hashToPoint(key & pointk, const key & hh) {
|
||||
ge_p2 point;
|
||||
ge_p1p1 point2;
|
||||
ge_p3 res;
|
||||
key h = cn_fast_hash(hh);
|
||||
ge_fromfe_frombytes_vartime(&point, h.bytes);
|
||||
ge_mul8(&point2, &point);
|
||||
ge_p1p1_to_p3(&res, &point2);
|
||||
ge_p3_tobytes(pointk.bytes, &res);
|
||||
}
|
||||
|
||||
//sums a vector of curve points (for scalars use sc_add)
|
||||
void sumKeys(key & Csum, const keyV & Cis) {
|
||||
|
|
|
@ -48,6 +48,7 @@
|
|||
|
||||
#include "rctTypes.h"
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace crypto;
|
||||
|
||||
|
@ -128,6 +129,8 @@ namespace rct {
|
|||
void cn_fast_hash(key &hash, const key &in);
|
||||
//cn_fast_hash for a 32 byte key
|
||||
key cn_fast_hash(const key &in);
|
||||
//for mg sigs
|
||||
key cn_fast_hash96(const void * in);
|
||||
|
||||
//returns cn_fast_hash(input) * G where G is the basepoint
|
||||
key hashToPoint(const key &in);
|
||||
|
|
|
@ -129,150 +129,140 @@ namespace rct {
|
|||
keyV II(xx.size());
|
||||
int i = 0;
|
||||
for (i = 0; i < xx.size(); i++) {
|
||||
II[i] = scalarmultKey(hashToPoint(scalarmultBase(xx[i])), xx[i]);
|
||||
II[i] = scalarmultKey(hashToPoint(scalarmultBase(xx[i])), xx[i]);
|
||||
}
|
||||
return II;
|
||||
}
|
||||
|
||||
/*
|
||||
keyV skvGen(int n) {
|
||||
keyV rv(n);
|
||||
int i = 0;
|
||||
for (i = 0; i < n; i++) {
|
||||
skGen(rv[i]);
|
||||
}
|
||||
return rv;
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
|
||||
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
|
||||
//This is a just slghtly more efficient version than the ones described below
|
||||
//(will be explained in more detail in Ring Multisig paper
|
||||
//These are aka MG signatutes in earlier drafts of the ring ct paper
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 2.
|
||||
// keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
|
||||
// Gen creates a signature which proves that for some column in the keymatrix "pk"
|
||||
// the signer knows a secret key for each row in that column
|
||||
// Ver verifies that the MG sig was created correctly
|
||||
mgSig MLSAG_Gen(const keyM & pk, const keyV & xx, const int index) {
|
||||
|
||||
mgSig rv;
|
||||
// Ver verifies that the MG sig was created correctly
|
||||
mgSig MLSAG_Gen(const keyM & pk, const keyV & xx, const int index) {
|
||||
mgSig rv;
|
||||
int rows = pk[0].size();
|
||||
int cols = pk.size();
|
||||
if (cols < 2) {
|
||||
printf("Error! What is c if cols = 1!");
|
||||
}
|
||||
int i = 0, j = 0;
|
||||
|
||||
keyV c(cols);
|
||||
keyV alpha = skvGen(rows);
|
||||
rv.II = keyImageV(xx);
|
||||
DP(rv.II);
|
||||
key c, c_old, L, R, Hi;
|
||||
sc_0(c_old.bytes);
|
||||
vector<ge_dsmp> Ip(rows);
|
||||
keyM L(cols, rv.II);
|
||||
keyM R(cols, rv.II);
|
||||
rv.II = keyV(rows);
|
||||
rv.ss = keyM(cols, rv.II);
|
||||
keyV Hi(rows);
|
||||
keyV alpha(rows);
|
||||
keyV aG(rows);
|
||||
keyV aHP(rows);
|
||||
key m2hash;
|
||||
unsigned char m2[96];
|
||||
DP("here1");
|
||||
for (i = 0; i < rows; i++) {
|
||||
L[index][i] = scalarmultBase(alpha[i]);
|
||||
hashToPoint(Hi[i], pk[index][i]);
|
||||
R[index][i] = scalarmultKey(Hi[i], alpha[i]);
|
||||
skpkGen(alpha[i], aG[i]); //need to save alphas for later..
|
||||
Hi = hashToPoint(pk[index][i]);
|
||||
aHP[i] = scalarmultKey(Hi, alpha[i]);
|
||||
memcpy(m2, pk[index][i].bytes, 32);
|
||||
memcpy(m2 + 32, aG[i].bytes, 32);
|
||||
memcpy(m2 + 64, aHP[i].bytes, 32);
|
||||
rv.II[i] = scalarmultKey(Hi, xx[i]);
|
||||
precomp(Ip[i], rv.II[i]);
|
||||
m2hash = cn_fast_hash96(m2);
|
||||
sc_add(c_old.bytes, c_old.bytes, m2hash.bytes);
|
||||
}
|
||||
char * m1 = (char *)malloc(32 * rows * (cols + 2));
|
||||
//vector<char> m1(32 * rows * (cols + 2));
|
||||
for (i = 0; i < cols; i++) {
|
||||
for (j = 0; j < rows; j++) {
|
||||
memcpy(m1 + rows * 32 * i + (32 * j), pk[i][j].bytes, 32);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int oldi = index;
|
||||
|
||||
i = (index + 1) % cols;
|
||||
for (j = 0; j < rows; j++) {
|
||||
memcpy(m1 + rows * 32 * cols + (32 * j), L[oldi][j].bytes, 32);
|
||||
memcpy(m1 + rows * 32 * (cols + 1) + (32 * j), R[oldi][j].bytes, 32);
|
||||
}
|
||||
if (i == 0) {
|
||||
copy(rv.cc, c_old);
|
||||
}
|
||||
while (i != index) {
|
||||
|
||||
cn_fast_hash(c[i], m1, 32 * rows * (cols + 2));
|
||||
|
||||
rv.ss[i] = skvGen(rows);
|
||||
rv.ss[i] = skvGen(rows);
|
||||
sc_0(c.bytes);
|
||||
for (j = 0; j < rows; j++) {
|
||||
addKeys2(L[i][j], rv.ss[i][j], c[i], pk[i][j]);
|
||||
hashToPoint(Hi[j], pk[i][j]);
|
||||
addKeys3(R[i][j], rv.ss[i][j], Hi[j], c[i], Ip[j]);
|
||||
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
|
||||
hashToPoint(Hi, pk[i][j]);
|
||||
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j]);
|
||||
memcpy(m2, pk[i][j].bytes, 32);
|
||||
memcpy(m2 + 32, L.bytes, 32);
|
||||
memcpy(m2 + 64, R.bytes, 32);
|
||||
m2hash = cn_fast_hash96(m2);
|
||||
sc_add(c.bytes, c.bytes, m2hash.bytes);
|
||||
}
|
||||
copy(c_old, c);
|
||||
oldi = i;
|
||||
i = (i + 1) % cols;
|
||||
for (j = 0; j < rows; j++) {
|
||||
memcpy(m1 + rows * 32 * cols + (32 * j), L[oldi][j].bytes, 32);
|
||||
memcpy(m1 + rows * 32 * (cols + 1) + (32 * j), R[oldi][j].bytes, 32);
|
||||
}
|
||||
}
|
||||
cn_fast_hash(c[index], m1, 32 * rows * (cols + 2));
|
||||
i = (i + 1) % cols;
|
||||
|
||||
if (i == 0) {
|
||||
copy(rv.cc, c_old);
|
||||
}
|
||||
}
|
||||
for (j = 0; j < rows; j++) {
|
||||
sc_mulsub(rv.ss[index][j].bytes, c[index].bytes, xx[j].bytes, alpha[j].bytes);
|
||||
}
|
||||
memcpy(rv.cc.bytes, c[0].bytes, 32);
|
||||
free(m1);
|
||||
sc_mulsub(rv.ss[index][j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
|
||||
}
|
||||
return rv;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
|
||||
//This is a just slghtly more efficient version than the ones described below
|
||||
//(will be explained in more detail in Ring Multisig paper
|
||||
//These are aka MG signatutes in earlier drafts of the ring ct paper
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 2.
|
||||
// keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
|
||||
// Gen creates a signature which proves that for some column in the keymatrix "pk"
|
||||
// the signer knows a secret key for each row in that column
|
||||
// Ver verifies that the MG sig was created correctly
|
||||
bool MLSAG_Ver(keyM &pk, mgSig &sig) {
|
||||
// Ver verifies that the MG sig was created correctly
|
||||
bool MLSAG_Ver(keyM & pk, mgSig & rv) {
|
||||
|
||||
int rows = pk[0].size();
|
||||
int cols = pk.size();
|
||||
if (cols < 2) {
|
||||
printf("Error! What is c if cols = 1!");
|
||||
|
||||
}
|
||||
DP("Verifying MG sig");
|
||||
keyV c(cols + 1);
|
||||
memcpy(c[0].bytes, sig.cc.bytes, 32);
|
||||
int i = 0, j = 0;
|
||||
key c, L, R, Hi;
|
||||
key c_old = copy(rv.cc);
|
||||
vector<ge_dsmp> Ip(rows);
|
||||
keyM L(cols, pk[0]);
|
||||
keyM R(cols, pk[0]);
|
||||
for (i= 0 ; i< rows ; i++) {
|
||||
precomp(Ip[i], rv.II[i]);
|
||||
}
|
||||
unsigned char m2[96];
|
||||
key m2hash;
|
||||
|
||||
int i = 0, oldi = 0, j = 0;
|
||||
keyV Hi(rows);
|
||||
for (i = 0; i < rows; i++) {
|
||||
precomp(Ip[i], sig.II[i]);
|
||||
}
|
||||
i = 0;
|
||||
char * m1 = (char *)malloc(32 * rows * (cols + 2));
|
||||
//vector<char> m1(32 * rows * (cols + 2));
|
||||
for (i = 0; i < cols; i++) {
|
||||
for (j = 0; j < rows; j++) {
|
||||
memcpy(m1 + rows * 32 * i + (32 * j), pk[i][j].bytes, 32);
|
||||
}
|
||||
}
|
||||
i = 0;
|
||||
int oldi = 0;
|
||||
i = 0;
|
||||
while (i < cols) {
|
||||
sc_0(c.bytes);
|
||||
for (j = 0; j < rows; j++) {
|
||||
addKeys2(L[i][j], sig.ss[i][j], c[i], pk[i][j]);
|
||||
hashToPoint(Hi[j], pk[i][j]);
|
||||
addKeys3(R[i][j], sig.ss[i][j], Hi[j], c[i], Ip[j]);
|
||||
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
|
||||
hashToPoint(Hi, pk[i][j]);
|
||||
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j]);
|
||||
memcpy(m2, pk[i][j].bytes, 32);
|
||||
memcpy(m2 + 32, L.bytes, 32);
|
||||
memcpy(m2 + 64, R.bytes, 32);
|
||||
m2hash = cn_fast_hash96(m2);
|
||||
sc_add(c.bytes, c.bytes, m2hash.bytes);
|
||||
}
|
||||
copy(c_old, c);
|
||||
oldi = i;
|
||||
i = (i + 1);
|
||||
for (j = 0; j < rows; j++) {
|
||||
memcpy(m1 + rows * 32 * cols + (32 * j), L[oldi][j].bytes, 32);
|
||||
memcpy(m1 + rows * 32 * (cols + 1) + (32 * j), R[oldi][j].bytes, 32);
|
||||
}
|
||||
cn_fast_hash(c[i], m1, 32 * rows * (cols + 2));
|
||||
}
|
||||
key cc;
|
||||
DP("c0");
|
||||
DP(rv.cc);
|
||||
DP("c_old");
|
||||
DP(c_old);
|
||||
sc_sub(c.bytes, c_old.bytes, rv.cc.bytes);
|
||||
return sc_isnonzero(c.bytes) == 0;
|
||||
}
|
||||
|
||||
|
||||
sc_sub(cc.bytes, c[0].bytes, c[cols].bytes);
|
||||
free(m1);
|
||||
return sc_isnonzero(cc.bytes) == 0;
|
||||
}
|
||||
|
||||
//proveRange and verRange
|
||||
//proveRange gives C, and mask such that \sumCi = C
|
||||
|
|
|
@ -1,23 +1,23 @@
|
|||
// Copyright (c) 2016, Monero Research Labs
|
||||
//
|
||||
// Author: Shen Noether <shen.noether@gmx.com>
|
||||
//
|
||||
//
|
||||
// All rights reserved.
|
||||
//
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification, are
|
||||
// permitted provided that the following conditions are met:
|
||||
//
|
||||
//
|
||||
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
||||
// conditions and the following disclaimer.
|
||||
//
|
||||
//
|
||||
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
||||
// of conditions and the following disclaimer in the documentation and/or other
|
||||
// materials provided with the distribution.
|
||||
//
|
||||
//
|
||||
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
||||
// used to endorse or promote products derived from this software without specific
|
||||
// prior written permission.
|
||||
//
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
||||
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
||||
|
@ -59,75 +59,76 @@ using namespace crypto;
|
|||
|
||||
namespace rct {
|
||||
|
||||
//Schnorr Non-linkable
|
||||
//Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
|
||||
//Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
|
||||
//These are called in the below ASNL sig generation
|
||||
void GenSchnorrNonLinkable(key & L1, key & s1, key & s2, const key & x, const key & P1, const key & P2, int index);
|
||||
bool VerSchnorrNonLinkable(const key & P1, const key & P2, const key & L1, const key & s1, const key & s2);
|
||||
//Schnorr Non-linkable
|
||||
//Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
|
||||
//Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
|
||||
//These are called in the below ASNL sig generation
|
||||
void GenSchnorrNonLinkable(key & L1, key & s1, key & s2, const key & x, const key & P1, const key & P2, int index);
|
||||
bool VerSchnorrNonLinkable(const key & P1, const key & P2, const key & L1, const key & s1, const key & s2);
|
||||
|
||||
//Aggregate Schnorr Non-linkable Ring Signature (ASNL)
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 5.
|
||||
// These are used in range proofs (alternatively Borromean could be used)
|
||||
// Gen gives a signature which proves the signer knows, for each i,
|
||||
// an x[i] such that x[i]G = one of P1[i] or P2[i]
|
||||
// Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
|
||||
asnlSig GenASNL(key64 x, key64 P1, key64 P2, bits indices);
|
||||
bool VerASNL(key64 P1, key64 P2, asnlSig &as);
|
||||
//Aggregate Schnorr Non-linkable Ring Signature (ASNL)
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 5.
|
||||
// These are used in range proofs (alternatively Borromean could be used)
|
||||
// Gen gives a signature which proves the signer knows, for each i,
|
||||
// an x[i] such that x[i]G = one of P1[i] or P2[i]
|
||||
// Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
|
||||
asnlSig GenASNL(key64 x, key64 P1, key64 P2, bits indices);
|
||||
bool VerASNL(key64 P1, key64 P2, asnlSig &as);
|
||||
|
||||
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
|
||||
//These are aka MG signatutes in earlier drafts of the ring ct paper
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 2.
|
||||
// keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
|
||||
// Gen creates a signature which proves that for some column in the keymatrix "pk"
|
||||
// the signer knows a secret key for each row in that column
|
||||
// Ver verifies that the MG sig was created correctly
|
||||
keyV keyImageV(const keyV &xx);
|
||||
mgSig MLSAG_Gen(const keyM &pk, const keyV &xx, const int index);
|
||||
bool MLSAG_Ver(keyM &pk, mgSig &sig);
|
||||
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
|
||||
//These are aka MG signatutes in earlier drafts of the ring ct paper
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 2.
|
||||
// keyImageV just does I[i] = xx[i] * HashToPoint(xx[i] * G) for each i
|
||||
// Gen creates a signature which proves that for some column in the keymatrix "pk"
|
||||
// the signer knows a secret key for each row in that column
|
||||
// Ver verifies that the MG sig was created correctly
|
||||
keyV keyImageV(const keyV &xx);
|
||||
mgSig MLSAG_Gen(const keyM & pk, const keyV & xx, const int index);
|
||||
bool MLSAG_Ver(keyM &pk, mgSig &sig);
|
||||
//mgSig MLSAG_Gen_Old(const keyM & pk, const keyV & xx, const int index);
|
||||
|
||||
//proveRange and verRange
|
||||
//proveRange gives C, and mask such that \sumCi = C
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 5.1
|
||||
// and Ci is a commitment to either 0 or 2^i, i=0,...,63
|
||||
// thus this proves that "amount" is in [0, 2^64]
|
||||
// mask is a such that C = aG + bH, and b = amount
|
||||
//verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
|
||||
rangeSig proveRange(key & C, key & mask, const xmr_amount & amount);
|
||||
bool verRange(key & C, rangeSig & as);
|
||||
//proveRange and verRange
|
||||
//proveRange gives C, and mask such that \sumCi = C
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 5.1
|
||||
// and Ci is a commitment to either 0 or 2^i, i=0,...,63
|
||||
// thus this proves that "amount" is in [0, 2^64]
|
||||
// mask is a such that C = aG + bH, and b = amount
|
||||
//verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
|
||||
rangeSig proveRange(key & C, key & mask, const xmr_amount & amount);
|
||||
bool verRange(key & C, rangeSig & as);
|
||||
|
||||
//Ring-ct MG sigs
|
||||
//Prove:
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10.
|
||||
// This does the MG sig on the "dest" part of the given key matrix, and
|
||||
// the last row is the sum of input commitments from that column - sum output commitments
|
||||
// this shows that sum inputs = sum outputs
|
||||
//Ver:
|
||||
// verifies the above sig is created corretly
|
||||
mgSig proveRctMG(const ctkeyM & pubs, const ctkeyV & inSk, const keyV &outMasks, const ctkeyV & outPk, int index);
|
||||
bool verRctMG(mgSig mg, ctkeyM & pubs, ctkeyV & outPk);
|
||||
//Ring-ct MG sigs
|
||||
//Prove:
|
||||
// c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10.
|
||||
// This does the MG sig on the "dest" part of the given key matrix, and
|
||||
// the last row is the sum of input commitments from that column - sum output commitments
|
||||
// this shows that sum inputs = sum outputs
|
||||
//Ver:
|
||||
// verifies the above sig is created corretly
|
||||
mgSig proveRctMG(const ctkeyM & pubs, const ctkeyV & inSk, const keyV &outMasks, const ctkeyV & outPk, int index);
|
||||
bool verRctMG(mgSig mg, ctkeyM & pubs, ctkeyV & outPk);
|
||||
|
||||
//These functions get keys from blockchain
|
||||
//replace these when connecting blockchain
|
||||
//getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
|
||||
//populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
|
||||
// the return value are the key matrix, and the index where inPk was put (random).
|
||||
void getKeyFromBlockchain(ctkey & a, size_t reference_index);
|
||||
tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin);
|
||||
//These functions get keys from blockchain
|
||||
//replace these when connecting blockchain
|
||||
//getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
|
||||
//populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
|
||||
// the return value are the key matrix, and the index where inPk was put (random).
|
||||
void getKeyFromBlockchain(ctkey & a, size_t reference_index);
|
||||
tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin);
|
||||
|
||||
//RingCT protocol
|
||||
//genRct:
|
||||
// creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
|
||||
// columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
|
||||
// Also contains masked "amount" and "mask" so the receiver can see how much they received
|
||||
//verRct:
|
||||
// verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
|
||||
//decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
|
||||
// uses the attached ecdh info to find the amounts represented by each output commitment
|
||||
// must know the destination private key to find the correct amount, else will return a random number
|
||||
rctSig genRct(ctkeyV & inSk, ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> amounts, const int mixin);
|
||||
bool verRct(rctSig & rv);
|
||||
xmr_amount decodeRct(rctSig & rv, key & sk, int i);
|
||||
//RingCT protocol
|
||||
//genRct:
|
||||
// creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
|
||||
// columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
|
||||
// Also contains masked "amount" and "mask" so the receiver can see how much they received
|
||||
//verRct:
|
||||
// verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
|
||||
//decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
|
||||
// uses the attached ecdh info to find the amounts represented by each output commitment
|
||||
// must know the destination private key to find the correct amount, else will return a random number
|
||||
rctSig genRct(ctkeyV & inSk, ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> amounts, const int mixin);
|
||||
bool verRct(rctSig & rv);
|
||||
xmr_amount decodeRct(rctSig & rv, key & sk, int i);
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue