mirror of
https://github.com/monero-project/research-lab.git
synced 2025-01-22 02:24:33 +00:00
Add files via upload
This commit is contained in:
parent
fcc2a96bad
commit
1cb15ed7ec
1 changed files with 644 additions and 0 deletions
|
@ -0,0 +1,644 @@
|
|||
// NOTE: this interchanges the roles of G and H to match other code's behavior
|
||||
|
||||
package how.monero.hodl.bulletproof;
|
||||
|
||||
import how.monero.hodl.crypto.Curve25519Point;
|
||||
import how.monero.hodl.crypto.Scalar;
|
||||
import how.monero.hodl.crypto.CryptoUtil;
|
||||
import java.math.BigInteger;
|
||||
import java.util.Random;
|
||||
|
||||
import static how.monero.hodl.crypto.Scalar.randomScalar;
|
||||
import static how.monero.hodl.crypto.CryptoUtil.*;
|
||||
import static how.monero.hodl.util.ByteUtil.*;
|
||||
|
||||
public class MultiBulletproof
|
||||
{
|
||||
private static int NEXP;
|
||||
private static int N;
|
||||
private static Curve25519Point G;
|
||||
private static Curve25519Point H;
|
||||
private static Curve25519Point[] Gi;
|
||||
private static Curve25519Point[] Hi;
|
||||
|
||||
public static class ProofTuple
|
||||
{
|
||||
private Curve25519Point V[];
|
||||
private Curve25519Point A;
|
||||
private Curve25519Point S;
|
||||
private Curve25519Point T1;
|
||||
private Curve25519Point T2;
|
||||
private Scalar taux;
|
||||
private Scalar mu;
|
||||
private Curve25519Point[] L;
|
||||
private Curve25519Point[] R;
|
||||
private Scalar a;
|
||||
private Scalar b;
|
||||
private Scalar t;
|
||||
|
||||
public ProofTuple(Curve25519Point V[], Curve25519Point A, Curve25519Point S, Curve25519Point T1, Curve25519Point T2, Scalar taux, Scalar mu, Curve25519Point[] L, Curve25519Point[] R, Scalar a, Scalar b, Scalar t)
|
||||
{
|
||||
this.V = V;
|
||||
this.A = A;
|
||||
this.S = S;
|
||||
this.T1 = T1;
|
||||
this.T2 = T2;
|
||||
this.taux = taux;
|
||||
this.mu = mu;
|
||||
this.L = L;
|
||||
this.R = R;
|
||||
this.a = a;
|
||||
this.b = b;
|
||||
this.t = t;
|
||||
}
|
||||
}
|
||||
|
||||
/* Given two scalar arrays, construct a vector commitment */
|
||||
public static Curve25519Point VectorExponent(Scalar[] a, Scalar[] b)
|
||||
{
|
||||
assert a.length == b.length;
|
||||
|
||||
Curve25519Point Result = Curve25519Point.ZERO;
|
||||
for (int i = 0; i < a.length; i++)
|
||||
{
|
||||
Result = Result.add(Gi[i].scalarMultiply(a[i]));
|
||||
Result = Result.add(Hi[i].scalarMultiply(b[i]));
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
/* Compute a custom vector-scalar commitment */
|
||||
public static Curve25519Point VectorExponentCustom(Curve25519Point[] A, Curve25519Point[] B, Scalar[] a, Scalar[] b)
|
||||
{
|
||||
assert a.length == A.length && b.length == B.length && a.length == b.length;
|
||||
|
||||
Curve25519Point Result = Curve25519Point.ZERO;
|
||||
for (int i = 0; i < a.length; i++)
|
||||
{
|
||||
Result = Result.add(A[i].scalarMultiply(a[i]));
|
||||
Result = Result.add(B[i].scalarMultiply(b[i]));
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
/* Given a scalar, construct a vector of powers */
|
||||
public static Scalar[] VectorPowers(Scalar x, int size)
|
||||
{
|
||||
Scalar[] result = new Scalar[size];
|
||||
for (int i = 0; i < size; i++)
|
||||
{
|
||||
result[i] = x.pow(i);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Given two scalar arrays, construct the inner product */
|
||||
public static Scalar InnerProduct(Scalar[] a, Scalar[] b)
|
||||
{
|
||||
assert a.length == b.length;
|
||||
|
||||
Scalar result = Scalar.ZERO;
|
||||
for (int i = 0; i < a.length; i++)
|
||||
{
|
||||
result = result.add(a[i].mul(b[i]));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Given two scalar arrays, construct the Hadamard product */
|
||||
public static Scalar[] Hadamard(Scalar[] a, Scalar[] b)
|
||||
{
|
||||
assert a.length == b.length;
|
||||
|
||||
Scalar[] result = new Scalar[a.length];
|
||||
for (int i = 0; i < a.length; i++)
|
||||
{
|
||||
result[i] = a[i].mul(b[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Given two curvepoint arrays, construct the Hadamard product */
|
||||
public static Curve25519Point[] Hadamard2(Curve25519Point[] A, Curve25519Point[] B)
|
||||
{
|
||||
assert A.length == B.length;
|
||||
|
||||
Curve25519Point[] Result = new Curve25519Point[A.length];
|
||||
for (int i = 0; i < A.length; i++)
|
||||
{
|
||||
Result[i] = A[i].add(B[i]);
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
/* Add two vectors */
|
||||
public static Scalar[] VectorAdd(Scalar[] a, Scalar[] b)
|
||||
{
|
||||
assert a.length == b.length;
|
||||
|
||||
Scalar[] result = new Scalar[a.length];
|
||||
for (int i = 0; i < a.length; i++)
|
||||
{
|
||||
result[i] = a[i].add(b[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Subtract two vectors */
|
||||
public static Scalar[] VectorSubtract(Scalar[] a, Scalar[] b)
|
||||
{
|
||||
assert a.length == b.length;
|
||||
|
||||
Scalar[] result = new Scalar[a.length];
|
||||
for (int i = 0; i < a.length; i++)
|
||||
{
|
||||
result[i] = a[i].sub(b[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Multiply a scalar and a vector */
|
||||
public static Scalar[] VectorScalar(Scalar[] a, Scalar x)
|
||||
{
|
||||
Scalar[] result = new Scalar[a.length];
|
||||
for (int i = 0; i < a.length; i++)
|
||||
{
|
||||
result[i] = a[i].mul(x);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Exponentiate a curve vector by a scalar */
|
||||
public static Curve25519Point[] VectorScalar2(Curve25519Point[] A, Scalar x)
|
||||
{
|
||||
Curve25519Point[] Result = new Curve25519Point[A.length];
|
||||
for (int i = 0; i < A.length; i++)
|
||||
{
|
||||
Result[i] = A[i].scalarMultiply(x);
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
/* Compute the inverse of a scalar, the stupid way */
|
||||
public static Scalar Invert(Scalar x)
|
||||
{
|
||||
Scalar inverse = new Scalar(x.toBigInteger().modInverse(CryptoUtil.l));
|
||||
|
||||
assert x.mul(inverse).equals(Scalar.ONE);
|
||||
return inverse;
|
||||
}
|
||||
|
||||
/* Compute the slice of a curvepoint vector */
|
||||
public static Curve25519Point[] CurveSlice(Curve25519Point[] a, int start, int stop)
|
||||
{
|
||||
Curve25519Point[] Result = new Curve25519Point[stop-start];
|
||||
for (int i = start; i < stop; i++)
|
||||
{
|
||||
Result[i-start] = a[i];
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
/* Compute the slice of a scalar vector */
|
||||
public static Scalar[] ScalarSlice(Scalar[] a, int start, int stop)
|
||||
{
|
||||
Scalar[] result = new Scalar[stop-start];
|
||||
for (int i = start; i < stop; i++)
|
||||
{
|
||||
result[i-start] = a[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Construct an aggregate range proof */
|
||||
public static ProofTuple PROVE(Scalar[] v, Scalar[] gamma, int logM)
|
||||
{
|
||||
int M = v.length;
|
||||
int logMN = logM + NEXP;
|
||||
|
||||
Curve25519Point[] V = new Curve25519Point[M];
|
||||
|
||||
V[0] = H.scalarMultiply(v[0]).add(G.scalarMultiply(gamma[0]));
|
||||
// This hash is updated for Fiat-Shamir throughout the proof
|
||||
Scalar hashCache = hashToScalar(V[0].toBytes());
|
||||
for (int j = 1; j < M; j++)
|
||||
{
|
||||
V[j] = H.scalarMultiply(v[j]).add(G.scalarMultiply(gamma[j]));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,V[j].toBytes()));
|
||||
}
|
||||
|
||||
// PAPER LINES 36-37
|
||||
Scalar[] aL = new Scalar[M*N];
|
||||
Scalar[] aR = new Scalar[M*N];
|
||||
|
||||
for (int j = 0; j < M; j++)
|
||||
{
|
||||
BigInteger tempV = v[j].toBigInteger();
|
||||
for (int i = N-1; i >= 0; i--)
|
||||
{
|
||||
BigInteger basePow = BigInteger.valueOf(2).pow(i);
|
||||
if (tempV.divide(basePow).equals(BigInteger.ZERO))
|
||||
{
|
||||
aL[j*N+i] = Scalar.ZERO;
|
||||
}
|
||||
else
|
||||
{
|
||||
aL[j*N+i] = Scalar.ONE;
|
||||
tempV = tempV.subtract(basePow);
|
||||
}
|
||||
|
||||
aR[j*N+i] = aL[j*N+i].sub(Scalar.ONE);
|
||||
}
|
||||
}
|
||||
|
||||
// PAPER LINES 38-39
|
||||
Scalar alpha = randomScalar();
|
||||
Curve25519Point A = VectorExponent(aL,aR).add(G.scalarMultiply(alpha));
|
||||
|
||||
// PAPER LINES 40-42
|
||||
Scalar[] sL = new Scalar[M*N];
|
||||
Scalar[] sR = new Scalar[M*N];
|
||||
for (int i = 0; i < M*N; i++)
|
||||
{
|
||||
sL[i] = randomScalar();
|
||||
sR[i] = randomScalar();
|
||||
}
|
||||
Scalar rho = randomScalar();
|
||||
Curve25519Point S = VectorExponent(sL,sR).add(G.scalarMultiply(rho));
|
||||
|
||||
// PAPER LINES 43-45
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,A.toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,S.toBytes()));
|
||||
Scalar y = hashCache;
|
||||
hashCache = hashToScalar(hashCache.bytes);
|
||||
Scalar z = hashCache;
|
||||
|
||||
// Polynomial construction by coefficients
|
||||
Scalar[] l0;
|
||||
Scalar[] l1;
|
||||
Scalar[] r0;
|
||||
Scalar[] r1;
|
||||
|
||||
l0 = VectorSubtract(aL,VectorScalar(VectorPowers(Scalar.ONE,M*N),z));
|
||||
l1 = sL;
|
||||
|
||||
// This computes the ugly sum/concatenation from PAPER LINE 65
|
||||
Scalar[] zerosTwos = new Scalar[M*N];
|
||||
for (int i = 0; i < M*N; i++)
|
||||
{
|
||||
zerosTwos[i] = Scalar.ZERO;
|
||||
for (int j = 1; j <= M; j++) // note this starts from 1
|
||||
{
|
||||
Scalar temp = Scalar.ZERO;
|
||||
if (i >= (j-1)*N && i < j*N)
|
||||
temp = Scalar.TWO.pow(i-(j-1)*N); // exponent ranges from 0..N-1
|
||||
zerosTwos[i] = zerosTwos[i].add(z.pow(1+j).mul(temp));
|
||||
}
|
||||
}
|
||||
|
||||
r0 = VectorAdd(aR,VectorScalar(VectorPowers(Scalar.ONE,M*N),z));
|
||||
r0 = Hadamard(r0,VectorPowers(y,M*N));
|
||||
r0 = VectorAdd(r0,zerosTwos);
|
||||
r1 = Hadamard(VectorPowers(y,M*N),sR);
|
||||
|
||||
// Polynomial construction before PAPER LINE 46
|
||||
Scalar t0 = InnerProduct(l0,r0);
|
||||
Scalar t1 = InnerProduct(l0,r1).add(InnerProduct(l1,r0));
|
||||
Scalar t2 = InnerProduct(l1,r1);
|
||||
|
||||
// PAPER LINES 47-48
|
||||
Scalar tau1 = randomScalar();
|
||||
Scalar tau2 = randomScalar();
|
||||
Curve25519Point T1 = H.scalarMultiply(t1).add(G.scalarMultiply(tau1));
|
||||
Curve25519Point T2 = H.scalarMultiply(t2).add(G.scalarMultiply(tau2));
|
||||
|
||||
// PAPER LINES 49-51
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,z.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,T1.toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,T2.toBytes()));
|
||||
Scalar x = hashCache;
|
||||
|
||||
// PAPER LINES 52-53
|
||||
Scalar taux = tau1.mul(x);
|
||||
taux = taux.add(tau2.mul(x.sq()));
|
||||
for (int j = 1; j <= M; j++) // note this starts from 1
|
||||
{
|
||||
taux = taux.add(z.pow(1+j).mul(gamma[j-1]));
|
||||
}
|
||||
Scalar mu = x.mul(rho).add(alpha);
|
||||
|
||||
// PAPER LINES 54-57
|
||||
Scalar[] l = l0;
|
||||
l = VectorAdd(l,VectorScalar(l1,x));
|
||||
Scalar[] r = r0;
|
||||
r = VectorAdd(r,VectorScalar(r1,x));
|
||||
|
||||
Scalar t = InnerProduct(l,r);
|
||||
|
||||
// PAPER LINES 32-33
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,x.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,taux.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,mu.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,t.bytes));
|
||||
Scalar x_ip = hashCache;
|
||||
|
||||
// These are used in the inner product rounds
|
||||
int nprime = M*N;
|
||||
Curve25519Point[] Gprime = new Curve25519Point[M*N];
|
||||
Curve25519Point[] Hprime = new Curve25519Point[M*N];
|
||||
Scalar[] aprime = new Scalar[M*N];
|
||||
Scalar[] bprime = new Scalar[M*N];
|
||||
for (int i = 0; i < M*N; i++)
|
||||
{
|
||||
Gprime[i] = Gi[i];
|
||||
Hprime[i] = Hi[i].scalarMultiply(Invert(y).pow(i));
|
||||
aprime[i] = l[i];
|
||||
bprime[i] = r[i];
|
||||
}
|
||||
Curve25519Point[] L = new Curve25519Point[logMN];
|
||||
Curve25519Point[] R = new Curve25519Point[logMN];
|
||||
int round = 0; // track the index based on number of rounds
|
||||
Scalar[] w = new Scalar[logMN]; // this is the challenge x in the inner product protocol
|
||||
|
||||
// PAPER LINE 13
|
||||
while (nprime > 1)
|
||||
{
|
||||
// PAPER LINE 15
|
||||
nprime /= 2;
|
||||
|
||||
// PAPER LINES 16-17
|
||||
Scalar cL = InnerProduct(ScalarSlice(aprime,0,nprime),ScalarSlice(bprime,nprime,bprime.length));
|
||||
Scalar cR = InnerProduct(ScalarSlice(aprime,nprime,aprime.length),ScalarSlice(bprime,0,nprime));
|
||||
|
||||
// PAPER LINES 18-19
|
||||
L[round] = VectorExponentCustom(CurveSlice(Gprime,nprime,Gprime.length),CurveSlice(Hprime,0,nprime),ScalarSlice(aprime,0,nprime),ScalarSlice(bprime,nprime,bprime.length)).add(H.scalarMultiply(cL.mul(x_ip)));
|
||||
R[round] = VectorExponentCustom(CurveSlice(Gprime,0,nprime),CurveSlice(Hprime,nprime,Hprime.length),ScalarSlice(aprime,nprime,aprime.length),ScalarSlice(bprime,0,nprime)).add(H.scalarMultiply(cR.mul(x_ip)));
|
||||
|
||||
// PAPER LINES 21-22
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,L[round].toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,R[round].toBytes()));
|
||||
w[round] = hashCache;
|
||||
|
||||
// PAPER LINES 24-25
|
||||
Gprime = Hadamard2(VectorScalar2(CurveSlice(Gprime,0,nprime),Invert(w[round])),VectorScalar2(CurveSlice(Gprime,nprime,Gprime.length),w[round]));
|
||||
Hprime = Hadamard2(VectorScalar2(CurveSlice(Hprime,0,nprime),w[round]),VectorScalar2(CurveSlice(Hprime,nprime,Hprime.length),Invert(w[round])));
|
||||
|
||||
// PAPER LINES 28-29
|
||||
aprime = VectorAdd(VectorScalar(ScalarSlice(aprime,0,nprime),w[round]),VectorScalar(ScalarSlice(aprime,nprime,aprime.length),Invert(w[round])));
|
||||
bprime = VectorAdd(VectorScalar(ScalarSlice(bprime,0,nprime),Invert(w[round])),VectorScalar(ScalarSlice(bprime,nprime,bprime.length),w[round]));
|
||||
|
||||
round += 1;
|
||||
}
|
||||
|
||||
// PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20)
|
||||
return new ProofTuple(V,A,S,T1,T2,taux,mu,L,R,aprime[0],bprime[0],t);
|
||||
}
|
||||
|
||||
/* Given a range proof, determine if it is valid */
|
||||
public static boolean VERIFY(ProofTuple[] proofs)
|
||||
{
|
||||
// Figure out which proof is longest
|
||||
int maxLength = 0;
|
||||
for (int p = 0; p < proofs.length; p++)
|
||||
{
|
||||
if (proofs[p].L.length > maxLength)
|
||||
maxLength = proofs[p].L.length;
|
||||
}
|
||||
int maxMN = (int) Math.pow(2,maxLength);
|
||||
|
||||
// Set up weighted aggregates for the first check
|
||||
Scalar y0 = Scalar.ZERO; // tau_x
|
||||
Scalar y1 = Scalar.ZERO; // t-(k+z+Sum(y^i))
|
||||
Curve25519Point Y2 = Curve25519Point.ZERO; // z-V sum
|
||||
Curve25519Point Y3 = Curve25519Point.ZERO; // xT_1
|
||||
Curve25519Point Y4 = Curve25519Point.ZERO; // x^2T_2
|
||||
|
||||
|
||||
// Set up weighted aggregates for the second check
|
||||
Curve25519Point Z0 = Curve25519Point.ZERO; // A + xS
|
||||
Scalar z1 = Scalar.ZERO; // mu
|
||||
Curve25519Point Z2 = Curve25519Point.ZERO; // Li/Ri sum
|
||||
Scalar z3 = Scalar.ZERO; // (t-ab)x_ip
|
||||
Scalar[] z4 = new Scalar[maxMN]; // g scalar sum
|
||||
Scalar[] z5 = new Scalar[maxMN]; // h scalar sum
|
||||
|
||||
for (int i = 0; i < maxMN; i++)
|
||||
{
|
||||
z4[i] = Scalar.ZERO;
|
||||
z5[i] = Scalar.ZERO;
|
||||
}
|
||||
|
||||
for (int p = 0; p < proofs.length; p++)
|
||||
{
|
||||
ProofTuple proof = proofs[p];
|
||||
int logMN = proof.L.length;
|
||||
int M = (int) Math.pow(2,logMN)/N;
|
||||
|
||||
// For the current proof, get a random weighting factor
|
||||
// NOTE: This must not be deterministic! Only the verifier knows it
|
||||
Scalar weight = randomScalar();
|
||||
|
||||
// Reconstruct the challenges
|
||||
Scalar hashCache = hashToScalar(proof.V[0].toBytes());
|
||||
for (int j = 1; j < M; j++)
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.V[j].toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.A.toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.S.toBytes()));
|
||||
Scalar y = hashCache;
|
||||
hashCache = hashToScalar(hashCache.bytes);
|
||||
Scalar z = hashCache;
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,z.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.T1.toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.T2.toBytes()));
|
||||
Scalar x = hashCache;
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,x.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.taux.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.mu.bytes));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.t.bytes));
|
||||
Scalar x_ip = hashCache;
|
||||
|
||||
// PAPER LINE 61
|
||||
y0 = y0.add(proof.taux.mul(weight));
|
||||
|
||||
Scalar k = Scalar.ZERO.sub(z.sq().mul(InnerProduct(VectorPowers(Scalar.ONE,M*N),VectorPowers(y,M*N))));
|
||||
for (int j = 1; j <= M; j++) // note this starts from 1
|
||||
{
|
||||
k = k.sub(z.pow(j+2).mul(InnerProduct(VectorPowers(Scalar.ONE,N),VectorPowers(Scalar.TWO,N))));
|
||||
}
|
||||
|
||||
y1 = y1.add(proof.t.sub(k.add(z.mul(InnerProduct(VectorPowers(Scalar.ONE,M*N),VectorPowers(y,M*N))))).mul(weight));
|
||||
|
||||
Curve25519Point temp = Curve25519Point.ZERO;
|
||||
for (int j = 0; j < M; j++)
|
||||
{
|
||||
temp = temp.add(proof.V[j].scalarMultiply(z.pow(j+2)));
|
||||
}
|
||||
Y2 = Y2.add(temp.scalarMultiply(weight));
|
||||
Y3 = Y3.add(proof.T1.scalarMultiply(x.mul(weight)));
|
||||
Y4 = Y4.add(proof.T2.scalarMultiply(x.sq().mul(weight)));
|
||||
|
||||
// PAPER LINE 62
|
||||
Z0 = Z0.add((proof.A.add(proof.S.scalarMultiply(x))).scalarMultiply(weight));
|
||||
|
||||
// PAPER LINES 21-22
|
||||
// The inner product challenges are computed per round
|
||||
Scalar[] w = new Scalar[logMN];
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.L[0].toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.R[0].toBytes()));
|
||||
w[0] = hashCache;
|
||||
if (logMN > 1)
|
||||
{
|
||||
for (int i = 1; i < logMN; i++)
|
||||
{
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.L[i].toBytes()));
|
||||
hashCache = hashToScalar(concat(hashCache.bytes,proof.R[i].toBytes()));
|
||||
w[i] = hashCache;
|
||||
}
|
||||
}
|
||||
|
||||
// Basically PAPER LINES 24-25
|
||||
// Compute the curvepoints from G[i] and H[i]
|
||||
for (int i = 0; i < M*N; i++)
|
||||
{
|
||||
// Convert the index to binary IN REVERSE and construct the scalar exponent
|
||||
int index = i;
|
||||
Scalar gScalar = proof.a;
|
||||
Scalar hScalar = proof.b.mul(Invert(y).pow(i));
|
||||
|
||||
for (int j = logMN-1; j >= 0; j--)
|
||||
{
|
||||
int J = w.length - j - 1; // because this is done in reverse bit order
|
||||
int basePow = (int) Math.pow(2,j); // assumes we don't get too big
|
||||
if (index / basePow == 0) // bit is zero
|
||||
{
|
||||
gScalar = gScalar.mul(Invert(w[J]));
|
||||
hScalar = hScalar.mul(w[J]);
|
||||
}
|
||||
else // bit is one
|
||||
{
|
||||
gScalar = gScalar.mul(w[J]);
|
||||
hScalar = hScalar.mul(Invert(w[J]));
|
||||
index -= basePow;
|
||||
}
|
||||
}
|
||||
|
||||
gScalar = gScalar.add(z);
|
||||
hScalar = hScalar.sub(z.mul(y.pow(i)).add(z.pow(2+i/N).mul(Scalar.TWO.pow(i%N))).mul(Invert(y).pow(i)));
|
||||
|
||||
// Now compute the basepoint's scalar multiplication
|
||||
z4[i] = z4[i].add(gScalar.mul(weight));
|
||||
z5[i] = z5[i].add(hScalar.mul(weight));
|
||||
}
|
||||
|
||||
// PAPER LINE 26
|
||||
z1 = z1.add(proof.mu.mul(weight));
|
||||
|
||||
temp = Curve25519Point.ZERO;
|
||||
for (int i = 0; i < logMN; i++)
|
||||
{
|
||||
temp = temp.add(proof.L[i].scalarMultiply(w[i].sq()));
|
||||
temp = temp.add(proof.R[i].scalarMultiply(Invert(w[i]).sq()));
|
||||
}
|
||||
Z2 = Z2.add(temp.scalarMultiply(weight));
|
||||
z3 = z3.add((proof.t.sub(proof.a.mul(proof.b))).mul(x_ip).mul(weight));
|
||||
|
||||
}
|
||||
|
||||
// Perform the first- and second-stage check on all proofs at once
|
||||
// NOTE: These checks could benefit from multiexp operations
|
||||
Curve25519Point Check1 = Curve25519Point.ZERO;
|
||||
Check1 = Check1.add(G.scalarMultiply(y0));
|
||||
Check1 = Check1.add(H.scalarMultiply(y1));
|
||||
Check1 = Check1.add(Y2.scalarMultiply(Scalar.ZERO.sub(Scalar.ONE)));
|
||||
Check1 = Check1.add(Y3.scalarMultiply(Scalar.ZERO.sub(Scalar.ONE)));
|
||||
Check1 = Check1.add(Y4.scalarMultiply(Scalar.ZERO.sub(Scalar.ONE)));
|
||||
if (! Check1.equals(Curve25519Point.ZERO))
|
||||
{
|
||||
System.out.println("Failed first-stage check");
|
||||
return false;
|
||||
}
|
||||
|
||||
Curve25519Point Check2 = Curve25519Point.ZERO;
|
||||
Check2 = Check2.add(Z0);
|
||||
Check2 = Check2.add(G.scalarMultiply(Scalar.ZERO.sub(z1)));
|
||||
Check2 = Check2.add(Z2);
|
||||
Check2 = Check2.add(H.scalarMultiply(z3));
|
||||
|
||||
for (int i = 0; i < maxMN; i++)
|
||||
{
|
||||
Check2 = Check2.add(Gi[i].scalarMultiply(Scalar.ZERO.sub(z4[i])));
|
||||
Check2 = Check2.add(Hi[i].scalarMultiply(Scalar.ZERO.sub(z5[i])));
|
||||
}
|
||||
|
||||
if (! Check2.equals(Curve25519Point.ZERO))
|
||||
{
|
||||
System.out.println("Failed second-stage check");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Generate a random proof with specified bit size and number of outputs */
|
||||
public static ProofTuple randomProof(int mExp)
|
||||
{
|
||||
int M = (int) Math.pow(2,mExp);
|
||||
|
||||
Random rando = new Random();
|
||||
Scalar[] amounts = new Scalar[M];
|
||||
Scalar[] masks = new Scalar[M];
|
||||
|
||||
// Generate the outputs and masks
|
||||
for (int i = 0; i < M; i++)
|
||||
{
|
||||
long amount = -1L;
|
||||
while (amount > Math.pow(2,N)-1 || amount < 0L) // Java doesn't handle random long ranges very well
|
||||
amount = rando.nextLong();
|
||||
amounts[i] = new Scalar(BigInteger.valueOf(amount));
|
||||
masks[i] = randomScalar();
|
||||
}
|
||||
|
||||
// Run and return the proof
|
||||
// Have to pass in lg(M) because Java is stupid about logarithms
|
||||
System.out.println("Generating proof with " + M + " outputs...");
|
||||
return PROVE(amounts,masks,mExp);
|
||||
}
|
||||
|
||||
public static void main(String[] args)
|
||||
{
|
||||
// Test parameters: currently only works when batching proofs of the same aggregation size
|
||||
NEXP = 6; // N = 2^NEXP
|
||||
N = (int) Math.pow(2,NEXP); // number of bits in amount range (so amounts are 0..2^(N-1))
|
||||
int MAXEXP = 4; // the maximum number of outputs used is 2^MAXEXP
|
||||
int PROOFS = 5; // number of proofs in batch
|
||||
|
||||
// Set the curve base points
|
||||
G = Curve25519Point.G;
|
||||
H = Curve25519Point.hashToPoint(G);
|
||||
int MAXM = (int) Math.pow(2,MAXEXP);
|
||||
Gi = new Curve25519Point[MAXM*N];
|
||||
Hi = new Curve25519Point[MAXM*N];
|
||||
for (int i = 0; i < MAXM*N; i++)
|
||||
{
|
||||
Gi[i] = getHpnGLookup(2*i);
|
||||
Hi[i] = getHpnGLookup(2*i+1);
|
||||
}
|
||||
|
||||
// Set up all the proofs
|
||||
ProofTuple[] proofs = new ProofTuple[PROOFS];
|
||||
Random rando = new Random();
|
||||
for (int i = 0; i < PROOFS; i++)
|
||||
{
|
||||
// Pick a random proof length: 2^0,...,2^MAXEXP
|
||||
proofs[i] = randomProof(rando.nextInt(MAXEXP+1));
|
||||
}
|
||||
|
||||
// Verify the batch
|
||||
System.out.println("Verifying proof batch...");
|
||||
if (VERIFY(proofs))
|
||||
System.out.println("Success!");
|
||||
else
|
||||
System.out.println("ERROR: failed verification");
|
||||
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue