mirror of
https://github.com/monero-project/research-lab.git
synced 2025-01-10 12:54:42 +00:00
709 lines
25 KiB
Python
709 lines
25 KiB
Python
|
########################################################################
|
||
|
# MiniNero.py
|
||
|
#A miniature, commented
|
||
|
#port of CryptoNote and
|
||
|
#Monero:
|
||
|
# crypto.cpp / crypto-ops.cpp
|
||
|
#
|
||
|
#Using Bernstein's ed25519.py for the curve stuff.
|
||
|
#The main point is to have a model what's happening in CryptoNote
|
||
|
# -Shen.Noether
|
||
|
#
|
||
|
#Note: The ring image function seems
|
||
|
# to take a lot of memory to run
|
||
|
# it will throw strange errors if
|
||
|
# your computer doesn't have
|
||
|
# enough
|
||
|
#Note2:
|
||
|
# As of yet, slightly incompatible, although mathematically equivalent.
|
||
|
# The discrepancies are some differences in packing and hashing.
|
||
|
#
|
||
|
# To the extent possible under law, the implementer has waived all copyright
|
||
|
# and related or neighboring rights to the source code in this file.
|
||
|
# http://creativecommons.org/publicdomain/zero/1.0/
|
||
|
#
|
||
|
#The parts of code from Bernstein(?)'s library possibly has it's own license
|
||
|
# which you can dig up from http://cr.yp.to/djb.html
|
||
|
########################################################################
|
||
|
|
||
|
|
||
|
|
||
|
import hashlib
|
||
|
import struct
|
||
|
import base64
|
||
|
import binascii
|
||
|
import sys
|
||
|
from Crypto.Util import number
|
||
|
import Crypto.Random.random as rand
|
||
|
import Keccak
|
||
|
from collections import namedtuple
|
||
|
import copy
|
||
|
|
||
|
KEK=Keccak.Keccak(1600)
|
||
|
CURVE_P = (2**255 - 19)
|
||
|
b = 256
|
||
|
q = 2**255 - 19
|
||
|
l = 2**252 + 27742317777372353535851937790883648493
|
||
|
BASEPOINT = "0900000000000000000000000000000000000000000000000000000000000000"
|
||
|
|
||
|
#####################################
|
||
|
#Bernstein(?) Eddie Library in python
|
||
|
#####################################
|
||
|
|
||
|
def H(m):
|
||
|
return hashlib.sha512(m).digest()
|
||
|
|
||
|
def expmod(b,e,m):
|
||
|
if e == 0: return 1
|
||
|
t = expmod(b,e/2,m)**2 % m
|
||
|
if e & 1: t = (t*b) % m
|
||
|
return t
|
||
|
|
||
|
def inv(x):
|
||
|
return expmod(x,q-2,q)
|
||
|
|
||
|
d = -121665 * inv(121666)
|
||
|
I = expmod(2,(q-1)/4,q)
|
||
|
|
||
|
def xrecover(y):
|
||
|
xx = (y*y-1) * inv(d*y*y+1)
|
||
|
x = expmod(xx,(q+3)/8,q)
|
||
|
if (x*x - xx) % q != 0: x = (x*I) % q
|
||
|
if x % 2 != 0: x = q-x
|
||
|
return x
|
||
|
|
||
|
By = 4 * inv(5)
|
||
|
Bx = xrecover(By)
|
||
|
B = [Bx % q,By % q]
|
||
|
|
||
|
def edwards(P,Q):
|
||
|
x1 = P[0]
|
||
|
y1 = P[1]
|
||
|
x2 = Q[0]
|
||
|
y2 = Q[1]
|
||
|
x3 = (x1*y2+x2*y1) * inv(1+d*x1*x2*y1*y2)
|
||
|
y3 = (y1*y2+x1*x2) * inv(1-d*x1*x2*y1*y2)
|
||
|
return [x3 % q,y3 % q]
|
||
|
|
||
|
def scalarmult(P, e):
|
||
|
if e == 0: return [0,1]
|
||
|
Q = scalarmult(P,e/2)
|
||
|
Q = edwards(Q,Q)
|
||
|
if e & 1: Q = edwards(Q,P)
|
||
|
return Q
|
||
|
|
||
|
def encodeint(y):
|
||
|
bits = [(y >> i) & 1 for i in range(b)]
|
||
|
return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b/8)])
|
||
|
|
||
|
def encodepoint(P):
|
||
|
x = P[0]
|
||
|
y = P[1]
|
||
|
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
|
||
|
return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b/8)])
|
||
|
|
||
|
def bit(h,i):
|
||
|
return (ord(h[i/8]) >> (i%8)) & 1
|
||
|
|
||
|
def public_key(sk):
|
||
|
A = scalarmult(B,sk)
|
||
|
return encodepoint(A)
|
||
|
|
||
|
|
||
|
def Hint(m):
|
||
|
h = H(m)
|
||
|
return sum(2**i * bit(h,i) for i in range(2*b))
|
||
|
|
||
|
def signature(m,sk,pk):
|
||
|
h = H(sk)
|
||
|
a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
|
||
|
r = Hint(''.join([h[i] for i in range(b/8,b/4)]) + m)
|
||
|
R = scalarmult(B,r)
|
||
|
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
|
||
|
return encodepoint(R) + encodeint(S)
|
||
|
|
||
|
def isoncurve(P):
|
||
|
x = P[0]
|
||
|
y = P[1]
|
||
|
return (-x*x + y*y - 1 - d*x*x*y*y) % q == 0
|
||
|
|
||
|
def decodeint(s):
|
||
|
return sum(2**i * bit(s,i) for i in range(0,b))
|
||
|
|
||
|
def decodepoint(s):
|
||
|
y = sum(2**i * bit(s,i) for i in range(0,b-1))
|
||
|
x = xrecover(y)
|
||
|
if x & 1 != bit(s,b-1): x = q-x
|
||
|
P = [x,y]
|
||
|
if not isoncurve(P): raise Exception("decoding point that is not on curve")
|
||
|
return P
|
||
|
|
||
|
def checkvalid(s,m,pk):
|
||
|
if len(s) != b/4: raise Exception("signature length is wrong")
|
||
|
if len(pk) != b/8: raise Exception("public-key length is wrong")
|
||
|
R = decodepoint(s[0:b/8])
|
||
|
A = decodepoint(pk)
|
||
|
S = decodeint(s[b/8:b/4])
|
||
|
h = Hint(encodepoint(R) + pk + m)
|
||
|
if scalarmult(B,S) != edwards(R,scalarmult(A,h)):
|
||
|
raise Exception("signature does not pass verification")
|
||
|
|
||
|
#################################
|
||
|
#curve stuff,
|
||
|
#mostly from https://github.com/monero-project/bitmonero/blob/1b8a68f6c1abcf481652c2cfd87300a128e3eb32/src/crypto/crypto-ops.c
|
||
|
#partial reference for fe things https://godoc.org/github.com/agl/ed25519/edwards25519
|
||
|
#note ge is the edwards version of the curve
|
||
|
#fe is the monty version of the curve
|
||
|
#################################
|
||
|
|
||
|
|
||
|
#NOT USED IN MININERO - Use ge_scalarmult_base
|
||
|
def ge_fromfe_frombytesvartime(s):
|
||
|
#inputs something s (I assume in bytes)
|
||
|
#inputs into montgomery form (fe)
|
||
|
#then, turns it into edwards form (ge)
|
||
|
#then r is the edwards curve point r->
|
||
|
#reference 1: http://crypto.stackexchange.com/questions/9536/converting-ed25519-public-key-to-a-curve25519-public-key?rq=1
|
||
|
#reference 2: https://github.com/orlp/ed25519/blob/master/src/key_exchange.c
|
||
|
#best reference https://www.imperialviolet.org/2013/12/25/elligator.html
|
||
|
|
||
|
#the point of this function is to return a ge_p2 from an int s
|
||
|
#whereas, the similar function ge_frombytes_vartime returns a gep3
|
||
|
return
|
||
|
|
||
|
def ge_double_scalarmult_base_vartime(aa, AA, bb):
|
||
|
#a very nice comment in the CN code for this one!
|
||
|
#r = a * A + b * B
|
||
|
#where a = a[0]+256*a[1]+...+256^31 a[31].
|
||
|
#and b = b[0]+256*b[1]+...+256^31 b[31].
|
||
|
#B is the Ed25519 base point (x,4/5) with x positive.
|
||
|
#cf also https://godoc.org/github.com/agl/ed25519/edwards25519
|
||
|
tmpa = ge_scalarmult(aa, AA)
|
||
|
tmpb = ge_scalarmult(bb, BASEPOINT)
|
||
|
return toHex(edwards(toPoint(tmpa), toPoint(tmpb)))
|
||
|
|
||
|
def ge_double_scalarmult_vartime(aa, AA, bb, BB):
|
||
|
#a very nice comment in the CN code for this one!
|
||
|
#r = a * A + b * B
|
||
|
#where a = a[0]+256*a[1]+...+256^31 a[31].
|
||
|
#and b = b[0]+256*b[1]+...+256^31 b[31].
|
||
|
#B is the Ed25519 base point (x,4/5) with x positive.
|
||
|
#cf also https://godoc.org/github.com/agl/ed25519/edwards25519
|
||
|
tmpa = ge_scalarmult(aa, AA)
|
||
|
tmpb = ge_scalarmult(bb, BB)
|
||
|
return toHex(edwards(toPoint(tmpa), toPoint(tmpb)))
|
||
|
|
||
|
|
||
|
def toPoint(pubkey):
|
||
|
#turns hex key into x, y field coords
|
||
|
return decodepoint(pubkey.decode("hex"))
|
||
|
|
||
|
def toHex(point):
|
||
|
#turns point into pubkey (reverse of toPoint)
|
||
|
return encodepoint(point).encode("hex")
|
||
|
|
||
|
def ge_scalarmult(a, A):
|
||
|
#so I guess given any point A, and an integer a, this computes aA
|
||
|
#so the seecond arguement is definitely an EC point
|
||
|
# from http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
|
||
|
# "Alice's secret key a is a uniform random 32-byte string then
|
||
|
#clampC(a) is a uniform random Curve25519 secret key
|
||
|
#i.e. n, where n/8 is a uniform random integer between
|
||
|
#2^251 and 2^252-1
|
||
|
#Alice's public key is n/Q compressed to the x-coordinate
|
||
|
#so that means, ge_scalarmult is not actually doing scalar mult
|
||
|
#clamping makes the secret be between 2^251 and 2^252
|
||
|
#and should really be done
|
||
|
#print(toPoint(A))
|
||
|
return encodepoint(scalarmult(toPoint(A), a)).encode("hex") # now using the eddie function
|
||
|
|
||
|
def ge_scalarmult_base(a):
|
||
|
#in this function in the original code, they've assumed it's already clamped ...
|
||
|
#c.f. also https://godoc.org/github.com/agl/ed25519/edwards25519
|
||
|
#it will return h = a*B, where B is ed25519 bp (x,4/5)
|
||
|
#and a = a[0] + 256a[1] + ... + 256^31 a[31]
|
||
|
#it assumes that a[31 <= 127 already
|
||
|
return ge_scalarmult(8*a, BASEPOINT)
|
||
|
|
||
|
#NOT USED IN MININERO - use ge_scalarmult_base
|
||
|
def ge_frombytes_vartime(key):
|
||
|
#https://www.imperialviolet.org/2013/12/25/elligator.html
|
||
|
#basically it takes some bytes of data
|
||
|
#converts to a point on the edwards curve
|
||
|
#if the bytes aren't on the curve
|
||
|
#also does some checking on the numbers
|
||
|
#ex. your secret key has to be at least >=4294967277
|
||
|
#also it rejects certain curve points, i.e. "if x = 0, sign must be positive
|
||
|
return 0
|
||
|
|
||
|
#NOT USED IN MININERO - unecessary as all operations are from hex
|
||
|
def ge_p1p1_to_p2(p):
|
||
|
#there are two ways of representing the points
|
||
|
##http://code.metager.de/source/xref/lib/nacl/20110221/crypto_sign/edwards25519sha512batch/ref/ge25519.c
|
||
|
#http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
||
|
return
|
||
|
|
||
|
#NOT USED IN MININERO -unnecessary as operations are from hex
|
||
|
def ge_p2_dbl():
|
||
|
#basically it doubles a point and doubles it
|
||
|
#c.f. Explicit Formulas for Doubling (towards bottom)
|
||
|
#Explicit formulas for doubling
|
||
|
#http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
||
|
return
|
||
|
|
||
|
#NOT USED IN MININERO - unnecessary as operations are from hex
|
||
|
def ge_p3_to_p2():
|
||
|
#basically, it copies a point in 3 coordinates to another point
|
||
|
#c.f. Explicit Formulas for Doubling (towards bottom)
|
||
|
#Explicit formulas for doubling
|
||
|
#http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
||
|
return
|
||
|
|
||
|
def ge_mul8(P):
|
||
|
#ok, the point of this is to double three times
|
||
|
#and the point is that the ge_p2_dbl returns a point in the p1p1 form
|
||
|
#so that's why have to convert it first and then double
|
||
|
return ge_scalarmult(8, P)
|
||
|
|
||
|
def sc_reduce(s):
|
||
|
#inputs a 64 byte int and outputs the lowest 32 bytes
|
||
|
#used by hash_to_scalar, which turns cn_fast_hash to number..
|
||
|
r = longToHex(s)
|
||
|
r = r[64::]
|
||
|
#print("before mod p", r)
|
||
|
return hexToLong(r) % CURVE_P
|
||
|
|
||
|
def sc_reduce32(data):
|
||
|
#ok, the code here is exactly the same as sc_reduce
|
||
|
#(which is default lib sodium)
|
||
|
#except it is assumed that your input
|
||
|
#s is alread in the form:
|
||
|
# s[0]+256*s[1]+...+256^31*s[31] = s
|
||
|
#and the rest is just reducing mod l
|
||
|
#so basically take a 32 byte input, and reduce modulo the prime
|
||
|
return data % CURVE_P
|
||
|
|
||
|
def sc_mulsub(a, b, c):
|
||
|
#takes in a, b, and c
|
||
|
#This is used by the regular sig
|
||
|
#i.e. in generate_signature
|
||
|
#returns c-ab mod l
|
||
|
a = number.bytes_to_long(a[::-1])
|
||
|
b = number.bytes_to_long(b[::-1])
|
||
|
c = number.bytes_to_long(c[::-1])
|
||
|
return (c - a * b) % CURVE_P
|
||
|
|
||
|
|
||
|
##########################################
|
||
|
#Hashing
|
||
|
#this is where keccak, H_p, and H_s come in..
|
||
|
######################################
|
||
|
|
||
|
def cn_fast_hash(key, size):
|
||
|
#see ReadMeKeccak.txt
|
||
|
return KEK.Keccak((size,key.encode("hex")),1088,512,256,False)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
#CryptoNote Things
|
||
|
#Mainly from https://github.com/monero-project/bitmonero/blob/1b8a68f6c1abcf481652c2cfd87300a128e3eb32/src/crypto/crypto.cpp
|
||
|
###################################################
|
||
|
|
||
|
def random_scalar():
|
||
|
tmp = rand.getrandbits(64 * 8) # 8 bits to a byte ...
|
||
|
tmp = sc_reduce(tmp) #-> turns 64 to 32 (note sure why don't just gt 32 in first place ... )
|
||
|
return tmp
|
||
|
|
||
|
def hash_to_scalar(data, length):
|
||
|
#this one is H_s(P)
|
||
|
#relies on cn_fast_hash and sc_reduce32 (which makes an int smaller)
|
||
|
#the input here is not necessarily a 64 byte thing, and that's why sc_reduce32
|
||
|
res = hexToLong(cn_fast_hash(data, length))
|
||
|
return sc_reduce32(res)
|
||
|
|
||
|
|
||
|
def generate_keys():
|
||
|
#should return a secret key and public key pair
|
||
|
#once you have the secret key,
|
||
|
#then the public key be gotten from 25519 function
|
||
|
#so just need to generate random
|
||
|
#first generate random 32-byte(256 bit) integer, copy to result
|
||
|
#ok, just sc_reduce, what that does is takes 64 byte int, turns into 32 byte int...
|
||
|
#so sc_reduce is legit and comes from another library http://hackage.haskell.org/package/ed25519-0.0.2.0/src/src/cbits/sc_reduce.c
|
||
|
#as far as I can tell, sc
|
||
|
#basically this gets you an int which is sufficiently large
|
||
|
#import Crypto.Random.random as rand
|
||
|
rng = random_scalar()
|
||
|
#sec = hex(rng).rstrip("L").lstrip("0x") or "0"
|
||
|
sec = sc_reduce32(rng)
|
||
|
pub = public_key(sec).encode("hex")
|
||
|
#pub = ge_scalarmult_base(sec)
|
||
|
#print(rng.decode("hex"))
|
||
|
#sec = curve25519_mult(rng, basepoint)
|
||
|
|
||
|
#the point of ge_p3_tobytes here is just store as bytes...
|
||
|
#and p3 is a way to store points on the ge curve
|
||
|
return sec, pub
|
||
|
|
||
|
def check_key(key):
|
||
|
#inputs a public key, and outputs if point is on the curve
|
||
|
return isoncurve(toPoint(key))
|
||
|
|
||
|
def secret_key_to_public_key(secret_key):
|
||
|
#the actual function returns as bytes since they mult the fast way.
|
||
|
if sc_check(secret_key) != 0:
|
||
|
print "error in sc_check"
|
||
|
quit()
|
||
|
return public_key(secret_key)
|
||
|
|
||
|
def hash_to_ec(key):
|
||
|
#takes a hash and turns into a point on the curve
|
||
|
#In MININERO, I'm not using the byte representation
|
||
|
#So this function is superfluous
|
||
|
h = hash_to_scalar(key, len(key))
|
||
|
point = ge_scalarmult_base(h)
|
||
|
return ge_mul8(point)
|
||
|
|
||
|
|
||
|
def generate_key_image(public_key, secret_key):
|
||
|
#should return a key image as defined in whitepaper
|
||
|
if sc_check(secret_key) != 0:
|
||
|
print"sc check error in key image"
|
||
|
point = hash_to_ec(public_key)
|
||
|
point2 = ge_scalarmult(secret_key, point)
|
||
|
return point2
|
||
|
|
||
|
def generate_ring_signature(prefix, image, pubs, pubs_count, sec, sec_index):
|
||
|
#returns a ring signature
|
||
|
if sec_index >= pubs_count:
|
||
|
print "bad index of secret key!"
|
||
|
quit()
|
||
|
if ge_frombytes_vartime(image) != 0:
|
||
|
print"bad image!"
|
||
|
quit()
|
||
|
summ = 0
|
||
|
aba = [0 for xx in range(pubs_count)]
|
||
|
abb = [0 for xx in range(pubs_count)]
|
||
|
sigc = [0 for xx in range(pubs_count)] #these are the c[i]'s from the whitepaper
|
||
|
sigr =[0 for xx in range(pubs_count)] #these are the r[i]'s from the whitepaper
|
||
|
for ii in range(0, pubs_count):
|
||
|
if (ii == sec_index):
|
||
|
kk = random_scalar()
|
||
|
tmp3 = ge_scalarmult_base(kk) #L[i] for i = s
|
||
|
aba[ii] = tmp3
|
||
|
tmp3 = hash_to_ec(pubs[ii]) #R[i] for i = s
|
||
|
abb[ii] = ge_scalarmult(kk, tmp3)
|
||
|
else:
|
||
|
k1 = random_scalar() #note this generates a random scalar in the correct range...
|
||
|
k2 = random_scalar()
|
||
|
if ge_frombytes_vartime(pubs[ii]) != 0:
|
||
|
print "error in ring sig!!!"
|
||
|
quit()
|
||
|
tmp2 = ge_double_scalarmult_base_vartime(k1, pubs[ii], k2) #this is L[i] for i != s
|
||
|
aba[ii] = tmp2
|
||
|
tmp3 = hash_to_ec(pubs[ii])
|
||
|
abb[ii] = ge_double_scalarmult_vartime(k2, tmp3, k1, image) #R[i] for i != s
|
||
|
sigc[ii] = k1 #the random c[i] for i != s
|
||
|
sigr[ii] = k2 #the random r[i] for i != s
|
||
|
summ = sc_add(summ, sigc[ii]) #summing the c[i] to get the c[s] via page 9 whitepaper
|
||
|
|
||
|
buf = struct.pack('64s', prefix)
|
||
|
for ii in range(0, pubs_count):
|
||
|
buf += struct.pack('64s', aba[ii])
|
||
|
buf += struct.pack('64s', abb[ii])
|
||
|
hh = hash_to_scalar(buf,len(buf))
|
||
|
sigc[sec_index] = sc_sub(hh, summ) # c[s] = hash - sum c[i] mod l
|
||
|
sigr[sec_index] = sc_mulsub(sigc[sec_index], sec, kk) # r[s] = q[s] - sec * c[index]
|
||
|
return image, sigc, sigr
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def check_ring_signature(prefix, key_image, pubs, pubs_count, sigr, sigc):
|
||
|
#from https://github.com/monero-project/bitmonero/blob/6a70de32bf872d97f9eebc7564f1ee41ff149c36/src/crypto/crypto.cpp
|
||
|
#this is the "ver" algorithm
|
||
|
aba = [0 for xx in range(pubs_count)]
|
||
|
abb = [0 for xx in range(pubs_count)]
|
||
|
|
||
|
if ge_frombytes_vartime(key_image) != 0:
|
||
|
print "ring image error in checking sigs"
|
||
|
quit()
|
||
|
summ = 0
|
||
|
buf = struct.pack('64s', prefix)
|
||
|
for ii in range(0, pubs_count):
|
||
|
if ((sc_check(sigc[ii]) != 0) or (sc_check(sigr[ii]) != 0)):
|
||
|
print "failed sc_check in check ring sigs"
|
||
|
quit()
|
||
|
if ge_frombytes_vartime(pubs[ii]) != 0:
|
||
|
print "public key is a bad point in ring sigs"
|
||
|
quit()
|
||
|
|
||
|
tmp2 = ge_double_scalarmult_base_vartime(sigc[ii], pubs[ii], sigr[ii])
|
||
|
aba[ii] = tmp2
|
||
|
tmp3 = hash_to_ec(pubs[ii])
|
||
|
tmp2 = ge_double_scalarmult_vartime(sigr[ii], tmp3, sigc[ii], key_image)
|
||
|
abb[ii] = tmp2
|
||
|
summ = sc_add(summ, sigc[ii])
|
||
|
for ii in range(0, pubs_count):
|
||
|
buf += struct.pack('64s', aba[ii])
|
||
|
buf += struct.pack('64s', abb[ii])
|
||
|
|
||
|
hh = hash_to_scalar(buf,len(buf))
|
||
|
hh = sc_sub(hh, summ)
|
||
|
return sc_isnonzero(hh) == 0
|
||
|
|
||
|
def generate_key_derivation(key1, key2):
|
||
|
#key1 is public key of receiver Bob (see page 7)
|
||
|
#key2 is Alice's private
|
||
|
#this is a helper function for the key-derivation
|
||
|
#which is the generating one-time key's thingy
|
||
|
if sc_check(key2) != 0:
|
||
|
#checks that the secret key is uniform enough...
|
||
|
print"error in sc_check in keyder"
|
||
|
quit()
|
||
|
if ge_frombytes_vartime(key1) != 0:
|
||
|
print "didn't pass curve checks in keyder"
|
||
|
quit()
|
||
|
|
||
|
point = key1 ## this ones the public
|
||
|
point2 = ge_scalarmult( key2, point)
|
||
|
#print("p2", encodepoint(point2).encode("hex"))
|
||
|
point3 = ge_mul8(point2) #This has to do with n==0 mod 8 by dedfinition, c.f. the top paragraph of page 5 of http://cr.yp.to/ecdh/curve25519-20060209.pdf
|
||
|
#and also c.f. middle of page 8 in same document (Bernstein)
|
||
|
return point3
|
||
|
|
||
|
def derivation_to_scalar(derivation, output_index):
|
||
|
#this function specifically hashes your
|
||
|
#output index (for the one time keys )
|
||
|
#in order to get an int, so we can do ge_mult_scalar
|
||
|
#buf = s_comm(d = derivation, o = output_index)
|
||
|
buf2 = struct.pack('64sl', derivation, output_index)
|
||
|
#print(buf2)
|
||
|
return hash_to_scalar(buf2, len(buf2))
|
||
|
|
||
|
def derive_public_key(derivation, output_index, base ):
|
||
|
if ge_frombytes_vartime(base) != 0: #check some conditions on the point
|
||
|
print"derive pub key bad point"
|
||
|
quit()
|
||
|
point1 = base
|
||
|
scalar = derivation_to_scalar(derivation, output_index)
|
||
|
point2 = ge_scalarmult_base(scalar)
|
||
|
point3 = point2 #I think the cached is just for the sake of adding
|
||
|
#because the CN code adds using the monty curve
|
||
|
point4 = edwards(toPoint(point1), toPoint(point3))
|
||
|
return point4
|
||
|
|
||
|
def sc_add(aa, bb):
|
||
|
return (aa + bb ) %CURVE_P
|
||
|
def sc_sub(aa, bb):
|
||
|
return (aa - bb ) %CURVE_P
|
||
|
|
||
|
def sc_isnonzero(c):
|
||
|
return (c %CURVE_P != 0 )
|
||
|
|
||
|
def sc_mulsub(aa, bb, cc):
|
||
|
return (cc - aa * bb ) %CURVE_P
|
||
|
|
||
|
def derive_secret_key(derivation, output_index, base):
|
||
|
#outputs a derived key...
|
||
|
if sc_check(base) !=0:
|
||
|
print"cs_check in derive_secret_key"
|
||
|
scalar = derivation_to_scalar(derivation, output_index)
|
||
|
return base + scalar
|
||
|
|
||
|
class s_comm:
|
||
|
def __init__(self, **kwds):
|
||
|
self.__dict__.update(kwds)
|
||
|
|
||
|
def generate_signature(prefix_hash, pub, sec):
|
||
|
#gets the "usual" signature (not ring sig)
|
||
|
#buf = s_comm(h=prefix_hash, key=pub, comm=0) #see the pack below
|
||
|
k = random_scalar()
|
||
|
tmp3 = ge_scalarmult_base(k)
|
||
|
buf2 = struct.pack('64s64s64s', prefix_hash, pub, tmp3)
|
||
|
sigc = hash_to_scalar(buf2, len(buf2))
|
||
|
return sc_mulsub(sigc, sec, k), sigc
|
||
|
|
||
|
def check_signature(prefix_hash, pub, sigr, sigc):
|
||
|
#checking the normal sigs, not the ring sigs...
|
||
|
if ge_frombytes_vartime(pub) !=0:
|
||
|
print "bad point, check sig!"
|
||
|
quit()
|
||
|
if (sc_check(sigc) != 0) or (sc_check(sigr) != 0):
|
||
|
print"sc checksig error!"
|
||
|
quit()
|
||
|
tmp2 = ge_double_scalarmult_base_vartime(sigc, pub, sigr)
|
||
|
buf2 = struct.pack('64s64s64s', prefix_hash, pub, tmp2)
|
||
|
c = hash_to_scalar(buf2, len(buf2))
|
||
|
c = sc_sub(c, sigc)
|
||
|
return sc_isnonzero(c) == 0
|
||
|
|
||
|
def hexToLong(a):
|
||
|
return number.bytes_to_long(a.decode("hex"))
|
||
|
|
||
|
def longToHex(a):
|
||
|
return number.long_to_bytes(a).encode("hex")
|
||
|
|
||
|
def hexToBits(a):
|
||
|
return a.decode("hex")
|
||
|
|
||
|
def bitsToHex(a):
|
||
|
return a.encode("hex")
|
||
|
|
||
|
def sc_check(key):
|
||
|
#in other words, keys which are too small are rejected
|
||
|
return 0
|
||
|
#s0, s1, s2, s3, s4, s5, s6, s7 = load_4(longToHex(key))
|
||
|
#return (signum_(1559614444 - s0) + (signum_(1477600026 - s1) << 1) + (signum_(2734136534 - s2) << 2) + (signum_(350157278 - s3) << 3) + (signum_(-s4) << 4) + (signum_(-s5) << 5) + (signum_(-s6) << 6) + (signum_(268435456 - s7) << 7)) >> 8
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if sys.argv[1] == "rs":
|
||
|
#test random_scalar
|
||
|
print(longToHex(random_scalar()))
|
||
|
if sys.argv[1] == "keys":
|
||
|
#test generating keys
|
||
|
x,P = generate_keys()
|
||
|
print"generating keys:"
|
||
|
print("secret:")
|
||
|
print( x)
|
||
|
print("public:")
|
||
|
print( P)
|
||
|
print("the point P")
|
||
|
print(decodepoint(P.decode("hex")))
|
||
|
if sys.argv[1] == "fasthash":
|
||
|
mysecret = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
|
||
|
output_index = 2
|
||
|
buf2 = struct.pack('64sl', mysecret, output_index)
|
||
|
#buf2 = pickle(buf)
|
||
|
#print(buf2)
|
||
|
print(buf2)
|
||
|
print(cn_fast_hash(mysecret, len(mysecret)))
|
||
|
print(cn_fast_hash(buf2, len(buf2)))
|
||
|
|
||
|
if sys.argv[1] == "hashscalar":
|
||
|
data = "ILOVECATS"
|
||
|
print(cn_fast_hash(data, len(data)))
|
||
|
print(hash_to_scalar(data, len(data)))
|
||
|
if sys.argv[1] == "hashcurve":
|
||
|
data = "ILOVECATS"
|
||
|
print(cn_fast_hash(data, len(data)))
|
||
|
print(hash_to_ec(data))
|
||
|
|
||
|
if sys.argv[1] == "checkkey":
|
||
|
x, P = generate_keys()
|
||
|
print(check_key(P))
|
||
|
if sys.argv[1] == "secpub":
|
||
|
#testing for secret_key_to_public_key
|
||
|
#these test vecs were for the monty implementation
|
||
|
mysecret = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
|
||
|
mypublic = "b1c652786697a5feef36a56f36fde524a21193f4e563627977ab515f600fdb3a"
|
||
|
mysecret, P = generate_keys()
|
||
|
pub2 = secret_key_to_public_key(mysecret)
|
||
|
print(pub2.encode("hex"))
|
||
|
if sys.argv[1] == "keyder":
|
||
|
#testing for generate_key_derivation
|
||
|
x,P = generate_keys()
|
||
|
print(x, P)
|
||
|
print(generate_key_derivation(P, x))
|
||
|
|
||
|
if sys.argv[1] == "dersca":
|
||
|
#testing for derivation_to_scalar
|
||
|
#this is getting a scalar for one-time-keys rH_s(P)
|
||
|
aa, AA = generate_keys()
|
||
|
bb, BB = generate_keys()
|
||
|
for i in range(0,3):
|
||
|
rr, ZZ = generate_keys()
|
||
|
derivation = generate_key_derivation(BB, aa)
|
||
|
s = derivation_to_scalar(derivation, i)
|
||
|
print(s)
|
||
|
if sys.argv[1] == "derpub":
|
||
|
x, P = generate_keys()
|
||
|
output_index = 5
|
||
|
keyder = generate_key_derivation(P, x)
|
||
|
print("keyder", keyder)
|
||
|
print(derive_public_key(keyder, output_index, P))
|
||
|
if sys.argv[1] == "dersec":
|
||
|
x, P = generate_keys()
|
||
|
output_index = 5
|
||
|
keyder = generate_key_derivation(P, x)
|
||
|
print("keyder", keyder)
|
||
|
print(derive_secret_key(keyder, output_index, x))
|
||
|
if sys.argv[1] == "testcomm":
|
||
|
a = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
|
||
|
co2 = struct.pack('hhl', 1, 2, 3)
|
||
|
print(co2.encode("hex")) #sometimes doesn't print if your terminal doesn't have unicode
|
||
|
|
||
|
if sys.argv[1] == "gensig":
|
||
|
#testing generate_signature
|
||
|
print""
|
||
|
prefix = "destination"
|
||
|
sec, pub = generate_keys() # just to have some data to use ..
|
||
|
print(generate_signature(prefix, pub, sec))
|
||
|
if sys.argv[1] == "checksig":
|
||
|
prefix = "destination"
|
||
|
sec, pub = generate_keys() # just to have some data to use ..
|
||
|
sir, sic = generate_signature(prefix, pub, sec)
|
||
|
print(sir, sic)
|
||
|
print(check_signature(prefix, pub, sir, sic))
|
||
|
if sys.argv[1] == "keyimage":
|
||
|
x, P = generate_keys()
|
||
|
xb = 14662008266461539177776197088974240017016792645044069572180060425138978088469
|
||
|
Pb = "1d0ecd1758a685d88b39567f491bc93129f59c7dae7182bddc4e6f5ad38ba462"
|
||
|
|
||
|
I = generate_key_image(Pb, xb)
|
||
|
print(I)
|
||
|
if sys.argv[1] == "ringsig":
|
||
|
#these are fixed since my computer runs out of memory
|
||
|
xa = 54592381732429499113512315392038591381134951436395595620076310715410049314218
|
||
|
Pa = "3c853b5a82912313b179e40d655003c5e3112c041fcf755c3f09d2a8c64d9062"
|
||
|
xb = 14662008266461539177776197088974240017016792645044069572180060425138978088469
|
||
|
Pb = "1d0ecd1758a685d88b39567f491bc93129f59c7dae7182bddc4e6f5ad38ba462"
|
||
|
ima = "0620b888780351a3029dfbf1a5c45a89816f118aa63fa807d51b959cb3c5efc9"
|
||
|
ima, sic, sir = generate_ring_signature("dest", ima, [Pa, Pb],2, xb, 1)
|
||
|
|
||
|
print("ima",ima)
|
||
|
print("sic", sir)
|
||
|
print("sir", sic)
|
||
|
print(check_ring_signature("dest", ima, [Pa, Pb], 2, sir, sic))
|
||
|
|
||
|
if sys.argv[1] == "conv":
|
||
|
#testing reduction
|
||
|
a = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
|
||
|
print(a)
|
||
|
r = hexToLong(a)
|
||
|
print(r)
|
||
|
a = longToHex(r)
|
||
|
print(a)
|
||
|
if sys.argv[1] == "red":
|
||
|
a = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
|
||
|
tmp = rand.getrandbits(64 * 8)
|
||
|
tmp2 = longToHex(tmp)
|
||
|
print(tmp2)
|
||
|
tmp3 = longToHex(sc_reduce(tmp))
|
||
|
print(tmp3)
|
||
|
tmp4 = sc_reduce32(CURVE_P + 1)
|
||
|
print(tmp4)
|
||
|
tmp5 = sc_reduce(CURVE_P + 1)
|
||
|
print(tmp5)
|
||
|
if sys.argv[1] == "gedb":
|
||
|
x, P = generate_keys()
|
||
|
print(ge_double_scalarmult_base_vartime(x, P, x))
|
||
|
if sys.argv[1] == "sck":
|
||
|
#testing sc_check
|
||
|
x, P = generate_keys()
|
||
|
print(sc_check(x))
|
||
|
print("nonreduced", longToHex(x))
|
||
|
print("reduced", sc_reduce32_2(x))
|
||
|
print("check reduced", sc_check(hexToLong(sc_reduce32_2(x))))
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|