mirror of
https://github.com/monero-project/monero.git
synced 2025-01-15 07:14:47 +00:00
317 lines
9.7 KiB
C++
317 lines
9.7 KiB
C++
// Copyright (c) 2018-2022, The Monero Project
|
|
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "crypto/crypto.h"
|
|
#include "ringct/rctOps.h"
|
|
#include "ringct/multiexp.h"
|
|
|
|
#define TESTSCALAR []{ static const rct::key TESTSCALAR = rct::skGen(); return TESTSCALAR; }()
|
|
#define TESTPOW2SCALAR []{ static const rct::key TESTPOW2SCALAR = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; return TESTPOW2SCALAR; }()
|
|
#define TESTSMALLSCALAR []{ static const rct::key TESTSMALLSCALAR = {{5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; return TESTSMALLSCALAR; }()
|
|
#define TESTPOINT []{ static const rct::key TESTPOINT = rct::scalarmultBase(rct::skGen()); return TESTPOINT; }()
|
|
|
|
static rct::key basic(const std::vector<rct::MultiexpData> &data)
|
|
{
|
|
ge_p3 res_p3 = ge_p3_identity;
|
|
for (const auto &d: data)
|
|
{
|
|
ge_cached cached;
|
|
ge_p3 p3;
|
|
ge_p1p1 p1;
|
|
ge_scalarmult_p3(&p3, d.scalar.bytes, &d.point);
|
|
ge_p3_to_cached(&cached, &p3);
|
|
ge_add(&p1, &res_p3, &cached);
|
|
ge_p1p1_to_p3(&res_p3, &p1);
|
|
}
|
|
rct::key res;
|
|
ge_p3_tobytes(res.bytes, &res_p3);
|
|
return res;
|
|
}
|
|
|
|
static ge_p3 get_p3(const rct::key &point)
|
|
{
|
|
ge_p3 p3;
|
|
EXPECT_TRUE(ge_frombytes_vartime(&p3, point.bytes) == 0);
|
|
return p3;
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_empty)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_empty)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_empty)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_zero_and_non_zero)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
data.push_back({TESTSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_zero_and_non_zero)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
data.push_back({TESTSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_zero_and_non_zero)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
data.push_back({TESTSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_pow2_scalar)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)});
|
|
data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_pow2_scalar)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)});
|
|
data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_pow2_scalar)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)});
|
|
data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_only_zeroes)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_only_zeroes)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_only_zeroes)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_only_identities)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({TESTSCALAR, get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_only_identities)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({TESTSCALAR, get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_only_identities)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({TESTSCALAR, get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_random)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 32; ++n)
|
|
{
|
|
data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, straus_random)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 32; ++n)
|
|
{
|
|
data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, pippenger_random)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 32; ++n)
|
|
{
|
|
data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, straus_cached)
|
|
{
|
|
static constexpr size_t N = 256;
|
|
std::vector<rct::MultiexpData> P(N);
|
|
for (size_t n = 0; n < N; ++n)
|
|
{
|
|
P[n].scalar = rct::zero();
|
|
ASSERT_TRUE(ge_frombytes_vartime(&P[n].point, rct::scalarmultBase(rct::skGen()).bytes) == 0);
|
|
}
|
|
std::shared_ptr<rct::straus_cached_data> cache = rct::straus_init_cache(P);
|
|
for (size_t n = 0; n < N/16; ++n)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
size_t sz = 1 + crypto::rand<size_t>() % (N-1);
|
|
for (size_t s = 0; s < sz; ++s)
|
|
{
|
|
data.push_back({rct::skGen(), P[s].point});
|
|
}
|
|
ASSERT_TRUE(basic(data) == straus(data, cache));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, pippenger_cached)
|
|
{
|
|
static constexpr size_t N = 256;
|
|
std::vector<rct::MultiexpData> P(N);
|
|
for (size_t n = 0; n < N; ++n)
|
|
{
|
|
P[n].scalar = rct::zero();
|
|
ASSERT_TRUE(ge_frombytes_vartime(&P[n].point, rct::scalarmultBase(rct::skGen()).bytes) == 0);
|
|
}
|
|
std::shared_ptr<rct::pippenger_cached_data> cache = rct::pippenger_init_cache(P);
|
|
for (size_t n = 0; n < N/16; ++n)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
size_t sz = 1 + crypto::rand<size_t>() % (N-1);
|
|
for (size_t s = 0; s < sz; ++s)
|
|
{
|
|
data.push_back({rct::skGen(), P[s].point});
|
|
}
|
|
ASSERT_TRUE(basic(data) == pippenger(data, cache));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, scalarmult_triple)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
ge_p2 p2;
|
|
rct::key res;
|
|
ge_p3 Gp3;
|
|
|
|
ASSERT_EQ(ge_frombytes_vartime(&Gp3, rct::G.bytes), 0);
|
|
|
|
static const rct::key scalars[] = {
|
|
rct::Z,
|
|
rct::I,
|
|
rct::L,
|
|
rct::EIGHT,
|
|
rct::INV_EIGHT,
|
|
};
|
|
static const ge_p3 points[] = {
|
|
ge_p3_identity,
|
|
ge_p3_H,
|
|
Gp3,
|
|
};
|
|
ge_dsmp ppre[sizeof(points) / sizeof(points[0])];
|
|
|
|
for (size_t i = 0; i < sizeof(points) / sizeof(points[0]); ++i)
|
|
ge_dsm_precomp(ppre[i], &points[i]);
|
|
|
|
data.resize(3);
|
|
for (const rct::key &x: scalars)
|
|
{
|
|
data[0].scalar = x;
|
|
for (const rct::key &y: scalars)
|
|
{
|
|
data[1].scalar = y;
|
|
for (const rct::key &z: scalars)
|
|
{
|
|
data[2].scalar = z;
|
|
for (size_t i = 0; i < sizeof(points) / sizeof(points[0]); ++i)
|
|
{
|
|
data[1].point = points[i];
|
|
for (size_t j = 0; j < sizeof(points) / sizeof(points[0]); ++j)
|
|
{
|
|
data[0].point = Gp3;
|
|
data[2].point = points[j];
|
|
|
|
ge_triple_scalarmult_base_vartime(&p2, data[0].scalar.bytes, data[1].scalar.bytes, ppre[i], data[2].scalar.bytes, ppre[j]);
|
|
ge_tobytes(res.bytes, &p2);
|
|
ASSERT_TRUE(basic(data) == res);
|
|
|
|
for (size_t k = 0; k < sizeof(points) / sizeof(points[0]); ++k)
|
|
{
|
|
data[0].point = points[k];
|
|
ge_triple_scalarmult_precomp_vartime(&p2, data[0].scalar.bytes, ppre[k], data[1].scalar.bytes, ppre[i], data[2].scalar.bytes, ppre[j]);
|
|
ge_tobytes(res.bytes, &p2);
|
|
ASSERT_TRUE(basic(data) == res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|