mirror of
https://github.com/monero-project/monero.git
synced 2025-01-18 16:54:42 +00:00
620 lines
16 KiB
C
620 lines
16 KiB
C
/*
|
|
* rbtree.c -- generic red black tree
|
|
*
|
|
* Copyright (c) 2001-2007, NLnet Labs. All rights reserved.
|
|
*
|
|
* This software is open source.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
* Implementation of a redblack tree.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "log.h"
|
|
#include "fptr_wlist.h"
|
|
#include "util/rbtree.h"
|
|
|
|
/** Node colour black */
|
|
#define BLACK 0
|
|
/** Node colour red */
|
|
#define RED 1
|
|
|
|
/** the NULL node, global alloc */
|
|
rbnode_t rbtree_null_node = {
|
|
RBTREE_NULL, /* Parent. */
|
|
RBTREE_NULL, /* Left. */
|
|
RBTREE_NULL, /* Right. */
|
|
NULL, /* Key. */
|
|
BLACK /* Color. */
|
|
};
|
|
|
|
/** rotate subtree left (to preserve redblack property) */
|
|
static void rbtree_rotate_left(rbtree_t *rbtree, rbnode_t *node);
|
|
/** rotate subtree right (to preserve redblack property) */
|
|
static void rbtree_rotate_right(rbtree_t *rbtree, rbnode_t *node);
|
|
/** Fixup node colours when insert happened */
|
|
static void rbtree_insert_fixup(rbtree_t *rbtree, rbnode_t *node);
|
|
/** Fixup node colours when delete happened */
|
|
static void rbtree_delete_fixup(rbtree_t* rbtree, rbnode_t* child, rbnode_t* child_parent);
|
|
|
|
/*
|
|
* Creates a new red black tree, intializes and returns a pointer to it.
|
|
*
|
|
* Return NULL on failure.
|
|
*
|
|
*/
|
|
rbtree_t *
|
|
rbtree_create (int (*cmpf)(const void *, const void *))
|
|
{
|
|
rbtree_t *rbtree;
|
|
|
|
/* Allocate memory for it */
|
|
rbtree = (rbtree_t *) malloc(sizeof(rbtree_t));
|
|
if (!rbtree) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize it */
|
|
rbtree_init(rbtree, cmpf);
|
|
|
|
return rbtree;
|
|
}
|
|
|
|
void
|
|
rbtree_init(rbtree_t *rbtree, int (*cmpf)(const void *, const void *))
|
|
{
|
|
/* Initialize it */
|
|
rbtree->root = RBTREE_NULL;
|
|
rbtree->count = 0;
|
|
rbtree->cmp = cmpf;
|
|
}
|
|
|
|
/*
|
|
* Rotates the node to the left.
|
|
*
|
|
*/
|
|
static void
|
|
rbtree_rotate_left(rbtree_t *rbtree, rbnode_t *node)
|
|
{
|
|
rbnode_t *right = node->right;
|
|
node->right = right->left;
|
|
if (right->left != RBTREE_NULL)
|
|
right->left->parent = node;
|
|
|
|
right->parent = node->parent;
|
|
|
|
if (node->parent != RBTREE_NULL) {
|
|
if (node == node->parent->left) {
|
|
node->parent->left = right;
|
|
} else {
|
|
node->parent->right = right;
|
|
}
|
|
} else {
|
|
rbtree->root = right;
|
|
}
|
|
right->left = node;
|
|
node->parent = right;
|
|
}
|
|
|
|
/*
|
|
* Rotates the node to the right.
|
|
*
|
|
*/
|
|
static void
|
|
rbtree_rotate_right(rbtree_t *rbtree, rbnode_t *node)
|
|
{
|
|
rbnode_t *left = node->left;
|
|
node->left = left->right;
|
|
if (left->right != RBTREE_NULL)
|
|
left->right->parent = node;
|
|
|
|
left->parent = node->parent;
|
|
|
|
if (node->parent != RBTREE_NULL) {
|
|
if (node == node->parent->right) {
|
|
node->parent->right = left;
|
|
} else {
|
|
node->parent->left = left;
|
|
}
|
|
} else {
|
|
rbtree->root = left;
|
|
}
|
|
left->right = node;
|
|
node->parent = left;
|
|
}
|
|
|
|
static void
|
|
rbtree_insert_fixup(rbtree_t *rbtree, rbnode_t *node)
|
|
{
|
|
rbnode_t *uncle;
|
|
|
|
/* While not at the root and need fixing... */
|
|
while (node != rbtree->root && node->parent->color == RED) {
|
|
/* If our parent is left child of our grandparent... */
|
|
if (node->parent == node->parent->parent->left) {
|
|
uncle = node->parent->parent->right;
|
|
|
|
/* If our uncle is red... */
|
|
if (uncle->color == RED) {
|
|
/* Paint the parent and the uncle black... */
|
|
node->parent->color = BLACK;
|
|
uncle->color = BLACK;
|
|
|
|
/* And the grandparent red... */
|
|
node->parent->parent->color = RED;
|
|
|
|
/* And continue fixing the grandparent */
|
|
node = node->parent->parent;
|
|
} else { /* Our uncle is black... */
|
|
/* Are we the right child? */
|
|
if (node == node->parent->right) {
|
|
node = node->parent;
|
|
rbtree_rotate_left(rbtree, node);
|
|
}
|
|
/* Now we're the left child, repaint and rotate... */
|
|
node->parent->color = BLACK;
|
|
node->parent->parent->color = RED;
|
|
rbtree_rotate_right(rbtree, node->parent->parent);
|
|
}
|
|
} else {
|
|
uncle = node->parent->parent->left;
|
|
|
|
/* If our uncle is red... */
|
|
if (uncle->color == RED) {
|
|
/* Paint the parent and the uncle black... */
|
|
node->parent->color = BLACK;
|
|
uncle->color = BLACK;
|
|
|
|
/* And the grandparent red... */
|
|
node->parent->parent->color = RED;
|
|
|
|
/* And continue fixing the grandparent */
|
|
node = node->parent->parent;
|
|
} else { /* Our uncle is black... */
|
|
/* Are we the right child? */
|
|
if (node == node->parent->left) {
|
|
node = node->parent;
|
|
rbtree_rotate_right(rbtree, node);
|
|
}
|
|
/* Now we're the right child, repaint and rotate... */
|
|
node->parent->color = BLACK;
|
|
node->parent->parent->color = RED;
|
|
rbtree_rotate_left(rbtree, node->parent->parent);
|
|
}
|
|
}
|
|
}
|
|
rbtree->root->color = BLACK;
|
|
}
|
|
|
|
|
|
/*
|
|
* Inserts a node into a red black tree.
|
|
*
|
|
* Returns NULL on failure or the pointer to the newly added node
|
|
* otherwise.
|
|
*/
|
|
rbnode_t *
|
|
rbtree_insert (rbtree_t *rbtree, rbnode_t *data)
|
|
{
|
|
/* XXX Not necessary, but keeps compiler quiet... */
|
|
int r = 0;
|
|
|
|
/* We start at the root of the tree */
|
|
rbnode_t *node = rbtree->root;
|
|
rbnode_t *parent = RBTREE_NULL;
|
|
|
|
fptr_ok(fptr_whitelist_rbtree_cmp(rbtree->cmp));
|
|
/* Lets find the new parent... */
|
|
while (node != RBTREE_NULL) {
|
|
/* Compare two keys, do we have a duplicate? */
|
|
if ((r = rbtree->cmp(data->key, node->key)) == 0) {
|
|
return NULL;
|
|
}
|
|
parent = node;
|
|
|
|
if (r < 0) {
|
|
node = node->left;
|
|
} else {
|
|
node = node->right;
|
|
}
|
|
}
|
|
|
|
/* Initialize the new node */
|
|
data->parent = parent;
|
|
data->left = data->right = RBTREE_NULL;
|
|
data->color = RED;
|
|
rbtree->count++;
|
|
|
|
/* Insert it into the tree... */
|
|
if (parent != RBTREE_NULL) {
|
|
if (r < 0) {
|
|
parent->left = data;
|
|
} else {
|
|
parent->right = data;
|
|
}
|
|
} else {
|
|
rbtree->root = data;
|
|
}
|
|
|
|
/* Fix up the red-black properties... */
|
|
rbtree_insert_fixup(rbtree, data);
|
|
|
|
return data;
|
|
}
|
|
|
|
/*
|
|
* Searches the red black tree, returns the data if key is found or NULL otherwise.
|
|
*
|
|
*/
|
|
rbnode_t *
|
|
rbtree_search (rbtree_t *rbtree, const void *key)
|
|
{
|
|
rbnode_t *node;
|
|
|
|
if (rbtree_find_less_equal(rbtree, key, &node)) {
|
|
return node;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/** helpers for delete: swap node colours */
|
|
static void swap_int8(uint8_t* x, uint8_t* y)
|
|
{
|
|
uint8_t t = *x; *x = *y; *y = t;
|
|
}
|
|
|
|
/** helpers for delete: swap node pointers */
|
|
static void swap_np(rbnode_t** x, rbnode_t** y)
|
|
{
|
|
rbnode_t* t = *x; *x = *y; *y = t;
|
|
}
|
|
|
|
/** Update parent pointers of child trees of 'parent' */
|
|
static void change_parent_ptr(rbtree_t* rbtree, rbnode_t* parent, rbnode_t* old, rbnode_t* new)
|
|
{
|
|
if(parent == RBTREE_NULL)
|
|
{
|
|
log_assert(rbtree->root == old);
|
|
if(rbtree->root == old) rbtree->root = new;
|
|
return;
|
|
}
|
|
log_assert(parent->left == old || parent->right == old
|
|
|| parent->left == new || parent->right == new);
|
|
if(parent->left == old) parent->left = new;
|
|
if(parent->right == old) parent->right = new;
|
|
}
|
|
/** Update parent pointer of a node 'child' */
|
|
static void change_child_ptr(rbnode_t* child, rbnode_t* old, rbnode_t* new)
|
|
{
|
|
if(child == RBTREE_NULL) return;
|
|
log_assert(child->parent == old || child->parent == new);
|
|
if(child->parent == old) child->parent = new;
|
|
}
|
|
|
|
rbnode_t*
|
|
rbtree_delete(rbtree_t *rbtree, const void *key)
|
|
{
|
|
rbnode_t *to_delete;
|
|
rbnode_t *child;
|
|
if((to_delete = rbtree_search(rbtree, key)) == 0) return 0;
|
|
rbtree->count--;
|
|
|
|
/* make sure we have at most one non-leaf child */
|
|
if(to_delete->left != RBTREE_NULL && to_delete->right != RBTREE_NULL)
|
|
{
|
|
/* swap with smallest from right subtree (or largest from left) */
|
|
rbnode_t *smright = to_delete->right;
|
|
while(smright->left != RBTREE_NULL)
|
|
smright = smright->left;
|
|
/* swap the smright and to_delete elements in the tree,
|
|
* but the rbnode_t is first part of user data struct
|
|
* so cannot just swap the keys and data pointers. Instead
|
|
* readjust the pointers left,right,parent */
|
|
|
|
/* swap colors - colors are tied to the position in the tree */
|
|
swap_int8(&to_delete->color, &smright->color);
|
|
|
|
/* swap child pointers in parents of smright/to_delete */
|
|
change_parent_ptr(rbtree, to_delete->parent, to_delete, smright);
|
|
if(to_delete->right != smright)
|
|
change_parent_ptr(rbtree, smright->parent, smright, to_delete);
|
|
|
|
/* swap parent pointers in children of smright/to_delete */
|
|
change_child_ptr(smright->left, smright, to_delete);
|
|
change_child_ptr(smright->left, smright, to_delete);
|
|
change_child_ptr(smright->right, smright, to_delete);
|
|
change_child_ptr(smright->right, smright, to_delete);
|
|
change_child_ptr(to_delete->left, to_delete, smright);
|
|
if(to_delete->right != smright)
|
|
change_child_ptr(to_delete->right, to_delete, smright);
|
|
if(to_delete->right == smright)
|
|
{
|
|
/* set up so after swap they work */
|
|
to_delete->right = to_delete;
|
|
smright->parent = smright;
|
|
}
|
|
|
|
/* swap pointers in to_delete/smright nodes */
|
|
swap_np(&to_delete->parent, &smright->parent);
|
|
swap_np(&to_delete->left, &smright->left);
|
|
swap_np(&to_delete->right, &smright->right);
|
|
|
|
/* now delete to_delete (which is at the location where the smright previously was) */
|
|
}
|
|
log_assert(to_delete->left == RBTREE_NULL || to_delete->right == RBTREE_NULL);
|
|
|
|
if(to_delete->left != RBTREE_NULL) child = to_delete->left;
|
|
else child = to_delete->right;
|
|
|
|
/* unlink to_delete from the tree, replace to_delete with child */
|
|
change_parent_ptr(rbtree, to_delete->parent, to_delete, child);
|
|
change_child_ptr(child, to_delete, to_delete->parent);
|
|
|
|
if(to_delete->color == RED)
|
|
{
|
|
/* if node is red then the child (black) can be swapped in */
|
|
}
|
|
else if(child->color == RED)
|
|
{
|
|
/* change child to BLACK, removing a RED node is no problem */
|
|
if(child!=RBTREE_NULL) child->color = BLACK;
|
|
}
|
|
else rbtree_delete_fixup(rbtree, child, to_delete->parent);
|
|
|
|
/* unlink completely */
|
|
to_delete->parent = RBTREE_NULL;
|
|
to_delete->left = RBTREE_NULL;
|
|
to_delete->right = RBTREE_NULL;
|
|
to_delete->color = BLACK;
|
|
return to_delete;
|
|
}
|
|
|
|
static void rbtree_delete_fixup(rbtree_t* rbtree, rbnode_t* child, rbnode_t* child_parent)
|
|
{
|
|
rbnode_t* sibling;
|
|
int go_up = 1;
|
|
|
|
/* determine sibling to the node that is one-black short */
|
|
if(child_parent->right == child) sibling = child_parent->left;
|
|
else sibling = child_parent->right;
|
|
|
|
while(go_up)
|
|
{
|
|
if(child_parent == RBTREE_NULL)
|
|
{
|
|
/* removed parent==black from root, every path, so ok */
|
|
return;
|
|
}
|
|
|
|
if(sibling->color == RED)
|
|
{ /* rotate to get a black sibling */
|
|
child_parent->color = RED;
|
|
sibling->color = BLACK;
|
|
if(child_parent->right == child)
|
|
rbtree_rotate_right(rbtree, child_parent);
|
|
else rbtree_rotate_left(rbtree, child_parent);
|
|
/* new sibling after rotation */
|
|
if(child_parent->right == child) sibling = child_parent->left;
|
|
else sibling = child_parent->right;
|
|
}
|
|
|
|
if(child_parent->color == BLACK
|
|
&& sibling->color == BLACK
|
|
&& sibling->left->color == BLACK
|
|
&& sibling->right->color == BLACK)
|
|
{ /* fixup local with recolor of sibling */
|
|
if(sibling != RBTREE_NULL)
|
|
sibling->color = RED;
|
|
|
|
child = child_parent;
|
|
child_parent = child_parent->parent;
|
|
/* prepare to go up, new sibling */
|
|
if(child_parent->right == child) sibling = child_parent->left;
|
|
else sibling = child_parent->right;
|
|
}
|
|
else go_up = 0;
|
|
}
|
|
|
|
if(child_parent->color == RED
|
|
&& sibling->color == BLACK
|
|
&& sibling->left->color == BLACK
|
|
&& sibling->right->color == BLACK)
|
|
{
|
|
/* move red to sibling to rebalance */
|
|
if(sibling != RBTREE_NULL)
|
|
sibling->color = RED;
|
|
child_parent->color = BLACK;
|
|
return;
|
|
}
|
|
log_assert(sibling != RBTREE_NULL);
|
|
|
|
/* get a new sibling, by rotating at sibling. See which child
|
|
of sibling is red */
|
|
if(child_parent->right == child
|
|
&& sibling->color == BLACK
|
|
&& sibling->right->color == RED
|
|
&& sibling->left->color == BLACK)
|
|
{
|
|
sibling->color = RED;
|
|
sibling->right->color = BLACK;
|
|
rbtree_rotate_left(rbtree, sibling);
|
|
/* new sibling after rotation */
|
|
if(child_parent->right == child) sibling = child_parent->left;
|
|
else sibling = child_parent->right;
|
|
}
|
|
else if(child_parent->left == child
|
|
&& sibling->color == BLACK
|
|
&& sibling->left->color == RED
|
|
&& sibling->right->color == BLACK)
|
|
{
|
|
sibling->color = RED;
|
|
sibling->left->color = BLACK;
|
|
rbtree_rotate_right(rbtree, sibling);
|
|
/* new sibling after rotation */
|
|
if(child_parent->right == child) sibling = child_parent->left;
|
|
else sibling = child_parent->right;
|
|
}
|
|
|
|
/* now we have a black sibling with a red child. rotate and exchange colors. */
|
|
sibling->color = child_parent->color;
|
|
child_parent->color = BLACK;
|
|
if(child_parent->right == child)
|
|
{
|
|
log_assert(sibling->left->color == RED);
|
|
sibling->left->color = BLACK;
|
|
rbtree_rotate_right(rbtree, child_parent);
|
|
}
|
|
else
|
|
{
|
|
log_assert(sibling->right->color == RED);
|
|
sibling->right->color = BLACK;
|
|
rbtree_rotate_left(rbtree, child_parent);
|
|
}
|
|
}
|
|
|
|
int
|
|
rbtree_find_less_equal(rbtree_t *rbtree, const void *key, rbnode_t **result)
|
|
{
|
|
int r;
|
|
rbnode_t *node;
|
|
|
|
log_assert(result);
|
|
|
|
/* We start at root... */
|
|
node = rbtree->root;
|
|
|
|
*result = NULL;
|
|
fptr_ok(fptr_whitelist_rbtree_cmp(rbtree->cmp));
|
|
|
|
/* While there are children... */
|
|
while (node != RBTREE_NULL) {
|
|
r = rbtree->cmp(key, node->key);
|
|
if (r == 0) {
|
|
/* Exact match */
|
|
*result = node;
|
|
return 1;
|
|
}
|
|
if (r < 0) {
|
|
node = node->left;
|
|
} else {
|
|
/* Temporary match */
|
|
*result = node;
|
|
node = node->right;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finds the first element in the red black tree
|
|
*
|
|
*/
|
|
rbnode_t *
|
|
rbtree_first (rbtree_t *rbtree)
|
|
{
|
|
rbnode_t *node;
|
|
|
|
for (node = rbtree->root; node->left != RBTREE_NULL; node = node->left);
|
|
return node;
|
|
}
|
|
|
|
rbnode_t *
|
|
rbtree_last (rbtree_t *rbtree)
|
|
{
|
|
rbnode_t *node;
|
|
|
|
for (node = rbtree->root; node->right != RBTREE_NULL; node = node->right);
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* Returns the next node...
|
|
*
|
|
*/
|
|
rbnode_t *
|
|
rbtree_next (rbnode_t *node)
|
|
{
|
|
rbnode_t *parent;
|
|
|
|
if (node->right != RBTREE_NULL) {
|
|
/* One right, then keep on going left... */
|
|
for (node = node->right; node->left != RBTREE_NULL; node = node->left);
|
|
} else {
|
|
parent = node->parent;
|
|
while (parent != RBTREE_NULL && node == parent->right) {
|
|
node = parent;
|
|
parent = parent->parent;
|
|
}
|
|
node = parent;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
rbnode_t *
|
|
rbtree_previous(rbnode_t *node)
|
|
{
|
|
rbnode_t *parent;
|
|
|
|
if (node->left != RBTREE_NULL) {
|
|
/* One left, then keep on going right... */
|
|
for (node = node->left; node->right != RBTREE_NULL; node = node->right);
|
|
} else {
|
|
parent = node->parent;
|
|
while (parent != RBTREE_NULL && node == parent->left) {
|
|
node = parent;
|
|
parent = parent->parent;
|
|
}
|
|
node = parent;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
/** recursive descent traverse */
|
|
static void
|
|
traverse_post(void (*func)(rbnode_t*, void*), void* arg, rbnode_t* node)
|
|
{
|
|
if(!node || node == RBTREE_NULL)
|
|
return;
|
|
/* recurse */
|
|
traverse_post(func, arg, node->left);
|
|
traverse_post(func, arg, node->right);
|
|
/* call user func */
|
|
(*func)(node, arg);
|
|
}
|
|
|
|
void
|
|
traverse_postorder(rbtree_t* tree, void (*func)(rbnode_t*, void*), void* arg)
|
|
{
|
|
traverse_post(func, arg, tree->root);
|
|
}
|