monero/external/unbound/util/alloc.c
Erik de Castro Lopo a85b5759f3 Upgrade unbound library
These files were pulled from the 1.6.3 release tarball.

This new version builds against OpenSSL version 1.1 which will be
the default in the new Debian Stable which is due to be released
RealSoonNow (tm).
2017-06-17 23:04:00 +10:00

654 lines
18 KiB
C

/*
* util/alloc.c - memory allocation service.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains memory allocation functions.
*/
#include "config.h"
#include "util/alloc.h"
#include "util/regional.h"
#include "util/data/packed_rrset.h"
#include "util/fptr_wlist.h"
/** custom size of cached regional blocks */
#define ALLOC_REG_SIZE 16384
/** number of bits for ID part of uint64, rest for number of threads. */
#define THRNUM_SHIFT 48 /* for 65k threads, 2^48 rrsets per thr. */
/** setup new special type */
static void
alloc_setup_special(alloc_special_type* t)
{
memset(t, 0, sizeof(*t));
lock_rw_init(&t->entry.lock);
t->entry.key = t;
}
/** prealloc some entries in the cache. To minimize contention.
* Result is 1 lock per alloc_max newly created entries.
* @param alloc: the structure to fill up.
*/
static void
prealloc_setup(struct alloc_cache* alloc)
{
alloc_special_type* p;
int i;
for(i=0; i<ALLOC_SPECIAL_MAX; i++) {
if(!(p = (alloc_special_type*)malloc(
sizeof(alloc_special_type)))) {
log_err("prealloc: out of memory");
return;
}
alloc_setup_special(p);
alloc_set_special_next(p, alloc->quar);
alloc->quar = p;
alloc->num_quar++;
}
}
/** prealloc region blocks */
static void
prealloc_blocks(struct alloc_cache* alloc, size_t num)
{
size_t i;
struct regional* r;
for(i=0; i<num; i++) {
r = regional_create_custom(ALLOC_REG_SIZE);
if(!r) {
log_err("prealloc blocks: out of memory");
return;
}
r->next = (char*)alloc->reg_list;
alloc->reg_list = r;
alloc->num_reg_blocks ++;
}
}
void
alloc_init(struct alloc_cache* alloc, struct alloc_cache* super,
int thread_num)
{
memset(alloc, 0, sizeof(*alloc));
alloc->super = super;
alloc->thread_num = thread_num;
alloc->next_id = (uint64_t)thread_num; /* in steps, so that type */
alloc->next_id <<= THRNUM_SHIFT; /* of *_id is used. */
alloc->last_id = 1; /* so no 64bit constants, */
alloc->last_id <<= THRNUM_SHIFT; /* or implicit 'int' ops. */
alloc->last_id -= 1; /* for compiler portability. */
alloc->last_id |= alloc->next_id;
alloc->next_id += 1; /* because id=0 is special. */
alloc->max_reg_blocks = 100;
alloc->num_reg_blocks = 0;
alloc->reg_list = NULL;
alloc->cleanup = NULL;
alloc->cleanup_arg = NULL;
if(alloc->super)
prealloc_blocks(alloc, alloc->max_reg_blocks);
if(!alloc->super) {
lock_quick_init(&alloc->lock);
lock_protect(&alloc->lock, alloc, sizeof(*alloc));
}
}
void
alloc_clear(struct alloc_cache* alloc)
{
alloc_special_type* p, *np;
struct regional* r, *nr;
if(!alloc)
return;
if(!alloc->super) {
lock_quick_destroy(&alloc->lock);
}
if(alloc->super && alloc->quar) {
/* push entire list into super */
p = alloc->quar;
while(alloc_special_next(p)) /* find last */
p = alloc_special_next(p);
lock_quick_lock(&alloc->super->lock);
alloc_set_special_next(p, alloc->super->quar);
alloc->super->quar = alloc->quar;
alloc->super->num_quar += alloc->num_quar;
lock_quick_unlock(&alloc->super->lock);
} else {
/* free */
p = alloc->quar;
while(p) {
np = alloc_special_next(p);
/* deinit special type */
lock_rw_destroy(&p->entry.lock);
free(p);
p = np;
}
}
alloc->quar = 0;
alloc->num_quar = 0;
r = alloc->reg_list;
while(r) {
nr = (struct regional*)r->next;
free(r);
r = nr;
}
alloc->reg_list = NULL;
alloc->num_reg_blocks = 0;
}
uint64_t
alloc_get_id(struct alloc_cache* alloc)
{
uint64_t id = alloc->next_id++;
if(id == alloc->last_id) {
log_warn("rrset alloc: out of 64bit ids. Clearing cache.");
fptr_ok(fptr_whitelist_alloc_cleanup(alloc->cleanup));
(*alloc->cleanup)(alloc->cleanup_arg);
/* start back at first number */ /* like in alloc_init*/
alloc->next_id = (uint64_t)alloc->thread_num;
alloc->next_id <<= THRNUM_SHIFT; /* in steps for comp. */
alloc->next_id += 1; /* portability. */
/* and generate new and safe id */
id = alloc->next_id++;
}
return id;
}
alloc_special_type*
alloc_special_obtain(struct alloc_cache* alloc)
{
alloc_special_type* p;
log_assert(alloc);
/* see if in local cache */
if(alloc->quar) {
p = alloc->quar;
alloc->quar = alloc_special_next(p);
alloc->num_quar--;
p->id = alloc_get_id(alloc);
return p;
}
/* see if in global cache */
if(alloc->super) {
/* could maybe grab alloc_max/2 entries in one go,
* but really, isn't that just as fast as this code? */
lock_quick_lock(&alloc->super->lock);
if((p = alloc->super->quar)) {
alloc->super->quar = alloc_special_next(p);
alloc->super->num_quar--;
}
lock_quick_unlock(&alloc->super->lock);
if(p) {
p->id = alloc_get_id(alloc);
return p;
}
}
/* allocate new */
prealloc_setup(alloc);
if(!(p = (alloc_special_type*)malloc(sizeof(alloc_special_type)))) {
log_err("alloc_special_obtain: out of memory");
return NULL;
}
alloc_setup_special(p);
p->id = alloc_get_id(alloc);
return p;
}
/** push mem and some more items to the super */
static void
pushintosuper(struct alloc_cache* alloc, alloc_special_type* mem)
{
int i;
alloc_special_type *p = alloc->quar;
log_assert(p);
log_assert(alloc && alloc->super &&
alloc->num_quar >= ALLOC_SPECIAL_MAX);
/* push ALLOC_SPECIAL_MAX/2 after mem */
alloc_set_special_next(mem, alloc->quar);
for(i=1; i<ALLOC_SPECIAL_MAX/2; i++) {
p = alloc_special_next(p);
}
alloc->quar = alloc_special_next(p);
alloc->num_quar -= ALLOC_SPECIAL_MAX/2;
/* dump mem+list into the super quar list */
lock_quick_lock(&alloc->super->lock);
alloc_set_special_next(p, alloc->super->quar);
alloc->super->quar = mem;
alloc->super->num_quar += ALLOC_SPECIAL_MAX/2 + 1;
lock_quick_unlock(&alloc->super->lock);
/* so 1 lock per mem+alloc/2 deletes */
}
void
alloc_special_release(struct alloc_cache* alloc, alloc_special_type* mem)
{
log_assert(alloc);
if(!mem)
return;
if(!alloc->super) {
lock_quick_lock(&alloc->lock); /* superalloc needs locking */
}
alloc_special_clean(mem);
if(alloc->super && alloc->num_quar >= ALLOC_SPECIAL_MAX) {
/* push it to the super structure */
pushintosuper(alloc, mem);
return;
}
alloc_set_special_next(mem, alloc->quar);
alloc->quar = mem;
alloc->num_quar++;
if(!alloc->super) {
lock_quick_unlock(&alloc->lock);
}
}
void
alloc_stats(struct alloc_cache* alloc)
{
log_info("%salloc: %d in cache, %d blocks.", alloc->super?"":"sup",
(int)alloc->num_quar, (int)alloc->num_reg_blocks);
}
size_t alloc_get_mem(struct alloc_cache* alloc)
{
alloc_special_type* p;
size_t s = sizeof(*alloc);
if(!alloc->super) {
lock_quick_lock(&alloc->lock); /* superalloc needs locking */
}
s += sizeof(alloc_special_type) * alloc->num_quar;
for(p = alloc->quar; p; p = alloc_special_next(p)) {
s += lock_get_mem(&p->entry.lock);
}
s += alloc->num_reg_blocks * ALLOC_REG_SIZE;
if(!alloc->super) {
lock_quick_unlock(&alloc->lock);
}
return s;
}
struct regional*
alloc_reg_obtain(struct alloc_cache* alloc)
{
if(alloc->num_reg_blocks > 0) {
struct regional* r = alloc->reg_list;
alloc->reg_list = (struct regional*)r->next;
r->next = NULL;
alloc->num_reg_blocks--;
return r;
}
return regional_create_custom(ALLOC_REG_SIZE);
}
void
alloc_reg_release(struct alloc_cache* alloc, struct regional* r)
{
if(alloc->num_reg_blocks >= alloc->max_reg_blocks) {
regional_destroy(r);
return;
}
if(!r) return;
regional_free_all(r);
log_assert(r->next == NULL);
r->next = (char*)alloc->reg_list;
alloc->reg_list = r;
alloc->num_reg_blocks++;
}
void
alloc_set_id_cleanup(struct alloc_cache* alloc, void (*cleanup)(void*),
void* arg)
{
alloc->cleanup = cleanup;
alloc->cleanup_arg = arg;
}
/** global debug value to keep track of total memory mallocs */
size_t unbound_mem_alloc = 0;
/** global debug value to keep track of total memory frees */
size_t unbound_mem_freed = 0;
#ifdef UNBOUND_ALLOC_STATS
/** special value to know if the memory is being tracked */
uint64_t mem_special = (uint64_t)0xfeed43327766abcdLL;
#ifdef malloc
#undef malloc
#endif
/** malloc with stats */
void *unbound_stat_malloc(size_t size)
{
void* res;
if(size == 0) size = 1;
res = malloc(size+16);
if(!res) return NULL;
unbound_mem_alloc += size;
log_info("stat %p=malloc(%u)", res+16, (unsigned)size);
memcpy(res, &size, sizeof(size));
memcpy(res+8, &mem_special, sizeof(mem_special));
return res+16;
}
#ifdef calloc
#undef calloc
#endif
#ifndef INT_MAX
#define INT_MAX (((int)-1)>>1)
#endif
/** calloc with stats */
void *unbound_stat_calloc(size_t nmemb, size_t size)
{
size_t s;
void* res;
if(nmemb != 0 && INT_MAX/nmemb < size)
return NULL; /* integer overflow check */
s = (nmemb*size==0)?(size_t)1:nmemb*size;
res = calloc(1, s+16);
if(!res) return NULL;
log_info("stat %p=calloc(%u, %u)", res+16, (unsigned)nmemb, (unsigned)size);
unbound_mem_alloc += s;
memcpy(res, &s, sizeof(s));
memcpy(res+8, &mem_special, sizeof(mem_special));
return res+16;
}
#ifdef free
#undef free
#endif
/** free with stats */
void unbound_stat_free(void *ptr)
{
size_t s;
if(!ptr) return;
if(memcmp(ptr-8, &mem_special, sizeof(mem_special)) != 0) {
free(ptr);
return;
}
ptr-=16;
memcpy(&s, ptr, sizeof(s));
log_info("stat free(%p) size %u", ptr+16, (unsigned)s);
memset(ptr+8, 0, 8);
unbound_mem_freed += s;
free(ptr);
}
#ifdef realloc
#undef realloc
#endif
/** realloc with stats */
void *unbound_stat_realloc(void *ptr, size_t size)
{
size_t cursz;
void* res;
if(!ptr) return unbound_stat_malloc(size);
if(memcmp(ptr-8, &mem_special, sizeof(mem_special)) != 0) {
return realloc(ptr, size);
}
if(size==0) {
unbound_stat_free(ptr);
return NULL;
}
ptr -= 16;
memcpy(&cursz, ptr, sizeof(cursz));
if(cursz == size) {
/* nothing changes */
return ptr;
}
res = malloc(size+16);
if(!res) return NULL;
unbound_mem_alloc += size;
unbound_mem_freed += cursz;
log_info("stat realloc(%p, %u) from %u", ptr+16, (unsigned)size, (unsigned)cursz);
if(cursz > size) {
memcpy(res+16, ptr+16, size);
} else if(size > cursz) {
memcpy(res+16, ptr+16, cursz);
}
memset(ptr+8, 0, 8);
free(ptr);
memcpy(res, &size, sizeof(size));
memcpy(res+8, &mem_special, sizeof(mem_special));
return res+16;
}
/** log to file where alloc was done */
void *unbound_stat_malloc_log(size_t size, const char* file, int line,
const char* func)
{
log_info("%s:%d %s malloc(%u)", file, line, func, (unsigned)size);
return unbound_stat_malloc(size);
}
/** log to file where alloc was done */
void *unbound_stat_calloc_log(size_t nmemb, size_t size, const char* file,
int line, const char* func)
{
log_info("%s:%d %s calloc(%u, %u)", file, line, func,
(unsigned) nmemb, (unsigned)size);
return unbound_stat_calloc(nmemb, size);
}
/** log to file where free was done */
void unbound_stat_free_log(void *ptr, const char* file, int line,
const char* func)
{
if(ptr && memcmp(ptr-8, &mem_special, sizeof(mem_special)) == 0) {
size_t s;
memcpy(&s, ptr-16, sizeof(s));
log_info("%s:%d %s free(%p) size %u",
file, line, func, ptr, (unsigned)s);
} else
log_info("%s:%d %s unmatched free(%p)", file, line, func, ptr);
unbound_stat_free(ptr);
}
/** log to file where alloc was done */
void *unbound_stat_realloc_log(void *ptr, size_t size, const char* file,
int line, const char* func)
{
log_info("%s:%d %s realloc(%p, %u)", file, line, func,
ptr, (unsigned)size);
return unbound_stat_realloc(ptr, size);
}
#endif /* UNBOUND_ALLOC_STATS */
#ifdef UNBOUND_ALLOC_LITE
#undef malloc
#undef calloc
#undef free
#undef realloc
/** length of prefix and suffix */
static size_t lite_pad = 16;
/** prefix value to check */
static char* lite_pre = "checkfront123456";
/** suffix value to check */
static char* lite_post= "checkafter123456";
void *unbound_stat_malloc_lite(size_t size, const char* file, int line,
const char* func)
{
/* [prefix .. len .. actual data .. suffix] */
void* res = malloc(size+lite_pad*2+sizeof(size_t));
if(!res) return NULL;
memmove(res, lite_pre, lite_pad);
memmove(res+lite_pad, &size, sizeof(size_t));
memset(res+lite_pad+sizeof(size_t), 0x1a, size); /* init the memory */
memmove(res+lite_pad+size+sizeof(size_t), lite_post, lite_pad);
return res+lite_pad+sizeof(size_t);
}
void *unbound_stat_calloc_lite(size_t nmemb, size_t size, const char* file,
int line, const char* func)
{
size_t req;
void* res;
if(nmemb != 0 && INT_MAX/nmemb < size)
return NULL; /* integer overflow check */
req = nmemb * size;
res = malloc(req+lite_pad*2+sizeof(size_t));
if(!res) return NULL;
memmove(res, lite_pre, lite_pad);
memmove(res+lite_pad, &req, sizeof(size_t));
memset(res+lite_pad+sizeof(size_t), 0, req);
memmove(res+lite_pad+req+sizeof(size_t), lite_post, lite_pad);
return res+lite_pad+sizeof(size_t);
}
void unbound_stat_free_lite(void *ptr, const char* file, int line,
const char* func)
{
void* real;
size_t orig = 0;
if(!ptr) return;
real = ptr-lite_pad-sizeof(size_t);
if(memcmp(real, lite_pre, lite_pad) != 0) {
log_err("free(): prefix failed %s:%d %s", file, line, func);
log_hex("prefix here", real, lite_pad);
log_hex(" should be", lite_pre, lite_pad);
fatal_exit("alloc assertion failed");
}
memmove(&orig, real+lite_pad, sizeof(size_t));
if(memcmp(real+lite_pad+orig+sizeof(size_t), lite_post, lite_pad)!=0){
log_err("free(): suffix failed %s:%d %s", file, line, func);
log_err("alloc size is %d", (int)orig);
log_hex("suffix here", real+lite_pad+orig+sizeof(size_t),
lite_pad);
log_hex(" should be", lite_post, lite_pad);
fatal_exit("alloc assertion failed");
}
memset(real, 0xdd, orig+lite_pad*2+sizeof(size_t)); /* mark it */
free(real);
}
void *unbound_stat_realloc_lite(void *ptr, size_t size, const char* file,
int line, const char* func)
{
/* always free and realloc (no growing) */
void* real, *newa;
size_t orig = 0;
if(!ptr) {
/* like malloc() */
return unbound_stat_malloc_lite(size, file, line, func);
}
if(!size) {
/* like free() */
unbound_stat_free_lite(ptr, file, line, func);
return NULL;
}
/* change allocation size and copy */
real = ptr-lite_pad-sizeof(size_t);
if(memcmp(real, lite_pre, lite_pad) != 0) {
log_err("realloc(): prefix failed %s:%d %s", file, line, func);
log_hex("prefix here", real, lite_pad);
log_hex(" should be", lite_pre, lite_pad);
fatal_exit("alloc assertion failed");
}
memmove(&orig, real+lite_pad, sizeof(size_t));
if(memcmp(real+lite_pad+orig+sizeof(size_t), lite_post, lite_pad)!=0){
log_err("realloc(): suffix failed %s:%d %s", file, line, func);
log_err("alloc size is %d", (int)orig);
log_hex("suffix here", real+lite_pad+orig+sizeof(size_t),
lite_pad);
log_hex(" should be", lite_post, lite_pad);
fatal_exit("alloc assertion failed");
}
/* new alloc and copy over */
newa = unbound_stat_malloc_lite(size, file, line, func);
if(!newa)
return NULL;
if(orig < size)
memmove(newa, ptr, orig);
else memmove(newa, ptr, size);
memset(real, 0xdd, orig+lite_pad*2+sizeof(size_t)); /* mark it */
free(real);
return newa;
}
char* unbound_strdup_lite(const char* s, const char* file, int line,
const char* func)
{
/* this routine is made to make sure strdup() uses the malloc_lite */
size_t l = strlen(s)+1;
char* n = (char*)unbound_stat_malloc_lite(l, file, line, func);
if(!n) return NULL;
memmove(n, s, l);
return n;
}
char* unbound_lite_wrapstr(char* s)
{
char* n = unbound_strdup_lite(s, __FILE__, __LINE__, __func__);
free(s);
return n;
}
#undef sldns_pkt2wire
sldns_status unbound_lite_pkt2wire(uint8_t **dest, const sldns_pkt *p,
size_t *size)
{
uint8_t* md = NULL;
size_t ms = 0;
sldns_status s = sldns_pkt2wire(&md, p, &ms);
if(md) {
*dest = unbound_stat_malloc_lite(ms, __FILE__, __LINE__,
__func__);
*size = ms;
if(!*dest) { free(md); return LDNS_STATUS_MEM_ERR; }
memcpy(*dest, md, ms);
free(md);
} else {
*dest = NULL;
*size = 0;
}
return s;
}
#undef i2d_DSA_SIG
int unbound_lite_i2d_DSA_SIG(DSA_SIG* dsasig, unsigned char** sig)
{
unsigned char* n = NULL;
int r= i2d_DSA_SIG(dsasig, &n);
if(n) {
*sig = unbound_stat_malloc_lite((size_t)r, __FILE__, __LINE__,
__func__);
if(!*sig) return -1;
memcpy(*sig, n, (size_t)r);
free(n);
return r;
}
*sig = NULL;
return r;
}
#endif /* UNBOUND_ALLOC_LITE */