mirror of
https://github.com/monero-project/monero.git
synced 2024-12-28 22:49:33 +00:00
182 lines
5 KiB
C
182 lines
5 KiB
C
/*
|
|
chacha-merged.c version 20080118
|
|
D. J. Bernstein
|
|
Public domain.
|
|
*/
|
|
|
|
#include <memory.h>
|
|
#include <stdio.h>
|
|
#ifndef _MSC_VER
|
|
#include <sys/param.h>
|
|
#endif
|
|
|
|
#include "chacha.h"
|
|
#include "int-util.h"
|
|
#include "warnings.h"
|
|
|
|
/*
|
|
* The following macros are used to obtain exact-width results.
|
|
*/
|
|
#define U8V(v) ((uint8_t)(v) & UINT8_C(0xFF))
|
|
#define U32V(v) ((uint32_t)(v) & UINT32_C(0xFFFFFFFF))
|
|
|
|
/*
|
|
* The following macros load words from an array of bytes with
|
|
* different types of endianness, and vice versa.
|
|
*/
|
|
#define U8TO32_LITTLE(p) SWAP32LE(((uint32_t*)(p))[0])
|
|
#define U32TO8_LITTLE(p, v) (((uint32_t*)(p))[0] = SWAP32LE(v))
|
|
|
|
#define ROTATE(v,c) (rol32(v,c))
|
|
#define XOR(v,w) ((v) ^ (w))
|
|
#define PLUS(v,w) (U32V((v) + (w)))
|
|
#define PLUSONE(v) (PLUS((v),1))
|
|
|
|
#define QUARTERROUND(a,b,c,d) \
|
|
a = PLUS(a,b); d = ROTATE(XOR(d,a),16); \
|
|
c = PLUS(c,d); b = ROTATE(XOR(b,c),12); \
|
|
a = PLUS(a,b); d = ROTATE(XOR(d,a), 8); \
|
|
c = PLUS(c,d); b = ROTATE(XOR(b,c), 7);
|
|
|
|
static const char sigma[] = "expand 32-byte k";
|
|
|
|
DISABLE_GCC_AND_CLANG_WARNING(strict-aliasing)
|
|
|
|
static void chacha(unsigned rounds, const void* data, size_t length, const uint8_t* key, const uint8_t* iv, char* cipher) {
|
|
uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
|
|
uint32_t j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
|
|
char* ctarget = 0;
|
|
char tmp[64];
|
|
int i;
|
|
|
|
if (!length) return;
|
|
|
|
j0 = U8TO32_LITTLE(sigma + 0);
|
|
j1 = U8TO32_LITTLE(sigma + 4);
|
|
j2 = U8TO32_LITTLE(sigma + 8);
|
|
j3 = U8TO32_LITTLE(sigma + 12);
|
|
j4 = U8TO32_LITTLE(key + 0);
|
|
j5 = U8TO32_LITTLE(key + 4);
|
|
j6 = U8TO32_LITTLE(key + 8);
|
|
j7 = U8TO32_LITTLE(key + 12);
|
|
j8 = U8TO32_LITTLE(key + 16);
|
|
j9 = U8TO32_LITTLE(key + 20);
|
|
j10 = U8TO32_LITTLE(key + 24);
|
|
j11 = U8TO32_LITTLE(key + 28);
|
|
j12 = 0;
|
|
j13 = 0;
|
|
j14 = U8TO32_LITTLE(iv + 0);
|
|
j15 = U8TO32_LITTLE(iv + 4);
|
|
|
|
for (;;) {
|
|
if (length < 64) {
|
|
memcpy(tmp, data, length);
|
|
data = tmp;
|
|
ctarget = cipher;
|
|
cipher = tmp;
|
|
}
|
|
x0 = j0;
|
|
x1 = j1;
|
|
x2 = j2;
|
|
x3 = j3;
|
|
x4 = j4;
|
|
x5 = j5;
|
|
x6 = j6;
|
|
x7 = j7;
|
|
x8 = j8;
|
|
x9 = j9;
|
|
x10 = j10;
|
|
x11 = j11;
|
|
x12 = j12;
|
|
x13 = j13;
|
|
x14 = j14;
|
|
x15 = j15;
|
|
for (i = rounds;i > 0;i -= 2) {
|
|
QUARTERROUND( x0, x4, x8,x12)
|
|
QUARTERROUND( x1, x5, x9,x13)
|
|
QUARTERROUND( x2, x6,x10,x14)
|
|
QUARTERROUND( x3, x7,x11,x15)
|
|
QUARTERROUND( x0, x5,x10,x15)
|
|
QUARTERROUND( x1, x6,x11,x12)
|
|
QUARTERROUND( x2, x7, x8,x13)
|
|
QUARTERROUND( x3, x4, x9,x14)
|
|
}
|
|
x0 = PLUS( x0, j0);
|
|
x1 = PLUS( x1, j1);
|
|
x2 = PLUS( x2, j2);
|
|
x3 = PLUS( x3, j3);
|
|
x4 = PLUS( x4, j4);
|
|
x5 = PLUS( x5, j5);
|
|
x6 = PLUS( x6, j6);
|
|
x7 = PLUS( x7, j7);
|
|
x8 = PLUS( x8, j8);
|
|
x9 = PLUS( x9, j9);
|
|
x10 = PLUS(x10,j10);
|
|
x11 = PLUS(x11,j11);
|
|
x12 = PLUS(x12,j12);
|
|
x13 = PLUS(x13,j13);
|
|
x14 = PLUS(x14,j14);
|
|
x15 = PLUS(x15,j15);
|
|
|
|
x0 = XOR( x0,U8TO32_LITTLE((uint8_t*)data + 0));
|
|
x1 = XOR( x1,U8TO32_LITTLE((uint8_t*)data + 4));
|
|
x2 = XOR( x2,U8TO32_LITTLE((uint8_t*)data + 8));
|
|
x3 = XOR( x3,U8TO32_LITTLE((uint8_t*)data + 12));
|
|
x4 = XOR( x4,U8TO32_LITTLE((uint8_t*)data + 16));
|
|
x5 = XOR( x5,U8TO32_LITTLE((uint8_t*)data + 20));
|
|
x6 = XOR( x6,U8TO32_LITTLE((uint8_t*)data + 24));
|
|
x7 = XOR( x7,U8TO32_LITTLE((uint8_t*)data + 28));
|
|
x8 = XOR( x8,U8TO32_LITTLE((uint8_t*)data + 32));
|
|
x9 = XOR( x9,U8TO32_LITTLE((uint8_t*)data + 36));
|
|
x10 = XOR(x10,U8TO32_LITTLE((uint8_t*)data + 40));
|
|
x11 = XOR(x11,U8TO32_LITTLE((uint8_t*)data + 44));
|
|
x12 = XOR(x12,U8TO32_LITTLE((uint8_t*)data + 48));
|
|
x13 = XOR(x13,U8TO32_LITTLE((uint8_t*)data + 52));
|
|
x14 = XOR(x14,U8TO32_LITTLE((uint8_t*)data + 56));
|
|
x15 = XOR(x15,U8TO32_LITTLE((uint8_t*)data + 60));
|
|
|
|
j12 = PLUSONE(j12);
|
|
if (!j12)
|
|
{
|
|
j13 = PLUSONE(j13);
|
|
/* stopping at 2^70 bytes per iv is user's responsibility */
|
|
}
|
|
|
|
U32TO8_LITTLE(cipher + 0,x0);
|
|
U32TO8_LITTLE(cipher + 4,x1);
|
|
U32TO8_LITTLE(cipher + 8,x2);
|
|
U32TO8_LITTLE(cipher + 12,x3);
|
|
U32TO8_LITTLE(cipher + 16,x4);
|
|
U32TO8_LITTLE(cipher + 20,x5);
|
|
U32TO8_LITTLE(cipher + 24,x6);
|
|
U32TO8_LITTLE(cipher + 28,x7);
|
|
U32TO8_LITTLE(cipher + 32,x8);
|
|
U32TO8_LITTLE(cipher + 36,x9);
|
|
U32TO8_LITTLE(cipher + 40,x10);
|
|
U32TO8_LITTLE(cipher + 44,x11);
|
|
U32TO8_LITTLE(cipher + 48,x12);
|
|
U32TO8_LITTLE(cipher + 52,x13);
|
|
U32TO8_LITTLE(cipher + 56,x14);
|
|
U32TO8_LITTLE(cipher + 60,x15);
|
|
|
|
if (length <= 64) {
|
|
if (length < 64) {
|
|
memcpy(ctarget, cipher, length);
|
|
}
|
|
return;
|
|
}
|
|
length -= 64;
|
|
cipher += 64;
|
|
data = (uint8_t*)data + 64;
|
|
}
|
|
}
|
|
|
|
void chacha8(const void* data, size_t length, const uint8_t* key, const uint8_t* iv, char* cipher)
|
|
{
|
|
chacha(8, data, length, key, iv, cipher);
|
|
}
|
|
|
|
void chacha20(const void* data, size_t length, const uint8_t* key, const uint8_t* iv, char* cipher)
|
|
{
|
|
chacha(20, data, length, key, iv, cipher);
|
|
}
|