monero/src/crypto/rx-slow-hash.c
2024-05-21 16:29:33 +00:00

524 lines
16 KiB
C

// Copyright (c) 2019-2024, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <limits.h>
#include "randomx.h"
#include "c_threads.h"
#include "hash-ops.h"
#include "misc_log_ex.h"
#define RX_LOGCAT "randomx"
// Report large page allocation failures as debug messages
#define alloc_err_msg(x) mdebug(RX_LOGCAT, x);
static CTHR_RWLOCK_TYPE main_dataset_lock = CTHR_RWLOCK_INIT;
static CTHR_RWLOCK_TYPE main_cache_lock = CTHR_RWLOCK_INIT;
static randomx_dataset *main_dataset = NULL;
static randomx_cache *main_cache = NULL;
static char main_seedhash[HASH_SIZE];
static int main_seedhash_set = 0;
static CTHR_RWLOCK_TYPE secondary_cache_lock = CTHR_RWLOCK_INIT;
static randomx_cache *secondary_cache = NULL;
static char secondary_seedhash[HASH_SIZE];
static int secondary_seedhash_set = 0;
#if defined(_MSC_VER)
#define THREADV __declspec(thread)
#else
#define THREADV __thread
#endif
static THREADV randomx_vm *main_vm_full = NULL;
static THREADV randomx_vm *main_vm_light = NULL;
static THREADV randomx_vm *secondary_vm_light = NULL;
static THREADV uint32_t miner_thread = 0;
static bool is_main(const char* seedhash) { return main_seedhash_set && (memcmp(seedhash, main_seedhash, HASH_SIZE) == 0); }
static bool is_secondary(const char* seedhash) { return secondary_seedhash_set && (memcmp(seedhash, secondary_seedhash, HASH_SIZE) == 0); }
static void local_abort(const char *msg)
{
merror(RX_LOGCAT, "%s", msg);
fprintf(stderr, "%s\n", msg);
#ifdef NDEBUG
_exit(1);
#else
abort();
#endif
}
static void hash2hex(const char* hash, char* hex) {
const char* d = "0123456789abcdef";
for (int i = 0; i < HASH_SIZE; ++i) {
const uint8_t b = hash[i];
hex[i * 2 + 0] = d[b >> 4];
hex[i * 2 + 1] = d[b & 15];
}
hex[HASH_SIZE * 2] = '\0';
}
static inline int disabled_flags(void) {
static int flags = -1;
if (flags != -1) {
return flags;
}
const char *env = getenv("MONERO_RANDOMX_UMASK");
if (!env) {
flags = 0;
}
else {
char* endptr;
long int value = strtol(env, &endptr, 0);
if (endptr != env && value >= 0 && value < INT_MAX) {
flags = value;
}
else {
flags = 0;
}
}
return flags;
}
static inline int enabled_flags(void) {
static int flags = -1;
if (flags != -1) {
return flags;
}
flags = randomx_get_flags();
return flags;
}
#define SEEDHASH_EPOCH_BLOCKS 2048 /* Must be same as BLOCKS_SYNCHRONIZING_MAX_COUNT in cryptonote_config.h */
#define SEEDHASH_EPOCH_LAG 64
static inline int is_power_of_2(uint64_t n) { return n && (n & (n-1)) == 0; }
static int get_seedhash_epoch_lag(void)
{
static unsigned int lag = (unsigned int)-1;
if (lag != (unsigned int)-1)
return lag;
const char *e = getenv("SEEDHASH_EPOCH_LAG");
if (e)
{
lag = atoi(e);
if (lag > SEEDHASH_EPOCH_LAG || !is_power_of_2(lag))
lag = SEEDHASH_EPOCH_LAG;
}
else
{
lag = SEEDHASH_EPOCH_LAG;
}
return lag;
}
static unsigned int get_seedhash_epoch_blocks(void)
{
static unsigned int blocks = (unsigned int)-1;
if (blocks != (unsigned int)-1)
return blocks;
const char *e = getenv("SEEDHASH_EPOCH_BLOCKS");
if (e)
{
blocks = atoi(e);
if (blocks < 2 || blocks > SEEDHASH_EPOCH_BLOCKS || !is_power_of_2(blocks))
blocks = SEEDHASH_EPOCH_BLOCKS;
}
else
{
blocks = SEEDHASH_EPOCH_BLOCKS;
}
return blocks;
}
uint64_t rx_seedheight(const uint64_t height) {
const uint64_t seedhash_epoch_lag = get_seedhash_epoch_lag();
const uint64_t seedhash_epoch_blocks = get_seedhash_epoch_blocks();
uint64_t s_height = (height <= seedhash_epoch_blocks+seedhash_epoch_lag) ? 0 :
(height - seedhash_epoch_lag - 1) & ~(seedhash_epoch_blocks-1);
return s_height;
}
void rx_seedheights(const uint64_t height, uint64_t *seedheight, uint64_t *nextheight) {
*seedheight = rx_seedheight(height);
*nextheight = rx_seedheight(height + get_seedhash_epoch_lag());
}
static void rx_alloc_dataset(randomx_flags flags, randomx_dataset** dataset, int ignore_env)
{
if (*dataset) {
return;
}
if (disabled_flags() & RANDOMX_FLAG_FULL_MEM) {
static int shown = 0;
if (!shown) {
shown = 1;
minfo(RX_LOGCAT, "RandomX dataset is disabled by MONERO_RANDOMX_UMASK environment variable.");
}
return;
}
if (!ignore_env && !getenv("MONERO_RANDOMX_FULL_MEM")) {
static int shown = 0;
if (!shown) {
shown = 1;
minfo(RX_LOGCAT, "RandomX dataset is not enabled by default. Use MONERO_RANDOMX_FULL_MEM environment variable to enable it.");
}
return;
}
*dataset = randomx_alloc_dataset((flags | RANDOMX_FLAG_LARGE_PAGES) & ~disabled_flags());
if (!*dataset) {
alloc_err_msg("Couldn't allocate RandomX dataset using large pages");
*dataset = randomx_alloc_dataset(flags & ~disabled_flags());
if (!*dataset) {
merror(RX_LOGCAT, "Couldn't allocate RandomX dataset");
}
}
}
static void rx_alloc_cache(randomx_flags flags, randomx_cache** cache)
{
if (*cache) {
return;
}
*cache = randomx_alloc_cache((flags | RANDOMX_FLAG_LARGE_PAGES) & ~disabled_flags());
if (!*cache) {
alloc_err_msg("Couldn't allocate RandomX cache using large pages");
*cache = randomx_alloc_cache(flags & ~disabled_flags());
if (!*cache) local_abort("Couldn't allocate RandomX cache");
}
}
static void rx_init_full_vm(randomx_flags flags, randomx_vm** vm)
{
if (*vm || !main_dataset || (disabled_flags() & RANDOMX_FLAG_FULL_MEM)) {
return;
}
if ((flags & RANDOMX_FLAG_JIT) && !miner_thread) {
flags |= RANDOMX_FLAG_SECURE;
}
*vm = randomx_create_vm((flags | RANDOMX_FLAG_LARGE_PAGES | RANDOMX_FLAG_FULL_MEM) & ~disabled_flags(), NULL, main_dataset);
if (!*vm) {
static int shown = 0;
if (!shown) {
shown = 1;
alloc_err_msg("Couldn't allocate RandomX full VM using large pages (will print only once)");
}
*vm = randomx_create_vm((flags | RANDOMX_FLAG_FULL_MEM) & ~disabled_flags(), NULL, main_dataset);
if (!*vm) {
merror(RX_LOGCAT, "Couldn't allocate RandomX full VM");
}
}
}
static void rx_init_light_vm(randomx_flags flags, randomx_vm** vm, randomx_cache* cache)
{
if (*vm) {
randomx_vm_set_cache(*vm, cache);
return;
}
if ((flags & RANDOMX_FLAG_JIT) && !miner_thread) {
flags |= RANDOMX_FLAG_SECURE;
}
flags &= ~RANDOMX_FLAG_FULL_MEM;
*vm = randomx_create_vm((flags | RANDOMX_FLAG_LARGE_PAGES) & ~disabled_flags(), cache, NULL);
if (!*vm) {
static int shown = 0;
if (!shown) {
shown = 1;
alloc_err_msg("Couldn't allocate RandomX light VM using large pages (will print only once)");
}
*vm = randomx_create_vm(flags & ~disabled_flags(), cache, NULL);
if (!*vm) local_abort("Couldn't allocate RandomX light VM");
}
}
typedef struct seedinfo {
randomx_cache *si_cache;
unsigned long si_start;
unsigned long si_count;
} seedinfo;
static CTHR_THREAD_RTYPE rx_seedthread(void *arg) {
seedinfo *si = arg;
randomx_init_dataset(main_dataset, si->si_cache, si->si_start, si->si_count);
CTHR_THREAD_RETURN;
}
static void rx_init_dataset(size_t max_threads) {
if (!main_dataset) {
return;
}
// leave 2 CPU cores for other tasks
const size_t num_threads = (max_threads < 4) ? 1 : (max_threads - 2);
seedinfo* si = malloc(num_threads * sizeof(seedinfo));
if (!si) local_abort("Couldn't allocate RandomX mining threadinfo");
const uint32_t delta = randomx_dataset_item_count() / num_threads;
uint32_t start = 0;
const size_t n1 = num_threads - 1;
for (size_t i = 0; i < n1; ++i) {
si[i].si_cache = main_cache;
si[i].si_start = start;
si[i].si_count = delta;
start += delta;
}
si[n1].si_cache = main_cache;
si[n1].si_start = start;
si[n1].si_count = randomx_dataset_item_count() - start;
CTHR_THREAD_TYPE *st = malloc(num_threads * sizeof(CTHR_THREAD_TYPE));
if (!st) local_abort("Couldn't allocate RandomX mining threadlist");
CTHR_RWLOCK_LOCK_READ(main_cache_lock);
for (size_t i = 0; i < n1; ++i) {
if (!CTHR_THREAD_CREATE(st[i], rx_seedthread, &si[i])) {
local_abort("Couldn't start RandomX seed thread");
}
}
randomx_init_dataset(main_dataset, si[n1].si_cache, si[n1].si_start, si[n1].si_count);
for (size_t i = 0; i < n1; ++i) CTHR_THREAD_JOIN(st[i]);
CTHR_RWLOCK_UNLOCK_READ(main_cache_lock);
free(st);
free(si);
minfo(RX_LOGCAT, "RandomX dataset initialized");
}
typedef struct thread_info {
char seedhash[HASH_SIZE];
size_t max_threads;
} thread_info;
static CTHR_THREAD_RTYPE rx_set_main_seedhash_thread(void *arg) {
thread_info* info = arg;
CTHR_RWLOCK_LOCK_WRITE(main_dataset_lock);
CTHR_RWLOCK_LOCK_WRITE(main_cache_lock);
// Double check that seedhash wasn't already updated
if (is_main(info->seedhash)) {
CTHR_RWLOCK_UNLOCK_WRITE(main_cache_lock);
CTHR_RWLOCK_UNLOCK_WRITE(main_dataset_lock);
free(info);
CTHR_THREAD_RETURN;
}
memcpy(main_seedhash, info->seedhash, HASH_SIZE);
main_seedhash_set = 1;
char buf[HASH_SIZE * 2 + 1];
hash2hex(main_seedhash, buf);
minfo(RX_LOGCAT, "RandomX new main seed hash is %s", buf);
const randomx_flags flags = enabled_flags() & ~disabled_flags();
rx_alloc_dataset(flags, &main_dataset, 0);
rx_alloc_cache(flags, &main_cache);
randomx_init_cache(main_cache, info->seedhash, HASH_SIZE);
minfo(RX_LOGCAT, "RandomX main cache initialized");
CTHR_RWLOCK_UNLOCK_WRITE(main_cache_lock);
// From this point, rx_slow_hash can calculate hashes in light mode, but dataset is not initialized yet
rx_init_dataset(info->max_threads);
CTHR_RWLOCK_UNLOCK_WRITE(main_dataset_lock);
free(info);
CTHR_THREAD_RETURN;
}
void rx_set_main_seedhash(const char *seedhash, size_t max_dataset_init_threads) {
// Early out if seedhash didn't change
if (is_main(seedhash)) {
return;
}
// Update main cache and dataset in the background
thread_info* info = malloc(sizeof(thread_info));
if (!info) local_abort("Couldn't allocate RandomX mining threadinfo");
memcpy(info->seedhash, seedhash, HASH_SIZE);
info->max_threads = max_dataset_init_threads;
CTHR_THREAD_TYPE t;
if (!CTHR_THREAD_CREATE(t, rx_set_main_seedhash_thread, info)) {
local_abort("Couldn't start RandomX seed thread");
}
CTHR_THREAD_CLOSE(t);
}
void rx_slow_hash(const char *seedhash, const void *data, size_t length, char *result_hash) {
const randomx_flags flags = enabled_flags() & ~disabled_flags();
int success = 0;
// Fast path (seedhash == main_seedhash)
// Multiple threads can run in parallel in fast or light mode, 1-2 ms or 10-15 ms per hash per thread
if (is_main(seedhash)) {
// If CTHR_RWLOCK_TRYLOCK_READ fails it means dataset is being initialized now, so use the light mode
if (main_dataset && CTHR_RWLOCK_TRYLOCK_READ(main_dataset_lock)) {
// Double check that main_seedhash didn't change
if (is_main(seedhash)) {
rx_init_full_vm(flags, &main_vm_full);
if (main_vm_full) {
randomx_calculate_hash(main_vm_full, data, length, result_hash);
success = 1;
}
}
CTHR_RWLOCK_UNLOCK_READ(main_dataset_lock);
} else {
CTHR_RWLOCK_LOCK_READ(main_cache_lock);
// Double check that main_seedhash didn't change
if (is_main(seedhash)) {
rx_init_light_vm(flags, &main_vm_light, main_cache);
randomx_calculate_hash(main_vm_light, data, length, result_hash);
success = 1;
}
CTHR_RWLOCK_UNLOCK_READ(main_cache_lock);
}
}
if (success) {
return;
}
char buf[HASH_SIZE * 2 + 1];
// Slow path (seedhash != main_seedhash, but seedhash == secondary_seedhash)
// Multiple threads can run in parallel in light mode, 10-15 ms per hash per thread
if (!secondary_cache) {
CTHR_RWLOCK_LOCK_WRITE(secondary_cache_lock);
if (!secondary_cache) {
hash2hex(seedhash, buf);
minfo(RX_LOGCAT, "RandomX new secondary seed hash is %s", buf);
rx_alloc_cache(flags, &secondary_cache);
randomx_init_cache(secondary_cache, seedhash, HASH_SIZE);
minfo(RX_LOGCAT, "RandomX secondary cache updated");
memcpy(secondary_seedhash, seedhash, HASH_SIZE);
secondary_seedhash_set = 1;
}
CTHR_RWLOCK_UNLOCK_WRITE(secondary_cache_lock);
}
CTHR_RWLOCK_LOCK_READ(secondary_cache_lock);
if (is_secondary(seedhash)) {
rx_init_light_vm(flags, &secondary_vm_light, secondary_cache);
randomx_calculate_hash(secondary_vm_light, data, length, result_hash);
success = 1;
}
CTHR_RWLOCK_UNLOCK_READ(secondary_cache_lock);
if (success) {
return;
}
// Slowest path (seedhash != main_seedhash, seedhash != secondary_seedhash)
// Only one thread runs at a time and updates secondary_seedhash if needed, up to 200-500 ms per hash
CTHR_RWLOCK_LOCK_WRITE(secondary_cache_lock);
if (!is_secondary(seedhash)) {
hash2hex(seedhash, buf);
minfo(RX_LOGCAT, "RandomX new secondary seed hash is %s", buf);
randomx_init_cache(secondary_cache, seedhash, HASH_SIZE);
minfo(RX_LOGCAT, "RandomX secondary cache updated");
memcpy(secondary_seedhash, seedhash, HASH_SIZE);
secondary_seedhash_set = 1;
}
rx_init_light_vm(flags, &secondary_vm_light, secondary_cache);
randomx_calculate_hash(secondary_vm_light, data, length, result_hash);
CTHR_RWLOCK_UNLOCK_WRITE(secondary_cache_lock);
}
void rx_set_miner_thread(uint32_t value, size_t max_dataset_init_threads) {
miner_thread = value;
// If dataset is not allocated yet, try to allocate and initialize it
CTHR_RWLOCK_LOCK_WRITE(main_dataset_lock);
if (main_dataset) {
CTHR_RWLOCK_UNLOCK_WRITE(main_dataset_lock);
return;
}
const randomx_flags flags = enabled_flags() & ~disabled_flags();
rx_alloc_dataset(flags, &main_dataset, 1);
rx_init_dataset(max_dataset_init_threads);
CTHR_RWLOCK_UNLOCK_WRITE(main_dataset_lock);
}
uint32_t rx_get_miner_thread() {
return miner_thread;
}
void rx_slow_hash_allocate_state() {}
static void rx_destroy_vm(randomx_vm** vm) {
if (*vm) {
randomx_destroy_vm(*vm);
*vm = NULL;
}
}
void rx_slow_hash_free_state() {
rx_destroy_vm(&main_vm_full);
rx_destroy_vm(&main_vm_light);
rx_destroy_vm(&secondary_vm_light);
}