monero/tests/unit_tests/hardfork.cpp
moneromooo-monero 6376627530
hardfork: switch voting to block minor version
Using major version would cause older daemons to reject those
blocks as they fail to deserialize blocks with a major version
which is not 1. There is no such restriction on the minor
version, so switching allows older daemons to coexist with
newer ones till the actual fork date, when most will hopefully
have updated already.

Also, for the same reason, we consider a vote for 0 to be a
vote for 1, since older daemons set minor version to 0.
2015-10-21 19:21:14 +01:00

450 lines
17 KiB
C++

// Copyright (c) 2014-2015, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <algorithm>
#include "gtest/gtest.h"
#include "blockchain_db/lmdb/db_lmdb.h"
#include "cryptonote_core/hardfork.h"
using namespace cryptonote;
#define BLOCKS_PER_YEAR 525960
#define SECONDS_PER_YEAR 31557600
class TestDB: public BlockchainDB {
public:
virtual void open(const std::string& filename, const int db_flags = 0) {
for (size_t n = 0; n < 256; ++n)
starting_height[n] = std::numeric_limits<uint64_t>::max();
}
virtual void close() {}
virtual void sync() {}
virtual void reset() {}
virtual std::vector<std::string> get_filenames() const { return std::vector<std::string>(); }
virtual std::string get_db_name() const { return std::string(); }
virtual bool lock() { return true; }
virtual void unlock() { }
virtual void batch_start(uint64_t batch_num_blocks=0) {}
virtual void batch_stop() {}
virtual void set_batch_transactions(bool) {}
virtual bool block_exists(const crypto::hash& h) const { return false; }
virtual block get_block(const crypto::hash& h) const { return block(); }
virtual uint64_t get_block_height(const crypto::hash& h) const { return 0; }
virtual block_header get_block_header(const crypto::hash& h) const { return block_header(); }
virtual uint64_t get_block_timestamp(const uint64_t& height) const { return 0; }
virtual uint64_t get_top_block_timestamp() const { return 0; }
virtual size_t get_block_size(const uint64_t& height) const { return 128; }
virtual difficulty_type get_block_cumulative_difficulty(const uint64_t& height) const { return 10; }
virtual difficulty_type get_block_difficulty(const uint64_t& height) const { return 0; }
virtual uint64_t get_block_already_generated_coins(const uint64_t& height) const { return 10000000000; }
virtual crypto::hash get_block_hash_from_height(const uint64_t& height) const { return crypto::hash(); }
virtual std::vector<block> get_blocks_range(const uint64_t& h1, const uint64_t& h2) const { return std::vector<block>(); }
virtual std::vector<crypto::hash> get_hashes_range(const uint64_t& h1, const uint64_t& h2) const { return std::vector<crypto::hash>(); }
virtual crypto::hash top_block_hash() const { return crypto::hash(); }
virtual block get_top_block() const { return block(); }
virtual uint64_t height() const { return blocks.size(); }
virtual bool tx_exists(const crypto::hash& h) const { return false; }
virtual uint64_t get_tx_unlock_time(const crypto::hash& h) const { return 0; }
virtual transaction get_tx(const crypto::hash& h) const { return transaction(); }
virtual uint64_t get_tx_count() const { return 0; }
virtual std::vector<transaction> get_tx_list(const std::vector<crypto::hash>& hlist) const { return std::vector<transaction>(); }
virtual uint64_t get_tx_block_height(const crypto::hash& h) const { return 0; }
virtual uint64_t get_num_outputs(const uint64_t& amount) const { return 1; }
virtual output_data_t get_output_key(const uint64_t& amount, const uint64_t& index) { return output_data_t(); }
virtual output_data_t get_output_key(const uint64_t& global_index) const { return output_data_t(); }
virtual tx_out get_output(const crypto::hash& h, const uint64_t& index) const { return tx_out(); }
virtual tx_out_index get_output_tx_and_index_from_global(const uint64_t& index) const { return tx_out_index(); }
virtual tx_out_index get_output_tx_and_index(const uint64_t& amount, const uint64_t& index) { return tx_out_index(); }
virtual void get_output_tx_and_index(const uint64_t& amount, const std::vector<uint64_t> &offsets, std::vector<tx_out_index> &indices) {}
virtual void get_output_key(const uint64_t &amount, const std::vector<uint64_t> &offsets, std::vector<output_data_t> &outputs) {}
virtual bool can_thread_bulk_indices() const { return false; }
virtual std::vector<uint64_t> get_tx_output_indices(const crypto::hash& h) const { return std::vector<uint64_t>(); }
virtual std::vector<uint64_t> get_tx_amount_output_indices(const crypto::hash& h) const { return std::vector<uint64_t>(); }
virtual bool has_key_image(const crypto::key_image& img) const { return false; }
virtual void remove_block() { blocks.pop_back(); }
virtual void add_transaction_data(const crypto::hash& blk_hash, const transaction& tx, const crypto::hash& tx_hash) {}
virtual void remove_transaction_data(const crypto::hash& tx_hash, const transaction& tx) {}
virtual void add_output(const crypto::hash& tx_hash, const tx_out& tx_output, const uint64_t& local_index, const uint64_t unlock_time) {}
virtual void remove_output(const tx_out& tx_output) {}
virtual void add_spent_key(const crypto::key_image& k_image) {}
virtual void remove_spent_key(const crypto::key_image& k_image) {}
virtual void add_block( const block& blk
, const size_t& block_size
, const difficulty_type& cumulative_difficulty
, const uint64_t& coins_generated
, const crypto::hash& blk_hash
) {
blocks.push_back(blk);
}
virtual block get_block_from_height(const uint64_t& height) const {
return blocks[height];
}
virtual void set_hard_fork_starting_height(uint8_t version, uint64_t height) {
starting_height[version] = height;
}
virtual uint64_t get_hard_fork_starting_height(uint8_t version) const {
return starting_height[version];
}
virtual void set_hard_fork_version(uint64_t height, uint8_t version) {
if (versions.size() <= height) versions.resize(height+1); versions[height] = version;
}
virtual uint8_t get_hard_fork_version(uint64_t height) const {
return versions[height];
}
private:
std::vector<block> blocks;
uint64_t starting_height[256];
std::deque<uint8_t> versions;
};
static cryptonote::block mkblock(uint8_t version)
{
cryptonote::block b;
b.minor_version = version;
return b;
}
TEST(empty_hardforks, Success)
{
TestDB db;
HardFork hf(db);
ASSERT_TRUE(hf.add(1, 0, 0));
hf.init();
ASSERT_TRUE(hf.get_state(time(NULL)) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(time(NULL) + 3600*24*400) == HardFork::Ready);
for (uint64_t h = 0; h <= 10; ++h) {
db.add_block(mkblock(1), 0, 0, 0, crypto::hash());
ASSERT_TRUE(hf.add(db.get_block_from_height(h), h));
}
ASSERT_EQ(hf.get(0), 1);
ASSERT_EQ(hf.get(1), 1);
ASSERT_EQ(hf.get(10), 1);
}
TEST(ordering, Success)
{
TestDB db;
HardFork hf(db);
ASSERT_TRUE(hf.add(2, 2, 1));
ASSERT_FALSE(hf.add(3, 3, 1));
ASSERT_FALSE(hf.add(3, 2, 2));
ASSERT_FALSE(hf.add(2, 3, 2));
ASSERT_TRUE(hf.add(3, 10, 2));
ASSERT_TRUE(hf.add(4, 20, 3));
ASSERT_FALSE(hf.add(5, 5, 4));
}
TEST(states, Success)
{
TestDB db;
HardFork hf(db);
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(2, BLOCKS_PER_YEAR, SECONDS_PER_YEAR));
ASSERT_TRUE(hf.get_state(0) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR / 2) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_UPDATE_TIME / 2) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + (HardFork::DEFAULT_UPDATE_TIME + HardFork::DEFAULT_FORKED_TIME) / 2) == HardFork::UpdateNeeded);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_FORKED_TIME * 2) == HardFork::LikelyForked);
ASSERT_TRUE(hf.add(3, BLOCKS_PER_YEAR * 5, SECONDS_PER_YEAR * 5));
ASSERT_TRUE(hf.get_state(0) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR / 2) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_UPDATE_TIME / 2) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + (HardFork::DEFAULT_UPDATE_TIME + HardFork::DEFAULT_FORKED_TIME) / 2) == HardFork::Ready);
ASSERT_TRUE(hf.get_state(SECONDS_PER_YEAR + HardFork::DEFAULT_FORKED_TIME * 2) == HardFork::Ready);
}
TEST(steps_asap, Success)
{
TestDB db;
HardFork hf(db, 1,0,1,1,1);
// v h t
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(4, 2, 1));
ASSERT_TRUE(hf.add(7, 4, 2));
ASSERT_TRUE(hf.add(9, 6, 3));
hf.init();
for (uint64_t h = 0; h < 10; ++h) {
db.add_block(mkblock(10), 0, 0, 0, crypto::hash());
ASSERT_TRUE(hf.add(db.get_block_from_height(h), h));
}
ASSERT_EQ(hf.get(0), 1);
ASSERT_EQ(hf.get(1), 1);
ASSERT_EQ(hf.get(2), 4);
ASSERT_EQ(hf.get(3), 4);
ASSERT_EQ(hf.get(4), 7);
ASSERT_EQ(hf.get(5), 7);
ASSERT_EQ(hf.get(6), 9);
ASSERT_EQ(hf.get(7), 9);
ASSERT_EQ(hf.get(8), 9);
ASSERT_EQ(hf.get(9), 9);
}
TEST(steps_1, Success)
{
TestDB db;
HardFork hf(db, 1,0,1,1,1);
ASSERT_TRUE(hf.add(1, 0, 0));
for (int n = 1 ; n < 10; ++n)
ASSERT_TRUE(hf.add(n+1, n, n));
hf.init();
for (uint64_t h = 0 ; h < 10; ++h) {
db.add_block(mkblock(h+1), 0, 0, 0, crypto::hash());
ASSERT_TRUE(hf.add(db.get_block_from_height(h), h));
}
for (uint64_t h = 0; h < 10; ++h) {
ASSERT_EQ(hf.get(h), std::max(1,(int)h));
}
}
TEST(reorganize, Same)
{
for (int history = 1; history <= 12; ++history) {
TestDB db;
HardFork hf(db, 1, 0, 1, 1, history, 100);
// v h t
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(4, 2, 1));
ASSERT_TRUE(hf.add(7, 4, 2));
ASSERT_TRUE(hf.add(9, 6, 3));
hf.init();
// index 0 1 2 3 4 5 6 7 8 9
static const uint8_t block_versions[] = { 1, 1, 4, 4, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 };
for (uint64_t h = 0; h < 20; ++h) {
db.add_block(mkblock(block_versions[h]), 0, 0, 0, crypto::hash());
ASSERT_TRUE(hf.add(db.get_block_from_height(h), h));
}
for (uint64_t rh = 0; rh < 20; ++rh) {
hf.reorganize_from_block_height(rh);
for (int hh = 0; hh < 20; ++hh) {
uint8_t version = hh >= history ? block_versions[hh - history] : 1;
ASSERT_EQ(hf.get(hh), version);
}
}
}
}
TEST(reorganize, Changed)
{
int history = 4;
TestDB db;
HardFork hf(db, 1, 0, 1, 1, 4, 100);
// v h t
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(4, 2, 1));
ASSERT_TRUE(hf.add(7, 4, 2));
ASSERT_TRUE(hf.add(9, 6, 3));
hf.init();
// fork 4 7 9
// index 0 1 2 3 4 5 6 7 8 9
static const uint8_t block_versions[] = { 1, 1, 4, 4, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 };
static const uint8_t expected_versions[] = { 1, 1, 1, 1, 1, 1, 4, 4, 7, 7, 9, 9, 9, 9, 9, 9 };
for (uint64_t h = 0; h < 16; ++h) {
db.add_block(mkblock(block_versions[h]), 0, 0, 0, crypto::hash());
ASSERT_TRUE (hf.add(db.get_block_from_height(h), h));
}
for (uint64_t rh = 0; rh < 16; ++rh) {
hf.reorganize_from_block_height(rh);
for (int hh = 0; hh < 16; ++hh) {
ASSERT_EQ(hf.get(hh), expected_versions[hh]);
}
}
// delay a bit for 9, and go back to 1 to check it stays at 9
static const uint8_t block_versions_new[] = { 1, 1, 4, 4, 7, 7, 4, 7, 7, 7, 9, 9, 9, 9, 9, 1 };
static const uint8_t expected_versions_new[] = { 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 7, 7, 7, 9, 9 };
for (uint64_t h = 3; h < 16; ++h) {
db.remove_block();
}
ASSERT_EQ(db.height(), 3);
hf.reorganize_from_block_height(2);
for (uint64_t h = 3; h < 16; ++h) {
db.add_block(mkblock(block_versions_new[h]), 0, 0, 0, crypto::hash());
bool ret = hf.add(db.get_block_from_height(h), h);
ASSERT_EQ (ret, h < 15);
}
db.remove_block(); // last block added to the blockchain, but not hf
ASSERT_EQ(db.height(), 15);
for (int hh = 0; hh < 15; ++hh) {
ASSERT_EQ(hf.get(hh), expected_versions_new[hh]);
}
}
TEST(voting, threshold)
{
for (int threshold = 87; threshold <= 88; ++threshold) {
TestDB db;
HardFork hf(db, 1, 0, 1, 1, 8, threshold);
// v h t
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(2, 2, 1));
hf.init();
for (uint64_t h = 0; h <= 8; ++h) {
uint8_t v = 1 + !!(h % 8);
db.add_block(mkblock(v), 0, 0, 0, crypto::hash());
bool ret = hf.add(db.get_block_from_height(h), h);
if (h >= 8 && threshold == 87) {
// for threshold 87, we reach the treshold at height 7, so from height 8, hard fork to version 2, but 8 tries to add 1
ASSERT_FALSE(ret);
}
else {
// for threshold 88, we never reach the threshold
ASSERT_TRUE(ret);
uint8_t expected = threshold == 88 ? 1 : h < 8 ? 1 : 2;
ASSERT_EQ(hf.get(h), expected);
}
}
}
}
TEST(new_blocks, denied)
{
TestDB db;
HardFork hf(db, 1, 0, 1, 1, 4, 50);
// v h t
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(2, 2, 1));
hf.init();
ASSERT_TRUE(hf.add(mkblock(1), 0));
ASSERT_TRUE(hf.add(mkblock(1), 1));
ASSERT_TRUE(hf.add(mkblock(1), 2));
ASSERT_TRUE(hf.add(mkblock(2), 3));
ASSERT_TRUE(hf.add(mkblock(1), 4));
ASSERT_TRUE(hf.add(mkblock(1), 5));
ASSERT_TRUE(hf.add(mkblock(1), 6));
ASSERT_TRUE(hf.add(mkblock(2), 7));
ASSERT_TRUE(hf.add(mkblock(2), 8)); // we reach 50% of the last 4
ASSERT_FALSE(hf.add(mkblock(1), 9)); // so this one can't get added
ASSERT_TRUE(hf.add(mkblock(2), 10));
ASSERT_EQ(hf.get_start_height(2), 9);
}
TEST(new_version, early)
{
TestDB db;
HardFork hf(db, 1, 0, 1, 1, 4, 50);
// v h t
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(2, 4, 1));
hf.init();
ASSERT_TRUE(hf.add(mkblock(2), 0));
ASSERT_TRUE(hf.add(mkblock(2), 1)); // we have enough votes already
ASSERT_TRUE(hf.add(mkblock(2), 2));
ASSERT_TRUE(hf.add(mkblock(1), 3)); // we accept a previous version because we did not switch, even with all the votes
ASSERT_TRUE(hf.add(mkblock(2), 4)); // but have to wait for the declared height anyway
ASSERT_TRUE(hf.add(mkblock(2), 5));
ASSERT_FALSE(hf.add(mkblock(1), 6)); // we don't accept 1 anymore
ASSERT_TRUE(hf.add(mkblock(2), 7)); // but we do accept 2
ASSERT_EQ(hf.get_start_height(2), 4);
}
TEST(reorganize, changed)
{
TestDB db;
HardFork hf(db, 1, 0, 1, 1, 4, 50);
// v h t
ASSERT_TRUE(hf.add(1, 0, 0));
ASSERT_TRUE(hf.add(2, 2, 1));
ASSERT_TRUE(hf.add(3, 5, 2));
hf.init();
#define ADD(v, h, a) \
do { \
cryptonote::block b = mkblock(v); \
db.add_block(b, 0, 0, 0, crypto::hash()); \
ASSERT_##a(hf.add(b, h)); \
} while(0)
#define ADD_TRUE(v, h) ADD(v, h, TRUE)
#define ADD_FALSE(v, h) ADD(v, h, FALSE)
ADD_TRUE(1, 0);
ADD_TRUE(1, 1);
ADD_TRUE(2, 2);
ADD_TRUE(2, 3); // switch to 2 here
ADD_TRUE(2, 4);
ADD_TRUE(2, 5);
ADD_TRUE(2, 6);
ASSERT_EQ(hf.get_current_version(), 2);
ADD_TRUE(3, 7);
ADD_TRUE(4, 8);
ADD_TRUE(4, 9);
ASSERT_EQ(hf.get_start_height(2), 4); // reaches threshold 2 at height 3, so height 4 forks
ASSERT_EQ(hf.get_start_height(3), 9);
ASSERT_EQ(hf.get_current_version(), 3);
// pop a few blocks and check current version goes back down
db.remove_block();
hf.reorganize_from_block_height(8);
ASSERT_EQ(hf.get_current_version(), 3);
db.remove_block();
hf.reorganize_from_block_height(7);
ASSERT_EQ(hf.get_current_version(), 2);
db.remove_block();
ASSERT_EQ(hf.get_current_version(), 2);
// add blocks again, but remaining at 2
ADD_TRUE(2, 7);
ADD_TRUE(2, 8);
ADD_TRUE(2, 9);
ASSERT_EQ(hf.get_start_height(2), 4); // unchanged
ASSERT_EQ(hf.get_current_version(), 2); // we did not bump to 3 this time
ASSERT_EQ(hf.get_start_height(3), std::numeric_limits<uint64_t>::max()); // not yet
}