monero/src/cryptonote_basic/difficulty.cpp
SomaticFanatic 5ef0607da6 Update copyright year to 2020
Update copyright year to 2020
2020-05-06 22:36:54 -04:00

257 lines
8.9 KiB
C++

// Copyright (c) 2014-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <vector>
#include "int-util.h"
#include "crypto/hash.h"
#include "cryptonote_config.h"
#include "difficulty.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "difficulty"
namespace cryptonote {
using std::size_t;
using std::uint64_t;
using std::vector;
#if defined(__x86_64__)
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
low = mul128(a, b, &high);
}
#else
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
// __int128 isn't part of the standard, so the previous function wasn't portable. mul128() in Windows is fine,
// but this portable function should be used elsewhere. Credit for this function goes to latexi95.
uint64_t aLow = a & 0xFFFFFFFF;
uint64_t aHigh = a >> 32;
uint64_t bLow = b & 0xFFFFFFFF;
uint64_t bHigh = b >> 32;
uint64_t res = aLow * bLow;
uint64_t lowRes1 = res & 0xFFFFFFFF;
uint64_t carry = res >> 32;
res = aHigh * bLow + carry;
uint64_t highResHigh1 = res >> 32;
uint64_t highResLow1 = res & 0xFFFFFFFF;
res = aLow * bHigh;
uint64_t lowRes2 = res & 0xFFFFFFFF;
carry = res >> 32;
res = aHigh * bHigh + carry;
uint64_t highResHigh2 = res >> 32;
uint64_t highResLow2 = res & 0xFFFFFFFF;
//Addition
uint64_t r = highResLow1 + lowRes2;
carry = r >> 32;
low = (r << 32) | lowRes1;
r = highResHigh1 + highResLow2 + carry;
uint64_t d3 = r & 0xFFFFFFFF;
carry = r >> 32;
r = highResHigh2 + carry;
high = d3 | (r << 32);
}
#endif
static inline bool cadd(uint64_t a, uint64_t b) {
return a + b < a;
}
static inline bool cadc(uint64_t a, uint64_t b, bool c) {
return a + b < a || (c && a + b == (uint64_t) -1);
}
bool check_hash_64(const crypto::hash &hash, uint64_t difficulty) {
uint64_t low, high, top, cur;
// First check the highest word, this will most likely fail for a random hash.
mul(swap64le(((const uint64_t *) &hash)[3]), difficulty, top, high);
if (high != 0) {
return false;
}
mul(swap64le(((const uint64_t *) &hash)[0]), difficulty, low, cur);
mul(swap64le(((const uint64_t *) &hash)[1]), difficulty, low, high);
bool carry = cadd(cur, low);
cur = high;
mul(swap64le(((const uint64_t *) &hash)[2]), difficulty, low, high);
carry = cadc(cur, low, carry);
carry = cadc(high, top, carry);
return !carry;
}
uint64_t next_difficulty_64(std::vector<std::uint64_t> timestamps, std::vector<uint64_t> cumulative_difficulties, size_t target_seconds) {
if(timestamps.size() > DIFFICULTY_WINDOW)
{
timestamps.resize(DIFFICULTY_WINDOW);
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
}
size_t length = timestamps.size();
assert(length == cumulative_difficulties.size());
if (length <= 1) {
return 1;
}
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
assert(length <= DIFFICULTY_WINDOW);
sort(timestamps.begin(), timestamps.end());
size_t cut_begin, cut_end;
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
if (length <= DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) {
cut_begin = 0;
cut_end = length;
} else {
cut_begin = (length - (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) + 1) / 2;
cut_end = cut_begin + (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT);
}
assert(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length);
uint64_t time_span = timestamps[cut_end - 1] - timestamps[cut_begin];
if (time_span == 0) {
time_span = 1;
}
uint64_t total_work = cumulative_difficulties[cut_end - 1] - cumulative_difficulties[cut_begin];
assert(total_work > 0);
uint64_t low, high;
mul(total_work, target_seconds, low, high);
// blockchain errors "difficulty overhead" if this function returns zero.
// TODO: consider throwing an exception instead
if (high != 0 || low + time_span - 1 < low) {
return 0;
}
return (low + time_span - 1) / time_span;
}
#if defined(_MSC_VER)
#ifdef max
#undef max
#endif
#endif
const difficulty_type max64bit(std::numeric_limits<std::uint64_t>::max());
const boost::multiprecision::uint256_t max128bit(std::numeric_limits<boost::multiprecision::uint128_t>::max());
const boost::multiprecision::uint512_t max256bit(std::numeric_limits<boost::multiprecision::uint256_t>::max());
#define FORCE_FULL_128_BITS
bool check_hash_128(const crypto::hash &hash, difficulty_type difficulty) {
#ifndef FORCE_FULL_128_BITS
// fast check
if (difficulty >= max64bit && ((const uint64_t *) &hash)[3] > 0)
return false;
#endif
// usual slow check
boost::multiprecision::uint512_t hashVal = 0;
#ifdef FORCE_FULL_128_BITS
for(int i = 0; i < 4; i++) { // highest word is zero
#else
for(int i = 1; i < 4; i++) { // highest word is zero
#endif
hashVal <<= 64;
hashVal |= swap64le(((const uint64_t *) &hash)[3 - i]);
}
return hashVal * difficulty <= max256bit;
}
bool check_hash(const crypto::hash &hash, difficulty_type difficulty) {
if (difficulty <= max64bit) // if can convert to small difficulty - do it
return check_hash_64(hash, difficulty.convert_to<std::uint64_t>());
else
return check_hash_128(hash, difficulty);
}
difficulty_type next_difficulty(std::vector<uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, size_t target_seconds) {
//cutoff DIFFICULTY_LAG
if(timestamps.size() > DIFFICULTY_WINDOW)
{
timestamps.resize(DIFFICULTY_WINDOW);
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
}
size_t length = timestamps.size();
assert(length == cumulative_difficulties.size());
if (length <= 1) {
return 1;
}
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
assert(length <= DIFFICULTY_WINDOW);
sort(timestamps.begin(), timestamps.end());
size_t cut_begin, cut_end;
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
if (length <= DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) {
cut_begin = 0;
cut_end = length;
} else {
cut_begin = (length - (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) + 1) / 2;
cut_end = cut_begin + (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT);
}
assert(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length);
uint64_t time_span = timestamps[cut_end - 1] - timestamps[cut_begin];
if (time_span == 0) {
time_span = 1;
}
difficulty_type total_work = cumulative_difficulties[cut_end - 1] - cumulative_difficulties[cut_begin];
assert(total_work > 0);
boost::multiprecision::uint256_t res = (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span;
if(res > max128bit)
return 0; // to behave like previous implementation, may be better return max128bit?
return res.convert_to<difficulty_type>();
}
std::string hex(difficulty_type v)
{
static const char chars[] = "0123456789abcdef";
std::string s;
while (v > 0)
{
s.push_back(chars[(v & 0xf).convert_to<unsigned>()]);
v >>= 4;
}
if (s.empty())
s += "0";
std::reverse(s.begin(), s.end());
return "0x" + s;
}
}