mirror of
https://github.com/monero-project/monero.git
synced 2024-11-16 15:57:36 +00:00
ed955bf751
1. Use `std::is_standard_layout` and `std::is_trivially_copyable` instead of `std::is_pod` for KV byte-wise serialization, which fixes compile issue for Boost UUIDs 2. Use `std::has_unique_object_representations` instead of `alignof(T) == 1` for epee byte spans and epee hex functions 3. Removed reimplementation of `std::hash` for `boost::uuids::uuid 4. Removed `<<` operator overload for `crypto::secret_key` 5. Removed instances in code where private view key was dumped to the log in plaintext
652 lines
28 KiB
C++
652 lines
28 KiB
C++
// Copyright (c) 2017-2024, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include "ringct/rctSigs.h"
|
|
#include "cryptonote_basic/cryptonote_basic.h"
|
|
#include "multisig/multisig.h"
|
|
#include "multisig/multisig_tx_builder_ringct.h"
|
|
#include "common/apply_permutation.h"
|
|
#include "chaingen.h"
|
|
#include "multisig.h"
|
|
|
|
#include "common/apply_permutation.h"
|
|
#include "crypto/crypto.h"
|
|
#include "cryptonote_basic/cryptonote_basic.h"
|
|
#include "device/device.hpp"
|
|
#include "multisig/multisig.h"
|
|
#include "multisig/multisig_account.h"
|
|
#include "multisig/multisig_kex_msg.h"
|
|
#include "ringct/rctOps.h"
|
|
#include "ringct/rctSigs.h"
|
|
|
|
using namespace epee;
|
|
using namespace crypto;
|
|
using namespace cryptonote;
|
|
using namespace multisig;
|
|
|
|
//#define NO_MULTISIG
|
|
|
|
static bool make_multisig_accounts(std::vector<cryptonote::account_base> &accounts, const uint32_t threshold)
|
|
{
|
|
CHECK_AND_ASSERT_MES(accounts.size() > 0, false, "Invalid multisig scheme");
|
|
|
|
std::vector<multisig_account> multisig_accounts;
|
|
std::vector<crypto::public_key> signers;
|
|
std::vector<multisig_kex_msg> round_msgs;
|
|
multisig_accounts.reserve(accounts.size());
|
|
signers.reserve(accounts.size());
|
|
round_msgs.reserve(accounts.size());
|
|
|
|
// create multisig accounts
|
|
for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index)
|
|
{
|
|
// create account and collect signer
|
|
multisig_accounts.emplace_back(
|
|
multisig_account{
|
|
get_multisig_blinded_secret_key(accounts[account_index].get_keys().m_spend_secret_key),
|
|
get_multisig_blinded_secret_key(accounts[account_index].get_keys().m_view_secret_key)
|
|
}
|
|
);
|
|
|
|
signers.emplace_back(multisig_accounts.back().get_base_pubkey());
|
|
|
|
// collect account's first kex msg
|
|
round_msgs.emplace_back(multisig_accounts.back().get_next_kex_round_msg());
|
|
}
|
|
|
|
// initialize accounts and collect kex messages for the next round
|
|
std::vector<multisig_kex_msg> temp_round_msgs(multisig_accounts.size());
|
|
for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index)
|
|
{
|
|
multisig_accounts[account_index].initialize_kex(threshold, signers, round_msgs);
|
|
temp_round_msgs[account_index] = multisig_accounts[account_index].get_next_kex_round_msg();
|
|
}
|
|
|
|
// perform key exchange rounds
|
|
while (!multisig_accounts[0].multisig_is_ready())
|
|
{
|
|
round_msgs = temp_round_msgs;
|
|
|
|
for (std::size_t account_index{0}; account_index < multisig_accounts.size(); ++account_index)
|
|
{
|
|
multisig_accounts[account_index].kex_update(round_msgs);
|
|
temp_round_msgs[account_index] = multisig_accounts[account_index].get_next_kex_round_msg();
|
|
}
|
|
}
|
|
|
|
// update accounts post key exchange
|
|
for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index)
|
|
{
|
|
accounts[account_index].make_multisig(multisig_accounts[account_index].get_common_privkey(),
|
|
multisig_accounts[account_index].get_base_privkey(),
|
|
multisig_accounts[account_index].get_multisig_pubkey(),
|
|
multisig_accounts[account_index].get_multisig_privkeys());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// Tests
|
|
|
|
bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry>& events,
|
|
size_t inputs, size_t mixin, uint64_t amount_paid, bool valid,
|
|
size_t threshold, size_t total, size_t creator, std::vector<size_t> other_signers,
|
|
const std::function<void(std::vector<tx_source_entry> &sources, std::vector<tx_destination_entry> &destinations)> &pre_tx,
|
|
const std::function<void(transaction &tx)> &post_tx) const
|
|
{
|
|
uint64_t ts_start = 1338224400;
|
|
bool r;
|
|
|
|
CHECK_AND_ASSERT_MES(total >= 2, false, "Bad scheme");
|
|
CHECK_AND_ASSERT_MES(threshold <= total, false, "Bad scheme");
|
|
CHECK_AND_ASSERT_MES(inputs >= 1 && inputs <= 8, false, "Inputs should between 1 and 8");
|
|
|
|
// given as 1 based for clarity
|
|
--creator;
|
|
for (size_t &signer: other_signers)
|
|
--signer;
|
|
|
|
CHECK_AND_ASSERT_MES(creator < total, false, "invalid creator");
|
|
for (size_t signer: other_signers)
|
|
CHECK_AND_ASSERT_MES(signer < total, false, "invalid signer");
|
|
|
|
GENERATE_MULTISIG_ACCOUNT(miner_account, threshold, total);
|
|
|
|
MAKE_GENESIS_BLOCK(events, blk_0, miner_account[creator], ts_start);
|
|
|
|
// create 16 miner accounts, and have them mine the next 16 blocks
|
|
// they will have a coinbase with a single out that's pseudo rct
|
|
constexpr size_t n_coinbases = 16;
|
|
cryptonote::account_base miner_accounts[n_coinbases];
|
|
const cryptonote::block *prev_block = &blk_0;
|
|
cryptonote::block blocks[n_coinbases];
|
|
for (size_t n = 0; n < n_coinbases; ++n) {
|
|
// the first block goes to the multisig account
|
|
miner_accounts[n].generate();
|
|
account_base &account = n < inputs ? miner_account[creator] : miner_accounts[n];
|
|
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, account,
|
|
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs,
|
|
HF_VERSION_BULLETPROOF_PLUS, HF_VERSION_BULLETPROOF_PLUS, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
|
|
crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 1, 4),
|
|
false, "Failed to generate block");
|
|
events.push_back(blocks[n]);
|
|
prev_block = blocks + n;
|
|
}
|
|
|
|
// rewind
|
|
cryptonote::block blk_r, blk_last;
|
|
{
|
|
blk_last = blocks[n_coinbases - 1];
|
|
for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i)
|
|
{
|
|
cryptonote::block blk;
|
|
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk, blk_last, miner_accounts[0],
|
|
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs,
|
|
HF_VERSION_BULLETPROOF_PLUS, HF_VERSION_BULLETPROOF_PLUS, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
|
|
crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 1, 4),
|
|
false, "Failed to generate block");
|
|
events.push_back(blk);
|
|
blk_last = blk;
|
|
}
|
|
blk_r = blk_last;
|
|
}
|
|
|
|
cryptonote::keypair in_ephemeral;
|
|
crypto::public_key tx_pub_key[n_coinbases];
|
|
crypto::public_key output_pub_key[n_coinbases];
|
|
for (size_t n = 0; n < n_coinbases; ++n)
|
|
{
|
|
tx_pub_key[n] = get_tx_pub_key_from_extra(blocks[n].miner_tx);
|
|
MDEBUG("tx_pub_key: " << tx_pub_key);
|
|
cryptonote::get_output_public_key(blocks[n].miner_tx.vout[0], output_pub_key[n]);
|
|
MDEBUG("output_pub_key: " << output_pub_key);
|
|
}
|
|
|
|
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
|
|
subaddresses[miner_account[0].get_keys().m_account_address.m_spend_public_key] = {0,0};
|
|
|
|
// create k/L/R/ki for that output we're going to spend
|
|
std::vector<std::vector<std::vector<crypto::secret_key>>> account_k(total);
|
|
std::vector<std::vector<std::vector<crypto::public_key>>> account_L(total);
|
|
std::vector<std::vector<std::vector<crypto::public_key>>> account_R(total);
|
|
std::vector<std::vector<std::vector<crypto::key_image>>> account_ki(total);
|
|
std::vector<crypto::public_key> additional_tx_keys;
|
|
for (size_t msidx = 0; msidx < total; ++msidx)
|
|
{
|
|
CHECK_AND_ASSERT_MES(miner_account[msidx].get_keys().m_account_address.m_spend_public_key == miner_account[0].get_keys().m_account_address.m_spend_public_key,
|
|
false, "Mismatched spend public keys");
|
|
|
|
size_t nlr = threshold < total ? threshold - 1 : 1;
|
|
nlr *= multisig::signing::kAlphaComponents;
|
|
account_k[msidx].resize(inputs);
|
|
account_L[msidx].resize(inputs);
|
|
account_R[msidx].resize(inputs);
|
|
account_ki[msidx].resize(inputs);
|
|
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
|
|
{
|
|
account_L[msidx][tdidx].resize(nlr);
|
|
account_R[msidx][tdidx].resize(nlr);
|
|
for (size_t n = 0; n < nlr; ++n)
|
|
{
|
|
account_k[msidx][tdidx].push_back(rct::rct2sk(rct::skGen()));
|
|
multisig::generate_multisig_LR(output_pub_key[tdidx], account_k[msidx][tdidx][n], account_L[msidx][tdidx][n], account_R[msidx][tdidx][n]);
|
|
}
|
|
size_t num_account_partial_ki = miner_account[msidx].get_multisig_keys().size();
|
|
account_ki[msidx][tdidx].resize(num_account_partial_ki);
|
|
for (size_t kiidx = 0; kiidx < num_account_partial_ki; ++kiidx)
|
|
{
|
|
r = multisig::generate_multisig_key_image(miner_account[msidx].get_keys(), kiidx, output_pub_key[tdidx], account_ki[msidx][tdidx][kiidx]);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate multisig export key image");
|
|
}
|
|
MDEBUG("Party " << msidx << ":");
|
|
MDEBUG("spend: sec " << crypto::secret_key_explicit_print_ref{miner_account[msidx].get_keys().m_spend_secret_key} << ", pub " << miner_account[msidx].get_keys().m_account_address.m_spend_public_key);
|
|
MDEBUG("view: sec " << crypto::secret_key_explicit_print_ref{miner_account[msidx].get_keys().m_view_secret_key} << ", pub " << miner_account[msidx].get_keys().m_account_address.m_view_public_key);
|
|
for (const auto &k: miner_account[msidx].get_multisig_keys())
|
|
MDEBUG("msk: " << crypto::secret_key_explicit_print_ref{k});
|
|
for (size_t n = 0; n < account_k[msidx][tdidx].size(); ++n)
|
|
{
|
|
MDEBUG("k: " << crypto::secret_key_explicit_print_ref{account_k[msidx][tdidx][n]});
|
|
MDEBUG("L: " << account_L[msidx][tdidx][n]);
|
|
MDEBUG("R: " << account_R[msidx][tdidx][n]);
|
|
}
|
|
for (const auto &ki: account_ki[msidx][tdidx])
|
|
MDEBUG("ki: " << ki);
|
|
}
|
|
}
|
|
|
|
// create kLRki
|
|
std::vector<rct::multisig_kLRki> kLRkis;
|
|
std::unordered_set<crypto::public_key> used_L;
|
|
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
|
|
{
|
|
kLRkis.push_back(rct::multisig_kLRki());
|
|
rct::multisig_kLRki &kLRki = kLRkis.back();
|
|
std::vector<crypto::key_image> pkis;
|
|
for (size_t msidx = 0; msidx < total; ++msidx)
|
|
for (size_t n = 0; n < account_ki[msidx][tdidx].size(); ++n)
|
|
pkis.push_back(account_ki[msidx][tdidx][n]);
|
|
r = multisig::generate_multisig_composite_key_image(miner_account[0].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)kLRki.ki);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
|
|
MDEBUG("composite ki: " << kLRki.ki);
|
|
for (size_t n = 1; n < total; ++n)
|
|
{
|
|
rct::key ki;
|
|
r = multisig::generate_multisig_composite_key_image(miner_account[n].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)ki);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
|
|
CHECK_AND_ASSERT_MES(kLRki.ki == ki, false, "Composite key images do not match");
|
|
}
|
|
}
|
|
|
|
// prepare a tx: we have 8 outputs, all from coinbase, so "fake" rct - use 2
|
|
std::vector<tx_source_entry> sources;
|
|
for (size_t n = 0; n < inputs; ++n)
|
|
{
|
|
sources.resize(sources.size() + 1);
|
|
tx_source_entry& src = sources.back();
|
|
|
|
src.real_output = n;
|
|
src.amount = blocks[n].miner_tx.vout[0].amount;
|
|
src.real_out_tx_key = tx_pub_key[n];
|
|
src.real_output_in_tx_index = 0;
|
|
src.mask = rct::identity();
|
|
src.rct = true;
|
|
src.multisig_kLRki = kLRkis[n];
|
|
|
|
for (size_t m = 0; m <= mixin; ++m)
|
|
{
|
|
rct::ctkey ctkey;
|
|
crypto::public_key output_public_key;
|
|
cryptonote::get_output_public_key(blocks[m].miner_tx.vout[0], output_public_key);
|
|
ctkey.dest = rct::pk2rct(output_public_key);
|
|
MDEBUG("using " << (m == n ? "real" : "fake") << " input " << ctkey.dest);
|
|
ctkey.mask = rct::commit(blocks[m].miner_tx.vout[0].amount, rct::identity()); // since those are coinbases, the masks are known
|
|
src.outputs.push_back(std::make_pair(m, ctkey));
|
|
}
|
|
}
|
|
|
|
//fill outputs entry
|
|
tx_destination_entry td;
|
|
td.addr = miner_account[creator].get_keys().m_account_address;
|
|
td.amount = amount_paid;
|
|
std::vector<tx_destination_entry> destinations; //tx need two outputs since HF_VERSION_MIN_2_OUTPUTS
|
|
destinations.push_back(td);
|
|
td.amount = 0;
|
|
destinations.push_back(td);
|
|
|
|
if (pre_tx)
|
|
pre_tx(sources, destinations);
|
|
|
|
transaction tx;
|
|
crypto::secret_key tx_key;
|
|
std::vector<crypto::secret_key> additional_tx_secret_keys;
|
|
crypto::secret_key multisig_tx_key_entropy;
|
|
auto sources_copy = sources;
|
|
multisig::signing::tx_builder_ringct_t tx_builder;
|
|
CHECK_AND_ASSERT_MES(tx_builder.init(miner_account[creator].get_keys(), {}, 0, {0}, sources, destinations, {}, {rct::RangeProofPaddedBulletproof, 4}, true, false, tx_key, additional_tx_secret_keys, multisig_tx_key_entropy, tx), false, "error: multisig::signing::tx_builder_ringct_t::init");
|
|
|
|
// work out the permutation done on sources
|
|
std::vector<size_t> ins_order;
|
|
for (size_t n = 0; n < sources.size(); ++n)
|
|
{
|
|
for (size_t idx = 0; idx < sources_copy.size(); ++idx)
|
|
{
|
|
CHECK_AND_ASSERT_MES((size_t)sources_copy[idx].real_output < sources_copy[idx].outputs.size(),
|
|
false, "Invalid real_output");
|
|
if (sources_copy[idx].outputs[sources_copy[idx].real_output].second.dest == sources[n].outputs[sources[n].real_output].second.dest)
|
|
ins_order.push_back(idx);
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(ins_order.size() == sources.size(), false, "Failed to work out sources permutation");
|
|
|
|
struct {
|
|
rct::keyM total_alpha_G;
|
|
rct::keyM total_alpha_H;
|
|
rct::keyV c_0;
|
|
rct::keyV s;
|
|
} sig;
|
|
{
|
|
used_L.clear();
|
|
sig.total_alpha_G.resize(sources.size(), rct::keyV(multisig::signing::kAlphaComponents, rct::identity()));
|
|
sig.total_alpha_H.resize(sources.size(), rct::keyV(multisig::signing::kAlphaComponents, rct::identity()));
|
|
sig.c_0.resize(sources.size());
|
|
sig.s.resize(sources.size());
|
|
for (std::size_t i = 0; i < sources.size(); ++i) {
|
|
rct::keyV alpha(multisig::signing::kAlphaComponents);
|
|
for (std::size_t m = 0; m < multisig::signing::kAlphaComponents; ++m) {
|
|
alpha[m] = rct::sk2rct(account_k[creator][ins_order[i]][m]);
|
|
sig.total_alpha_G[i][m] = rct::pk2rct(account_L[creator][ins_order[i]][m]);
|
|
sig.total_alpha_H[i][m] = rct::pk2rct(account_R[creator][ins_order[i]][m]);
|
|
for (size_t j = 0; j < total; ++j) {
|
|
if (j == creator)
|
|
continue;
|
|
if (std::find(other_signers.begin(), other_signers.end(), j) == other_signers.end())
|
|
continue;
|
|
for (std::size_t n = 0; n < account_L[j][ins_order[i]].size(); ++n) {
|
|
if (used_L.find(account_L[j][ins_order[i]][n]) == used_L.end()) {
|
|
used_L.insert(account_L[j][ins_order[i]][n]);
|
|
rct::addKeys(sig.total_alpha_G[i][m], sig.total_alpha_G[i][m], rct::pk2rct(account_L[j][ins_order[i]][n]));
|
|
rct::addKeys(sig.total_alpha_H[i][m], sig.total_alpha_H[i][m], rct::pk2rct(account_R[j][ins_order[i]][n]));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(tx_builder.first_partial_sign(i, sig.total_alpha_G[i], sig.total_alpha_H[i], alpha, sig.c_0[i], sig.s[i]), false, "error: multisig::signing::tx_builder_ringct_t::first_partial_sign");
|
|
}
|
|
}
|
|
|
|
// sign
|
|
std::unordered_set<crypto::secret_key> used_keys;
|
|
const std::vector<crypto::secret_key> &msk0 = miner_account[creator].get_multisig_keys();
|
|
for (const auto &sk: msk0)
|
|
used_keys.insert(sk); //these were used in 'tx_builder.init() -> tx_builder.first_partial_sign()'
|
|
for (size_t signer: other_signers)
|
|
{
|
|
rct::key skey = rct::zero();
|
|
const std::vector<crypto::secret_key> &msk1 = miner_account[signer].get_multisig_keys();
|
|
for (size_t n = 0; n < msk1.size(); ++n)
|
|
{
|
|
const crypto::secret_key &sk1 = msk1[n];
|
|
if (used_keys.find(sk1) == used_keys.end())
|
|
{
|
|
used_keys.insert(sk1);
|
|
sc_add(skey.bytes, skey.bytes, rct::sk2rct(sk1).bytes);
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(!(skey == rct::zero()), false, "failed to find secret multisig key to sign transaction");
|
|
rct::keyM k(sources.size(), rct::keyV(multisig::signing::kAlphaComponents));
|
|
for (std::size_t i = 0; i < sources.size(); ++i) {
|
|
for (std::size_t j = 0; j < multisig::signing::kAlphaComponents; ++j) {
|
|
for (std::size_t n = 0; n < account_k[signer][i].size(); ++n) {
|
|
crypto::public_key L;
|
|
rct::scalarmultBase((rct::key&)L, rct::sk2rct(account_k[signer][i][n]));
|
|
if (used_L.find(L) != used_L.end()) {
|
|
k[i][j] = rct::sk2rct(account_k[signer][i][n]);
|
|
account_k[signer][i][n] = rct::rct2sk(rct::zero()); //demo: always clear nonces from long-term storage after use
|
|
break;
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(!(k[i][j] == rct::zero()), false, "failed to find k to sign transaction");
|
|
}
|
|
}
|
|
tools::apply_permutation(ins_order, k);
|
|
multisig::signing::tx_builder_ringct_t signer_tx_builder;
|
|
CHECK_AND_ASSERT_MES(signer_tx_builder.init(miner_account[signer].get_keys(), {}, 0, {0}, sources, destinations, {}, {rct::RangeProofPaddedBulletproof, 4}, true, true, tx_key, additional_tx_secret_keys, multisig_tx_key_entropy, tx), false, "error: multisig::signing::tx_builder_ringct_t::init");
|
|
|
|
MDEBUG("signing with k size " << k.size());
|
|
for (size_t n = 0; n < multisig::signing::kAlphaComponents; ++n)
|
|
MDEBUG("signing with k " << k.back()[n]);
|
|
MDEBUG("signing with sk " << skey);
|
|
for (const auto &sk: used_keys)
|
|
MDEBUG(" created with sk " << crypto::secret_key_explicit_print_ref{sk});
|
|
CHECK_AND_ASSERT_MES(signer_tx_builder.next_partial_sign(sig.total_alpha_G, sig.total_alpha_H, k, skey, sig.c_0, sig.s), false, "error: multisig::signing::tx_builder_ringct_t::next_partial_sign");
|
|
|
|
// in round-robin signing, the last signer finalizes the tx
|
|
if (signer == other_signers.back())
|
|
CHECK_AND_ASSERT_MES(signer_tx_builder.finalize_tx(sources, sig.c_0, sig.s, tx), false, "error: multisig::signing::tx_builder_ringct_t::finalize_tx");
|
|
}
|
|
|
|
// verify this tx is really to the expected address
|
|
const crypto::public_key tx_pub_key2 = get_tx_pub_key_from_extra(tx, 0);
|
|
crypto::key_derivation derivation;
|
|
r = crypto::generate_key_derivation(tx_pub_key2, miner_account[creator].get_keys().m_view_secret_key, derivation);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate derivation");
|
|
uint64_t n_outs = 0, amount = 0;
|
|
std::vector<crypto::key_derivation> additional_derivations;
|
|
crypto::public_key output_public_key;
|
|
for (size_t n = 0; n < tx.vout.size(); ++n)
|
|
{
|
|
CHECK_AND_ASSERT_MES(typeid(txout_to_tagged_key) == tx.vout[n].target.type(), false, "Unexpected tx out type");
|
|
cryptonote::get_output_public_key(tx.vout[n], output_public_key);
|
|
if (is_out_to_acc_precomp(subaddresses, output_public_key, derivation, additional_derivations, n, hw::get_device(("default"))))
|
|
{
|
|
++n_outs;
|
|
CHECK_AND_ASSERT_MES(tx.vout[n].amount == 0, false, "Destination amount is not zero");
|
|
rct::key Ctmp;
|
|
crypto::secret_key scalar1;
|
|
crypto::derivation_to_scalar(derivation, n, scalar1);
|
|
rct::ecdhTuple ecdh_info = tx.rct_signatures.ecdhInfo[n];
|
|
rct::ecdhDecode(ecdh_info, rct::sk2rct(scalar1), tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG || tx.rct_signatures.type == rct::RCTTypeBulletproofPlus);
|
|
rct::key C = tx.rct_signatures.outPk[n].mask;
|
|
rct::addKeys2(Ctmp, ecdh_info.mask, ecdh_info.amount, rct::H);
|
|
CHECK_AND_ASSERT_MES(rct::equalKeys(C, Ctmp), false, "Failed to decode amount");
|
|
amount += rct::h2d(ecdh_info.amount);
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(n_outs == 2, false, "Not exactly 2 outputs were received");
|
|
CHECK_AND_ASSERT_MES(amount == amount_paid, false, "Amount paid was not the expected amount");
|
|
|
|
if (post_tx)
|
|
post_tx(tx);
|
|
|
|
if (!valid)
|
|
DO_CALLBACK(events, "mark_invalid_tx");
|
|
events.push_back(tx);
|
|
LOG_PRINT_L0("Test tx: " << obj_to_json_str(tx));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_22_1_2::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_22_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 4, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_22_2_1::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 2, {1}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_33_1_23::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 1, {2, 3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_33_3_21::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 3, {2, 1}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_1_2::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_1_3::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_2_1::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {1}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_2_3::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_45_1_234::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 4, 5, 1, {2, 3, 4}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_45_4_135_many_inputs::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 4, mixin, amount_paid, true, 4, 5, 4, {1, 3, 5}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_89_3_1245789::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 8, 9, 3, {1, 2, 4, 5, 7, 8, 9}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_24_1_2::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 4, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_24_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 4, mixin, amount_paid, true, 2, 4, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_25_1_2::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 5, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_25_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 4, mixin, amount_paid, true, 2, 5, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_48_1_234::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 4, 8, 1, {2, 3, 4}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_48_1_234_many_inputs::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 4, mixin, amount_paid, true, 4, 8, 1, {2, 3, 4}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_22_1__no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 2, 2, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_33_1__no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_33_1_2_no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_33_1_3_no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_23_1__no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 2, 3, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_45_5_23_no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 4, 5, 5, {2, 3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_24_1_no_signers::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 2, 4, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_25_1_no_signers::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 2, 5, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_48_1_no_signers::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 4, 8, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_48_1_23_no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 10;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 4, 8, 1, {2, 3}, NULL, NULL);
|
|
}
|