/* * dns64/dns64.c - DNS64 module * * Copyright (c) 2009, Viagénie. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Viagénie nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains a module that performs DNS64 query processing. */ #include "config.h" #include "dns64/dns64.h" #include "services/cache/dns.h" #include "services/cache/rrset.h" #include "util/config_file.h" #include "util/data/msgreply.h" #include "util/fptr_wlist.h" #include "util/net_help.h" #include "util/regional.h" /****************************************************************************** * * * STATIC CONSTANTS * * * ******************************************************************************/ /** * This is the default DNS64 prefix that is used whent he dns64 module is listed * in module-config but when the dns64-prefix variable is not present. */ static const char DEFAULT_DNS64_PREFIX[] = "64:ff9b::/96"; /** * Maximum length of a domain name in a PTR query in the .in-addr.arpa tree. */ #define MAX_PTR_QNAME_IPV4 30 /** * Per-query module-specific state. This is usually a dynamically-allocated * structure, but in our case we only need to store one variable describing the * state the query is in. So we repurpose the minfo pointer by storing an * integer in there. */ enum dns64_qstate { DNS64_INTERNAL_QUERY, /**< Internally-generated query, no DNS64 processing. */ DNS64_NEW_QUERY, /**< Query for which we're the first module in line. */ DNS64_SUBQUERY_FINISHED /**< Query for which we generated a sub-query, and for which this sub-query is finished. */ }; /****************************************************************************** * * * STRUCTURES * * * ******************************************************************************/ /** * This structure contains module configuration information. One instance of * this structure exists per instance of the module. Normally there is only one * instance of the module. */ struct dns64_env { /** * DNS64 prefix address. We're using a full sockaddr instead of just an * in6_addr because we can reuse Unbound's generic string parsing functions. * It will always contain a sockaddr_in6, and only the sin6_addr member will * ever be used. */ struct sockaddr_storage prefix_addr; /** * This is always sizeof(sockaddr_in6). */ socklen_t prefix_addrlen; /** * This is the CIDR length of the prefix. It needs to be between 0 and 96. */ int prefix_net; }; /****************************************************************************** * * * UTILITY FUNCTIONS * * * ******************************************************************************/ /** * Generic macro for swapping two variables. * * \param t Type of the variables. (e.g. int) * \param a First variable. * \param b Second variable. * * \warning Do not attempt something foolish such as swap(int,a++,b++)! */ #define swap(t,a,b) do {t x = a; a = b; b = x;} while(0) /** * Reverses a string. * * \param begin Points to the first character of the string. * \param end Points one past the last character of the string. */ static void reverse(char* begin, char* end) { while ( begin < --end ) { swap(char, *begin, *end); ++begin; } } /** * Convert an unsigned integer to a string. The point of this function is that * of being faster than sprintf(). * * \param n The number to be converted. * \param s The result will be written here. Must be large enough, be careful! * * \return The number of characters written. */ static int uitoa(unsigned n, char* s) { char* ss = s; do { *ss++ = '0' + n % 10; } while (n /= 10); reverse(s, ss); return ss - s; } /** * Extract an IPv4 address embedded in the IPv6 address \a ipv6 at offset \a * offset (in bits). Note that bits are not necessarily aligned on bytes so we * need to be careful. * * \param ipv6 IPv6 address represented as a 128-bit array in big-endian * order. * \param offset Index of the MSB of the IPv4 address embedded in the IPv6 * address. */ static uint32_t extract_ipv4(const uint8_t ipv6[16], const int offset) { uint32_t ipv4 = (uint32_t)ipv6[offset/8+0] << (24 + (offset%8)) | (uint32_t)ipv6[offset/8+1] << (16 + (offset%8)) | (uint32_t)ipv6[offset/8+2] << ( 8 + (offset%8)) | (uint32_t)ipv6[offset/8+3] << ( 0 + (offset%8)); if (offset/8+4 < 16) ipv4 |= (uint32_t)ipv6[offset/8+4] >> (8 - offset%8); return ipv4; } /** * Builds the PTR query name corresponding to an IPv4 address. For example, * given the number 3,464,175,361, this will build the string * "\03206\03123\0231\011\07in-addr\04arpa". * * \param ipv4 IPv4 address represented as an unsigned 32-bit number. * \param ptr The result will be written here. Must be large enough, be * careful! * * \return The number of characters written. */ static size_t ipv4_to_ptr(uint32_t ipv4, char ptr[MAX_PTR_QNAME_IPV4]) { static const char IPV4_PTR_SUFFIX[] = "\07in-addr\04arpa"; int i; char* c = ptr; for (i = 0; i < 4; ++i) { *c = uitoa((unsigned int)(ipv4 % 256), c + 1); c += *c + 1; ipv4 /= 256; } memmove(c, IPV4_PTR_SUFFIX, sizeof(IPV4_PTR_SUFFIX)); return c + sizeof(IPV4_PTR_SUFFIX) - ptr; } /** * Converts an IPv6-related domain name string from a PTR query into an IPv6 * address represented as a 128-bit array. * * \param ptr The domain name. (e.g. "\011[...]\010\012\016\012\03ip6\04arpa") * \param ipv6 The result will be written here, in network byte order. * * \return 1 on success, 0 on failure. */ static int ptr_to_ipv6(const char* ptr, uint8_t ipv6[16]) { int i; for (i = 0; i < 64; i++) { int x; if (ptr[i++] != 1) return 0; if (ptr[i] >= '0' && ptr[i] <= '9') { x = ptr[i] - '0'; } else if (ptr[i] >= 'a' && ptr[i] <= 'f') { x = ptr[i] - 'a' + 10; } else if (ptr[i] >= 'A' && ptr[i] <= 'F') { x = ptr[i] - 'A' + 10; } else { return 0; } ipv6[15-i/4] |= x << (2 * ((i-1) % 4)); } return 1; } /** * Synthesize an IPv6 address based on an IPv4 address and the DNS64 prefix. * * \param prefix_addr DNS64 prefix address. * \param prefix_net CIDR length of the DNS64 prefix. Must be between 0 and 96. * \param a IPv4 address. * \param aaaa IPv6 address. The result will be written here. */ static void synthesize_aaaa(const uint8_t prefix_addr[16], int prefix_net, const uint8_t a[4], uint8_t aaaa[16]) { memcpy(aaaa, prefix_addr, 16); aaaa[prefix_net/8+0] |= a[0] >> (0+prefix_net%8); aaaa[prefix_net/8+1] |= a[0] << (8-prefix_net%8); aaaa[prefix_net/8+1] |= a[1] >> (0+prefix_net%8); aaaa[prefix_net/8+2] |= a[1] << (8-prefix_net%8); aaaa[prefix_net/8+2] |= a[2] >> (0+prefix_net%8); aaaa[prefix_net/8+3] |= a[2] << (8-prefix_net%8); aaaa[prefix_net/8+3] |= a[3] >> (0+prefix_net%8); if (prefix_net/8+4 < 16) /* <-- my beautiful symmetry is destroyed! */ aaaa[prefix_net/8+4] |= a[3] << (8-prefix_net%8); } /****************************************************************************** * * * DNS64 MODULE FUNCTIONS * * * ******************************************************************************/ /** * This function applies the configuration found in the parsed configuration * file \a cfg to this instance of the dns64 module. Currently only the DNS64 * prefix (a.k.a. Pref64) is configurable. * * \param dns64_env Module-specific global parameters. * \param cfg Parsed configuration file. */ static int dns64_apply_cfg(struct dns64_env* dns64_env, struct config_file* cfg) { verbose(VERB_ALGO, "dns64-prefix: %s", cfg->dns64_prefix); if (!netblockstrtoaddr(cfg->dns64_prefix ? cfg->dns64_prefix : DEFAULT_DNS64_PREFIX, 0, &dns64_env->prefix_addr, &dns64_env->prefix_addrlen, &dns64_env->prefix_net)) { log_err("cannot parse dns64-prefix netblock: %s", cfg->dns64_prefix); return 0; } if (!addr_is_ip6(&dns64_env->prefix_addr, dns64_env->prefix_addrlen)) { log_err("dns64_prefix is not IPv6: %s", cfg->dns64_prefix); return 0; } if (dns64_env->prefix_net < 0 || dns64_env->prefix_net > 96) { log_err("dns64-prefix length it not between 0 and 96: %s", cfg->dns64_prefix); return 0; } return 1; } /** * Initializes this instance of the dns64 module. * * \param env Global state of all module instances. * \param id This instance's ID number. */ int dns64_init(struct module_env* env, int id) { struct dns64_env* dns64_env = (struct dns64_env*)calloc(1, sizeof(struct dns64_env)); if (!dns64_env) { log_err("malloc failure"); return 0; } env->modinfo[id] = (void*)dns64_env; if (!dns64_apply_cfg(dns64_env, env->cfg)) { log_err("dns64: could not apply configuration settings."); return 0; } return 1; } /** * Deinitializes this instance of the dns64 module. * * \param env Global state of all module instances. * \param id This instance's ID number. */ void dns64_deinit(struct module_env* env, int id) { if (!env) return; free(env->modinfo[id]); env->modinfo[id] = NULL; } /** * Handle PTR queries for IPv6 addresses. If the address belongs to the DNS64 * prefix, we must do a PTR query for the corresponding IPv4 address instead. * * \param qstate Query state structure. * \param id This module instance's ID number. * * \return The new state of the query. */ static enum module_ext_state handle_ipv6_ptr(struct module_qstate* qstate, int id) { struct dns64_env* dns64_env = (struct dns64_env*)qstate->env->modinfo[id]; struct module_qstate* subq = NULL; struct query_info qinfo; struct sockaddr_in6 sin6; /* Convert the PTR query string to an IPv6 address. */ memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; if (!ptr_to_ipv6((char*)qstate->qinfo.qname, sin6.sin6_addr.s6_addr)) return module_wait_module; /* Let other module handle this. */ /* * If this IPv6 address is not part of our DNS64 prefix, then we don't need * to do anything. Let another module handle the query. */ if (addr_in_common((struct sockaddr_storage*)&sin6, 128, &dns64_env->prefix_addr, dns64_env->prefix_net, (socklen_t)sizeof(sin6)) != dns64_env->prefix_net) return module_wait_module; verbose(VERB_ALGO, "dns64: rewrite PTR record"); /* * Create a new PTR query info for the domain name corresponding to the IPv4 * address corresponding to the IPv6 address corresponding to the original * PTR query domain name. */ qinfo = qstate->qinfo; if (!(qinfo.qname = regional_alloc(qstate->region, MAX_PTR_QNAME_IPV4))) return module_error; qinfo.qname_len = ipv4_to_ptr(extract_ipv4(sin6.sin6_addr.s6_addr, dns64_env->prefix_net), (char*)qinfo.qname); /* Create the new sub-query. */ fptr_ok(fptr_whitelist_modenv_attach_sub(qstate->env->attach_sub)); if(!(*qstate->env->attach_sub)(qstate, &qinfo, qstate->query_flags, 0, 0, &subq)) return module_error; if (subq) { subq->curmod = id; subq->ext_state[id] = module_state_initial; subq->minfo[id] = NULL; } return module_wait_subquery; } /** allocate (special) rrset keys, return 0 on error */ static int repinfo_alloc_rrset_keys(struct reply_info* rep, struct regional* region) { size_t i; for(i=0; i<rep->rrset_count; i++) { if(region) { rep->rrsets[i] = (struct ub_packed_rrset_key*) regional_alloc(region, sizeof(struct ub_packed_rrset_key)); if(rep->rrsets[i]) { memset(rep->rrsets[i], 0, sizeof(struct ub_packed_rrset_key)); rep->rrsets[i]->entry.key = rep->rrsets[i]; } } else return 0;/* rep->rrsets[i] = alloc_special_obtain(alloc);*/ if(!rep->rrsets[i]) return 0; rep->rrsets[i]->entry.data = NULL; } return 1; } static enum module_ext_state generate_type_A_query(struct module_qstate* qstate, int id) { struct module_qstate* subq = NULL; struct query_info qinfo; verbose(VERB_ALGO, "dns64: query A record"); /* Create a new query info. */ qinfo = qstate->qinfo; qinfo.qtype = LDNS_RR_TYPE_A; /* Start the sub-query. */ fptr_ok(fptr_whitelist_modenv_attach_sub(qstate->env->attach_sub)); if(!(*qstate->env->attach_sub)(qstate, &qinfo, qstate->query_flags, 0, 0, &subq)) { verbose(VERB_ALGO, "dns64: sub-query creation failed"); return module_error; } if (subq) { subq->curmod = id; subq->ext_state[id] = module_state_initial; subq->minfo[id] = NULL; } return module_wait_subquery; } /** * Handles the "pass" event for a query. This event is received when a new query * is received by this module. The query may have been generated internally by * another module, in which case we don't want to do any special processing * (this is an interesting discussion topic), or it may be brand new, e.g. * received over a socket, in which case we do want to apply DNS64 processing. * * \param qstate A structure representing the state of the query that has just * received the "pass" event. * \param id This module's instance ID. * * \return The new state of the query. */ static enum module_ext_state handle_event_pass(struct module_qstate* qstate, int id) { if ((uintptr_t)qstate->minfo[id] == DNS64_NEW_QUERY && qstate->qinfo.qtype == LDNS_RR_TYPE_PTR && qstate->qinfo.qname_len == 74 && !strcmp((char*)&qstate->qinfo.qname[64], "\03ip6\04arpa")) /* Handle PTR queries for IPv6 addresses. */ return handle_ipv6_ptr(qstate, id); if (qstate->env->cfg->dns64_synthall && (uintptr_t)qstate->minfo[id] == DNS64_NEW_QUERY && qstate->qinfo.qtype == LDNS_RR_TYPE_AAAA) return generate_type_A_query(qstate, id); /* We are finished when our sub-query is finished. */ if ((uintptr_t)qstate->minfo[id] == DNS64_SUBQUERY_FINISHED) return module_finished; /* Otherwise, pass request to next module. */ verbose(VERB_ALGO, "dns64: pass to next module"); return module_wait_module; } /** * Handles the "done" event for a query. We need to analyze the response and * maybe issue a new sub-query for the A record. * * \param qstate A structure representing the state of the query that has just * received the "pass" event. * \param id This module's instance ID. * * \return The new state of the query. */ static enum module_ext_state handle_event_moddone(struct module_qstate* qstate, int id) { /* * In many cases we have nothing special to do. From most to least common: * * - An internal query. * - A query for a record type other than AAAA. * - CD FLAG was set on querier * - An AAAA query for which an error was returned. * - A successful AAAA query with an answer. */ if ( (enum dns64_qstate)qstate->minfo[id] == DNS64_INTERNAL_QUERY || qstate->qinfo.qtype != LDNS_RR_TYPE_AAAA || (qstate->query_flags & BIT_CD) || qstate->return_rcode != LDNS_RCODE_NOERROR || (qstate->return_msg && qstate->return_msg->rep && reply_find_answer_rrset(&qstate->qinfo, qstate->return_msg->rep))) return module_finished; /* So, this is a AAAA noerror/nodata answer */ return generate_type_A_query(qstate, id); } /** * This is the module's main() function. It gets called each time a query * receives an event which we may need to handle. We respond by updating the * state of the query. * * \param qstate Structure containing the state of the query. * \param event Event that has just been received. * \param id This module's instance ID. * \param outbound State of a DNS query on an authoritative server. We never do * our own queries ourselves (other modules do it for us), so * this is unused. */ void dns64_operate(struct module_qstate* qstate, enum module_ev event, int id, struct outbound_entry* outbound) { (void)outbound; verbose(VERB_QUERY, "dns64[module %d] operate: extstate:%s event:%s", id, strextstate(qstate->ext_state[id]), strmodulevent(event)); log_query_info(VERB_QUERY, "dns64 operate: query", &qstate->qinfo); switch(event) { case module_event_new: /* Tag this query as being new and fall through. */ qstate->minfo[id] = (void*)DNS64_NEW_QUERY; case module_event_pass: qstate->ext_state[id] = handle_event_pass(qstate, id); break; case module_event_moddone: qstate->ext_state[id] = handle_event_moddone(qstate, id); break; default: qstate->ext_state[id] = module_finished; break; } } static void dns64_synth_aaaa_data(const struct ub_packed_rrset_key* fk, const struct packed_rrset_data* fd, struct ub_packed_rrset_key *dk, struct packed_rrset_data **dd_out, struct regional *region, struct dns64_env* dns64_env ) { struct packed_rrset_data *dd; size_t i; /* * Create synthesized AAAA RR set data. We need to allocated extra memory * for the RRs themselves. Each RR has a length, TTL, pointer to wireformat * data, 2 bytes of data length, and 16 bytes of IPv6 address. */ if(fd->count > RR_COUNT_MAX) { *dd_out = NULL; return; /* integer overflow protection in alloc */ } if (!(dd = *dd_out = regional_alloc(region, sizeof(struct packed_rrset_data) + fd->count * (sizeof(size_t) + sizeof(time_t) + sizeof(uint8_t*) + 2 + 16)))) { log_err("out of memory"); return; } /* Copy attributes from A RR set. */ dd->ttl = fd->ttl; dd->count = fd->count; dd->rrsig_count = 0; dd->trust = fd->trust; dd->security = fd->security; /* * Synthesize AAAA records. Adjust pointers in structure. */ dd->rr_len = (size_t*)((uint8_t*)dd + sizeof(struct packed_rrset_data)); dd->rr_data = (uint8_t**)&dd->rr_len[dd->count]; dd->rr_ttl = (time_t*)&dd->rr_data[dd->count]; for(i = 0; i < fd->count; ++i) { if (fd->rr_len[i] != 6 || fd->rr_data[i][0] != 0 || fd->rr_data[i][1] != 4) return; dd->rr_len[i] = 18; dd->rr_data[i] = (uint8_t*)&dd->rr_ttl[dd->count] + 18*i; dd->rr_data[i][0] = 0; dd->rr_data[i][1] = 16; synthesize_aaaa( ((struct sockaddr_in6*)&dns64_env->prefix_addr)->sin6_addr.s6_addr, dns64_env->prefix_net, &fd->rr_data[i][2], &dd->rr_data[i][2] ); dd->rr_ttl[i] = fd->rr_ttl[i]; } /* * Create synthesized AAAA RR set key. This is mostly just bookkeeping, * nothing interesting here. */ if(!dk) { log_err("no key"); return; } dk->rk.dname = (uint8_t*)regional_alloc_init(region, fk->rk.dname, fk->rk.dname_len); if(!dk->rk.dname) { log_err("out of memory"); return; } dk->rk.type = htons(LDNS_RR_TYPE_AAAA); memset(&dk->entry, 0, sizeof(dk->entry)); dk->entry.key = dk; dk->entry.hash = rrset_key_hash(&dk->rk); dk->entry.data = dd; } /** * Synthesize an AAAA RR set from an A sub-query's answer and add it to the * original empty response. * * \param id This module's instance ID. * \param super Original AAAA query. * \param qstate A query. */ static void dns64_adjust_a(int id, struct module_qstate* super, struct module_qstate* qstate) { struct dns64_env* dns64_env = (struct dns64_env*)super->env->modinfo[id]; struct reply_info *rep, *cp; size_t i, s; struct packed_rrset_data* fd, *dd; struct ub_packed_rrset_key* fk, *dk; verbose(VERB_ALGO, "converting A answers to AAAA answers"); log_assert(super->region); log_assert(qstate->return_msg); log_assert(qstate->return_msg->rep); /* If dns64-synthall is enabled, return_msg is not initialized */ if(!super->return_msg) { super->return_msg = (struct dns_msg*)regional_alloc( super->region, sizeof(struct dns_msg)); if(!super->return_msg) return; memset(super->return_msg, 0, sizeof(*super->return_msg)); super->return_msg->qinfo = super->qinfo; } rep = qstate->return_msg->rep; /* * Build the actual reply. */ cp = construct_reply_info_base(super->region, rep->flags, rep->qdcount, rep->ttl, rep->prefetch_ttl, rep->an_numrrsets, rep->ns_numrrsets, rep->ar_numrrsets, rep->rrset_count, rep->security); if(!cp) return; /* allocate ub_key structures special or not */ if(!repinfo_alloc_rrset_keys(cp, super->region)) { return; } /* copy everything and replace A by AAAA */ for(i=0; i<cp->rrset_count; i++) { fk = rep->rrsets[i]; dk = cp->rrsets[i]; fd = (struct packed_rrset_data*)fk->entry.data; dk->rk = fk->rk; dk->id = fk->id; if(i<rep->an_numrrsets && fk->rk.type == htons(LDNS_RR_TYPE_A)) { /* also sets dk->entry.hash */ dns64_synth_aaaa_data(fk, fd, dk, &dd, super->region, dns64_env); if(!dd) return; /* Delete negative AAAA record from cache stored by * the iterator module */ rrset_cache_remove(super->env->rrset_cache, dk->rk.dname, dk->rk.dname_len, LDNS_RR_TYPE_AAAA, LDNS_RR_CLASS_IN, 0); } else { dk->entry.hash = fk->entry.hash; dk->rk.dname = (uint8_t*)regional_alloc_init(super->region, fk->rk.dname, fk->rk.dname_len); if(!dk->rk.dname) return; s = packed_rrset_sizeof(fd); dd = (struct packed_rrset_data*)regional_alloc_init( super->region, fd, s); if(!dd) return; } packed_rrset_ptr_fixup(dd); dk->entry.data = (void*)dd; } /* Commit changes. */ super->return_msg->rep = cp; } /** * Generate a response for the original IPv6 PTR query based on an IPv4 PTR * sub-query's response. * * \param qstate IPv4 PTR sub-query. * \param super Original IPv6 PTR query. */ static void dns64_adjust_ptr(struct module_qstate* qstate, struct module_qstate* super) { struct ub_packed_rrset_key* answer; verbose(VERB_ALGO, "adjusting PTR reply"); /* Copy the sub-query's reply to the parent. */ if (!(super->return_msg = (struct dns_msg*)regional_alloc(super->region, sizeof(struct dns_msg)))) return; super->return_msg->qinfo = super->qinfo; super->return_msg->rep = reply_info_copy(qstate->return_msg->rep, NULL, super->region); /* * Adjust the domain name of the answer RR set so that it matches the * initial query's domain name. */ answer = reply_find_answer_rrset(&qstate->qinfo, super->return_msg->rep); log_assert(answer); answer->rk.dname = super->qinfo.qname; answer->rk.dname_len = super->qinfo.qname_len; } /** * This function is called when a sub-query finishes to inform the parent query. * * We issue two kinds of sub-queries: PTR and A. * * \param qstate State of the sub-query. * \param id This module's instance ID. * \param super State of the super-query. */ void dns64_inform_super(struct module_qstate* qstate, int id, struct module_qstate* super) { log_query_info(VERB_ALGO, "dns64: inform_super, sub is", &qstate->qinfo); log_query_info(VERB_ALGO, "super is", &super->qinfo); /* * Signal that the sub-query is finished, no matter whether we are * successful or not. This lets the state machine terminate. */ super->minfo[id] = (void*)DNS64_SUBQUERY_FINISHED; /* If there is no successful answer, we're done. */ if (qstate->return_rcode != LDNS_RCODE_NOERROR || !qstate->return_msg || !qstate->return_msg->rep || !reply_find_answer_rrset(&qstate->qinfo, qstate->return_msg->rep)) return; /* Generate a response suitable for the original query. */ if (qstate->qinfo.qtype == LDNS_RR_TYPE_A) { dns64_adjust_a(id, super, qstate); } else { log_assert(qstate->qinfo.qtype == LDNS_RR_TYPE_PTR); dns64_adjust_ptr(qstate, super); } /* Store the generated response in cache. */ if (!dns_cache_store(super->env, &super->qinfo, super->return_msg->rep, 0, 0, 0, NULL, super->query_flags)) log_err("out of memory"); } /** * Clear module-specific data from query state. Since we do not allocate memory, * it's just a matter of setting a pointer to NULL. * * \param qstate Query state. * \param id This module's instance ID. */ void dns64_clear(struct module_qstate* qstate, int id) { qstate->minfo[id] = NULL; } /** * Returns the amount of global memory that this module uses, not including * per-query data. * * \param env Module environment. * \param id This module's instance ID. */ size_t dns64_get_mem(struct module_env* env, int id) { struct dns64_env* dns64_env = (struct dns64_env*)env->modinfo[id]; if (!dns64_env) return 0; return sizeof(*dns64_env); } /** * The dns64 function block. */ static struct module_func_block dns64_block = { "dns64", &dns64_init, &dns64_deinit, &dns64_operate, &dns64_inform_super, &dns64_clear, &dns64_get_mem }; /** * Function for returning the above function block. */ struct module_func_block * dns64_get_funcblock() { return &dns64_block; }